Skip to content
- V. S. Adamchik, Polygamma functions of negative order, J. Comp. and Appl. Math., 100(1998) 191-199.
- V. S. Adamchik, On the Barnes function, in Proceedings of the 2001 International Symposium on Symbolic and Algebraic Computation, London, Ontario; July 22-25, 2001, ACM Press, New York, 2001, 15-20.
- V. S. Adamchik, H. M. Srivastava, Some series of the zeta and related functions, Analysis (1998) 131-144.
- V.B. Adesi, S. Zerbini, Analytic continuation of the Hurwitz zeta function with physical application, Journal of Mathematical Physics 43, no. 7 (2002) 3759-65.
- M. Aigner, A characterization of the Bell numbers, Discrete Math., 205 (1999) 207-210.
- W. Alexejewsky, Ueber eine Classe von Funktionen, die der Gammafunktion analog sind, Leipzig Weidmanncshe Buchhandluns 46 (1894) 268-275.
- G. Andrews, R. Askey, R. Roy, Special Functions, Cambridge University Press, 1999.
- T.M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976.
- T. M. Apostol, Formulas for higher derivatives of the Riemann zeta function, Math. Comp., 44, no. 169 (1985) 223-232.
- E. Artin, The Gamma function, Holt Rineart and Winston, 1964.
- R. Ayoub, Euler and the Zeta function, Amer. Math. Monthly 81 (1974) 1067-1086.
- U. Balakrishnan, Y.-F.S. Petermann, Asymptotic estimates for a class of summatory functions, Journal of Number Theory 70, no. 1 (1998) 1-36.
- E. W. Barnes, The theory of the G-finction, Quart. J. Math. 31 (1899) 264-314.
- E. W. Barnes, Genesis of the double gamma function, Proc. London Math. Soc. 31 (1900) 358-381.
- E. W. Barnes, The theory of the double gamma function, Philos. Trans. Roy. Soc. ser. A 196 (1901) 265-388.
- E. W. Barnes, On the theory of the multiple gamma function, Philos. Trans. Roy. Soc. ser. A 19 (1904) 374-439.
- E. Barouch, B. M. McCoy and T. T. Wu, Zero-field susceptibility of the two dimensional Ising model near Tc, Phys. Rev. Lett. 31 (1973) 1409-1411.
- F.A. Barone, C. Farina, The zeta function method and the harmonic oscillator propagator, American Journal of Physics 69, no. 2 (2001) 232-235.
- H. Bateman, A. Erdelyi, Higher Transcendental Functions, Vol. 1, McGraw-Hill, 1953.
- C.M. Bender, Q. Wang, Comment on a recent paper by Mezincescu, Journal of Physics A 34, no. 15 (2001) 3325-3328.
- L. Bendersky, Sur la fonction gamma généralisée, Acta Math. 61 (1933) 263-322.
- B. C. Berndt, Ramanujan’s Notebooks, Part I, Springer-Verlag, 1985.
- M.V. Berry, The Riemann-Siegel expansion for the zeta function: High orders and remainders, Proceedings. Mathematical and physical sciences / 450, no. 1939 (1995) 439-462.
- K. Billingham, Uniform asymptotic expansions for the Barnes double gamma function, Proceedings: Mathematical, Physical & Engineering Sciences 453, no. 1964 (1997) 1817-1829.
- E.B. Bogomolny, J.P. Keating, Random matrix theory and the Riemann zeros II : n-point correlations, Hewlett Packard, Bristol England, 1996.
- H.E. Boos, V.E. Korepin, Quantum spin chains and Riemann zeta function with odd arguments, Journal of Physics A 34, no. 26 (2001) 5311-5316.
- J.M. Borwein, D.M. Bradley, R.E. Crandall, Computational strategies for the Riemann zeta function, Journal of Computational and Applied Mathematics 121, no. 1-2 (2000) 247-296.
- P.Borwein, W. Dykshoorn, An interesting infinite product, J. Math. Anal. and Appl.. 179 (1993) 203-207.
- E. Brezin, S. Hikami, Logarithmic moments of characteristic polynomials of random matrices, Physica A 279, no. 1-4 (2000) 333-341.
- P. Cassou-Nogues, Analogues p-adiques des functions G-multiples, in “Journees Arithmetiques de Luminy” (Collq. Internat. CNRS, Centre Univ. Luminy, Luminy, 1978), pp.43-55, Asterisque 61, Soc. Math. France, Paris (1979).
- M.-P. Chen, H.M. Srivastava, Some families of series representations for the Reimann (3), Resultate Math. 33 (1998) 179-197.
- J.S.Choi, Ph.D. thesis, Florida State Univ., 1991.
- J. Choi, On a generalization of the Hurwitz zeta function (s, a), Indian J. Pure Appl. Math. 23 (1992) 83-91.
- J. Choi, J.R. Quine, E. W. Barnes’ approach of the multiple gamma functions, J. Korean Math. Soc. 29, no. 1 (1992) 127-140.
- J. Choi, Multiple gamma functions and determinants of Laplacians, Automorphic forms and related topics (Seoul, 1993), 5-16, Pyungsan Inst. Math. Sci., Seoul, 199?.
- J. Choi, Determinant of Laplacian on S^3, Math. Japon. 40 (1994) 155-166.
- J.Choi and Y.M. Nam, The First Eulerian integral, Kyushu J. Math. 49 (1995) 421-427.
- Choi, H. M. Srivastava, J. R. Quine, Some series involving the zeta function, Bull. Austral. Math. Soc. 51 (1995) 383-393.
- J. Choi, A duplication formula for the double gamma function $\Gamma\sb 2$, Bull. Korean Math. Soc. 33, no. 2 (1996) 289-294.
- J. Choi, Explicit formulas for Bernoulli polynomials of order n, Indian J. Pure Appl. Math. 27 (1996) 667-674.
- J. Choi, C. Nash, Integral representations of the Kinkelin’s constant A, Math. Japon. 45 (1997) 223-230.
- J. Choi, T.Y. Seo, The double Gamma function, East Asian Math. J. 13 (1997) 159-174.
- J. Choi, H.M. Srivastava, Sums Associated with the Zeta Function, Journal of Mathematical Analysis and Applications 206, no. 1 (1997) 103-120.
- J. Choi, The Catalan’s constant and series involving the zeta function, Commun. Korean Math. Soc. 13, no. 2 (1998) 435-443.
- J. Choi, H.M. Srivastava, Nan-Yue Zhang, Integrals involving a function associated with the Euler-Maclaurin summation formula, Applied Mathematics and Computation 93, no. 2-3 (1998) 101-116.
- J. Choi, T.Y. Seo, Identities involving series of the Riemann zeta function, Indian journal of pure and applied mathematics 30, no. 7 (1999) 649-654.
- J. Choi, H.M. Srivastava, An application of the theory of the double gamma function, Kyushu J. Math. 53, no. 1 (1999) 209-222.
- J. Choi, H.M. Srivastava, Certain Classes of Series Involving the Zeta Function, Journal of Mathematical Analysis and Applications 231, no. 1 (1999) 91-117.
- J. Choi, H.M. Srivastava, Certain classes of series associated with the Zeta function and multiple gamma functions, Journal of Computational and Applied Mathematics 118, no. 1-2 (2000) 87-109.
- J. Choi, H. M. Srivastava, V.S. Adamchik, Multiple Gamma and related functions, Appl. Math. and Comp. 134 (2003) 515-533.
- B.K. Choudhury, The Riemann zeta-function and its derivatives, Proceedings of the Royal Society of London Series A 450, no. 1940 (1995) 477.
- L. Comtet, Advanced Combinatorics, Reidel, 1974.
- J. B. Conway, Functions of One Complex Variable (2nd Ed.) Springer-Verlag, 1978.
- J. B. Conway, D. W Farmer, Mean Values of L-functions and Symmetry, IMNR 2000: 17 (2000), 883-908.
- R.E. Crandall, On the quantum zeta function, Journal of Physics A 29, no. 21 (1996) 6795-6816.
- D. Cvijovic, J. Klinowski, Closed-form summation of some trigonometric series, Math. Comput. 64 (1995) 205-210.
- D. Cvijovic, J. Klinowski, Values of the Legendre chi and Hurwitz zeta functions at rational arguments, Mathematics of Computation 68, no. 228 (1999) 1623-1630.
- D. Cvijovic, J. Klinowski, Integral representations of the Riemann zeta function for odd integer arguments, Journal of Computational and Applied Mathematics 142, no. 2 (2002) 435-439.
- P. Dahlqvist, The role of singularities in chaotic spectroscopy, Chaos, Solitons and Fractals 8, no. 7-8 (1997) 1011-1029.
- E. D’Hoker and D.H. Phong, Multiloop amplitudes for the bosonic Polyakov string, Nuclear Phys. B 269 (1986) 205-234.
- E. D’Hoker and D.H. Phong, On Determinants of Laplacians on Riemann surface, Comm. Math. Phys. 104 (1986) 537-545.
- E. D’Hoker and D.H. Phong, Functional determinants on Mandelstam diagrams, Comm. Math. Phys. 124 (1989) 629-645.
- A. Dietmar, A determinant formula for the generalized Selberg zeta-function, The quarterly journal of mathematics 47, no. 188 (1996) 435-455.
- K. Dilcher, On generalized gamma functions related to the Laurent coefficients of the Riemann zeta function, Aequationes Math. 48 (1994) 55-85.
- J. Dufresnoy et Ch. Pisot, Sur la relation f(x +1) – f(x) = (x), Bulletin de la Societe Mathematique de Belgique 15 (1963) 259-270.
- I. Efrat, Determinants of Laplacians on surfaces of finite volumes, ibid. 119 (1998), 443-451; erratum, ibid. 138 (1991) 607.
- S. Egami, K. Matsumoto, Asymptotic Expansions of Multiple Zeta Functions and Power Mean Values of Hurwitz Zeta Functions, Journal of the London Mathematical Society 66, no. 1 (2002) 41-60.
- E. Elizalde, A simple recurrence for the higher derivatives of the Hurwitz zeta function, Journal of Mathematical Physics 34, no. 7 (1993) 3222-3226.
- E. Elizalde, L. Vanzo, S. Zerbini, Zeta-Function Regularization, the Multiplicative Anomaly and the Wodzicki Residue, Communications in mathematical physics 194, no. 3 (1998) 613-630.
- E. Elizalde, On the concept of determinant for the differential operators of quantum physics, JHEP-Journal of High Energy Physics (1999).
- E. Elizalde, Zeta functions: formulas and applications, Journal of Computational and Applied Mathematics 118, no. 1-2 (2000) 125-142.
- E. Elizalde, Some uses of zeta -regularization in quantum gravity and cosmology, Gravitation & Cosmology 8, no. 1-2 (2002) 43-48.
- A. Erdelyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher Transcendental Functions, Vol. I, McGraw-Hill, New York, 1953.
- O. Espinosa, V.H. Moll, On Some Integrals Involving the Hurwitz Zeta Function: Part 2, The Ramanujan Journal 6, no. 4 (2002) 449-468.
- J.A. Ewell, On the Zeta Function Values z(2k + 1), k = 1,2,…, The Rocky Mountain Journal of Mathematics 25, no. 3 (1995) 1003-1012.
- C. Ferreira, J. Lopez, An Asymptotic Expansion of the Double Gamma Function, Journal of Approximation Theory 111, no. 2 (2001) 298-314.
- C. Ferreira, J. Lopez, Asymptotic expansions of the double Zeta function, Journal of Mathematical Analysis and Applications 274, no. 1 (2002) 134-158.
- A.R. Forsyth, Theory of Function of a Complex Variable, Cambridge University Press, 1900.
- J.W.L. Glaisher, On a numerical continued product, Messenger of Math., 6 (1877) 71-76.
- J.W.L. Glaisher, On the product 1^1 2^2 3^3…n^n, Messenger of Math. 7 (1887) 43-47.
- J.W.L. Glaisher, On certain numerical products, Messenger of Math. 23 (1893) 145-175.
- J.W.L. Glaisher, On the constant which occurs in the formula for 1^1·2^2·3^3·…·n^n, Messenger of Math. 24 (1894) 1-16.
- J.W.L. Glaisher, On products and series involving prime numbers only, Quart. J. Math. 26 (1983) 1-74.
- R. W. Gosper, int_{\frac{\pi}{4}}^{\frac{\pi}{6}}\log \Gamma (x) dx, In Special functions,q-series and related topics, pages 71-76. M.Ismail, D.Masson, M. Rahman editors. The Fields Institute Communications, AMS, 14 (1997).
- I.S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products, Sixth Ed., Academic Press, 2000.
- D. H. Greene and D. E. Knuth, Mathematics for the Analysis of Algorithms, Birkhäuser, 1981.
- C.C. Grosjean, Formulae concerning the computation of the Clausen integral CI2, J. Comput. Appl. Math. 11 (1984) 331-342.
- C.R. Guo, On the zeros of the derivative of the Riemann zeta function, Proceedings of the London Mathematical Society 72, no. 1 (1996) 28-62.
- F. H. Jackson, A generalization of the functions Gamma(x) and x^n, Proc. Roy. Soc. London, 74.
- E.R. Hansen, A Table of Series and Products, Prentice-Hall, Englewood Cliffs, NJ, 1975.
- V.O. Holder, Uber eine transcendente function, Gottingen, Dieterichsche Verlags-Buchhandlung (1886) 514-522.
- J. Honkala, On generalized zeta functions of formal languages and series, Discrete Applied Mathematics 32, no. 2 (1991) 141-153.
- Hughes, Keating, N. O’Connell, Random matrix theory and the derivative of the Riemann zeta function, Proceedings: Mathematical, Physical & Engineering Sciences 456, no. 2003 (2000) 2611-2627.
- S. Hwang, R. Marnelius, P. Saltsidis, A general BRST approach to string theories with zeta function regularizations, Journal of Mathematical Physics 40, no. 10 (1999) 4639-4657.
- S. G. Kanellos, Mathematical Researches and Results, Athens, 1965 (in Greek).
- S. Kanemitsu, H. Kumagai, M. Yoshimoto, On Rapidly Convergent Series Expressions for Zeta- and L-Values, and Log Sine Integrals, The Ramanujan Journal 5, no. 1 (2001) 91-104.
- S. Kanemitsu, H. Kumagai, M. Yoshimoto, Sums Involving the Hurwitz Zeta Function, The Ramanujan Journal 5, no. 1 (2001) 5-19.
- E.A. Karatsuba, Fast evaluation of zeta (3), Problems of Information Transmission 29, no. 1 (1993) 58-62.
- E.A. Karatsuba, Fast calculation of the Riemann zeta function zeta (s) for integer values of the argument s, Problems of Information Transmission 31, no. 4 (1995) 353-362.
- E.A. Karatsuba, Automata Theory – Fast Evaluation of the Hurwitz Zeta Function and Dirichlet L-Series, Problems of information transmission 34, no. 4 (1998) 342-353.
- E.A. Karatsuba, Fast evaluation of the Hurwitz zeta function and Dirichlet L-series Karatsuba, Source: Problems of Information Transmission 34, no. 4 (1998) 342-353.
- K. Katayama, M. Ohtsuki, On the multiple gamma-functions, Tokyo J. Math 21, no. 1 (1998) 159-182.
- K. Katayama, On the special functions higher than the multiple gamma-functions, Tokyo J. Math. 23, no. 2 (2000) 325-349.
- J. P. Keating, N. C. Snaith, Random matrix theory and $\zeta(1/2 + i*t)$, Commun. Math. Phys. 214 (2000) 57-89.
- J. P. Keating, N. C. Snaith, Random matrix theory and L-functions at $s=\frac{1}{2}$, Commun. Math. Phys. 214 (2000) 91-110.
- T. Kim, A note on q-multiple zeta functions, Journal of Physics A 34, no. 46 (2001) 643-646.
- V.H. Kinkelin, Ueber eine mit der Gamma function verwandte Transcendente und deren Anwendung auf die Integralrechnung, J.Reine Angew. Math. 57 (1860) 122-158.
- K. S. Kolbig, The polygamma function and the derivatives of the cotangent function for rational arguments, CERN-IT-Reports, CERN-CN-96-005, 1996.
- H. Kumagai, The determinant of the Laplacian on the n-sphere, Acta Arithmetica, XCI.3 (1999) 199-208.
- N. Kurokawa, Multiple sine functions and Selberg zeta functions, Proc. Japan. Acad. 67A, (1991), 61-64.
- N. Kurokawa, S. Koyama, Multiple Sine Functions, Forum Math ,15(2003) 839-876.
- X. Li, X.Shi, J. Zhang, Generalized Riemann zeta -function regularization and Casimir energy for a piecewise uniform string, Physical Review D 44, no. 2 (1991) 560-562.
- J.L. Lopez, Several series containing gamma and polygamma functions, Journal of Computational and Applied Mathematics 90, no. 1 (1998) 15-23.
- R. A. MacLeod, Fractional part sums and divisor functions, J. Number Theory, 14 (1982) 185-227.
- W. Magnus, F. Oberhettinger, and R.P. Soni, Formulas and theorems for the special functions of mathematical physics (3rd Ed.), Springer-Verlag, 1966.
- K. Matsumoto, Asymptotic series for double zeta and double gamma functions of Barnes, Analytic number theory (Japanese) (1994) S\=urikaisekikenky\=ushoK\=oky\=uroku No. 958 (1996) 162-165.
- K. Matsumoto, Asymptotic series for double zeta, double gamma, and Hecke L functions, Mathematical Proceedings of the Cambridge Philosophical Society 123, no. 3 (1998) 385-405.
- K. Matsumoto, Asymptotic expansions of double gamma-functions and related remarks, Analytic number theory (1999), 243-268, Dev. Math., 6.
- B. M. McCoy and T. T. Wu, The Two-Dimensional Ising Model, Harvard Univ. Press, 1973, Appendix B.
- Z. A. Melzak, Infinite Products for p e and p/e, MAA Monthly, 68 (1961) 39-41.
- J. Miller, V.S. Adamchik, Derivatives of the Hurwitz Zeta function for rational arguments, Journal of computational and applied mathematics 100, no. 2 (1998) 201-206.
- D. S. Mitrinovic, Sur une classe de nombres reliés aux nombres de Stirling.(French), C. R. Acad. Sci. Paris, 252 (1961) 2354-2356.
- H. L. Montgomery, The pair correlation of the zeta function, Proc. Symp. Pure Math. 24 (1973) 181-193.
- C. Muses, Some new considerations on the Bernoulli numbers, the factorial function, and Riemann’s zeta function, Applied Mathematics and Computation 113, no. 1 (2000) 1-21.
- Z. Nan-Ye, K.S. Williams, Values of the Riemann zeta function and integrals involving log (2 sinh oo2) and log (2sin oo2), Pacific journal of mathematics 168, no. 2 (1995) 271-290.
- C. Nash, D. O’Connor, Determinants of Laplacians, the Ray-Singer torsion on lens spaces and the Riemann zeta function, Journal of Mathematical Physics 36, no. 3 (1995) 1462-1505.
- C. Nash, D. O’Connor, Erratum: Determinants of Laplacians, the Ray-Singer torsion on lens spaces and the Riemann zeta function (J. Math. Phys. 36, 1462-1505 (1995)), Journal of mathematical physics 36, no. 8 (1995) 4549.
- K. Nishimoto, C.-E.Yen, M.-L. Lin, Some integral forms for a generalized zeta function, J. Fract. Calc. 22 (2002) 91-97.
- M. Nishizawa, Generalized Hölder’s theorem for multiple gamma function, Physics and combinatorics (2000) 220-232.
- M. Nishizawa, Generalized Hölder’s theorem for Vignéras’ multiple gamma function, Tokyo J. Math. 24, no. 1 (2001) 323-329.
- M. Nishizawa, Multiple Gamma Function, its q- and Elliptic Analogue, The Rocky Mountain journal of mathematics 32, no. 2 (2002) 793-813.
- G. H. Norton, On the asymptotic analysis of the Euclidean algorithm, J. Symbolic Computation 10 (1990) 53-58.
- A. M. Odlyzko, The 10^20th zero of the Riemann zeta function and 70 million of its neighbors, Preprint, 1989.
- O.M. Ogreid, P. Osland, More series related to the Euler series, Journal of Computational and Applied Mathematics 136, no. 1-2 (2001) 389-403.
- F. W. J. Olver, Asymptotics and Special Functions, Academic Press, 1974.
- B. Osgood, R. Phillips and P. Sarnak, Extremals of determinants of Laplacians, J. Func. Anal. 80 (1988) 148-211.
- K. Ota, On Kummer-type congruences for derivatives of Barnes’ multiple Bernoulli polynomials, Journal of Number Theory 92, no. 1 (2002) 1-36.
- R.B. Paris, An asymptotic representation for the Riemann zeta function on the critical line, Proceedings of the Royal Society of London, Series 446, no. 1928 (1994) 565-587.
- K.S. Park, J. Choi, The Double Gamma Function With Applications, in International conference on mathematical analysis and applications; Differential equations and applications, Chinju, South Korea; August 1998, Nova Science, 2000, 255-265.
- A.P. Prudnikov, Yu.A. Bryckov, O.I. Maricev, Integrals and Series (Elementary Functions), Nauka, Moscow, 1981 (in Russia); see also Integrals and Series, Vol. I: Elementary Functions (Translated from the Russian by N.M. Queen), Gordon and Breach, New York, 1986.
- J. R. Quine, J. Choi, Zeta regularized products and functional determinants on spheres, Rocky Mountain J. Math. 26, no. 2 (1996) 719-729.
- T.M. Rassias, H.M. Srivastava, Some classes of infinite series associated with the Riemann Zeta and Polygamma functions and generalized harmonic numbers, Applied Mathematics and Computation 131, no. 2-3 (2002) 593-605.
- K. N. Rosen and et.., Handbook of Discrete and Combinatorial Mathematics, CRC Press, 2000.
- B. Ross, Problem 6002, Amer. Math. Monthly. 81 (1974) 1121.
- M. Rovinsky, Multiple Gamma Functions and Derivatives of L-functions at Non Positive Integers, DAI, 57, no. 09B (1996) 5695.
- M. Rovinsky, Multiple gamma functions and $L$-functions, Math. Res. Lett. 3, no. 5 (1996) 703-721.
- S. Rudaz, Note on asymptotic series expansions for the derivative of the Hurwitz zeta function and related functions, Journal of Mathematical Physics 31, no. 12 (1990) 2832-2834.
- P. Sarnak, Determinants of Laplacians, Communications in Mathematical Physics 110, no. 1 (1987) 113-120.
- P. Sarnak, A.A. Karatsuba, S.M. Voronin, The Riemann zeta function, Bulletin of the American Mathematical Society 32, no. 2 (1995) 251-253.
- P. Sarnak, Quantum chaos, symmetry and zeta functions, Curr. Dev. Math. (1997) 84-115.
- T. Shintani, A proof of the classical Kronecker limit formula, Tokyo J. Math. 3 (1980) 191-199.
- N. Sloan, The online encyclopedia of integer sequences, http://www.research.att.com/~njas/sequences/.
- K. Soundararajan, On the distribution of gaps between zeros of the Riemann zeta function, The quarterly journal of mathematics 47, no. 187 (1996) 383.
- M.R. Spiegel, Mathematical Handbook, McGraw-Hill, New York, 1968.
- J. L. Spouge, Computation of the gamma, digamma, and trigamma functions, SIAM J. Numer. Anal. (1994) 931-944.
- H.M. Srivastava, A unified presentation of certain classes of series of the Riemann Zeta function, Riv. Mat. Univ. Parma 14 (1988) 1-23.
- H.M. Srivastava, A note on the closed-form summation of some trigonometric series, Kobe J. Math. 16 (1999) 177-182.
- H.M. Srivastava, Some rapidly converging series for (2n + 1), Proc. Amer. Math. Soc. 127 (1999) 385-396.
- H.M. Srivastava, Some formulas for the Bernoulli and Euler polynomials at rational arguments, Mathematical Proceedings of the Cambridge Philosophical Society 129, no. 1 (2000) 77-84.
- H.M. Srivastava, Some simple algorithms for the evaluations and representations of the Riemann Zeta function at positive integer arguments, J. Math. Anal. Appl. 246 (2000) 331-351.
- H.M. Srivastava, M.L. Glasser, V.S. Adamchik, Some definite integrals associated with the Riemann Zeta function, Z. Anal. Anwendungen 19 (2000) 831-846.
- H. M. Srivastava, J. Choi, Series Associated with the Zeta and Related Functions, Kluwer Series on Mathematics and Its Applications, vol. 531, Kluwer Academic Publishers, Dordrecht, 2001.
- E.C. Titchmarsh, The Theory of the Riemann Zeta-Function, Second Ed., Clarendon Press,Oxford, 1951 (Revised by D.R. Heath-Brown, 1986).
- C.A. Tracy, Asymptotics of a tau -function arising in the two-dimensional Ising model, Communications in Mathematical Physics 142, no. 2 (1991) 297-311.
- C.A. Tracy, H. Widom, Asymptotics of a Class of Solutions to the Cylindrical Toda, Communications in Mathematical Physics 190 (1998) 697-721
- C.A. Tracy, H. Widom, Asymptotics of a class of Fredholm determinants, in “Spectral Problems in Geometry and Arithmetic,” ed. T. Branson, Amer. Math. Soc., Providence, 1999, 167-174.
- K. Ueno, M. Nishizawa, Multiple gamma functions and multiple $q$-gamma functions, Publ. Res. Inst. Math. Sci. 33, no. 5 (1997) 813-838.
- K. Ueno, M. Nishizawa, The multiple gamma function and its q-analogue, Banach Center Publications 0137-6934, vol. 40 (1997) 429-441.
- I.Vardi, Determinants of Laplacians and multipe gamma functions, SIAM J. Math. Anal. 19 (1988) 493-507.
- I. Vardi, Integrals, An introduction to analytic number theory, Amer. Math. Monthly 95 (1988) 308-315.
- M.-F.Vignéras, L`équation fonctionelle de la fonction zêta de Selberg du groupe mudulaire PSL(2, Z), in “Journees Arithmetiques de Luminy” (Colloq. Internat. CNRS, Centre Univ. Luminy, Luminy, 1978) pp. 235-249, Astérisque, 61, Soc. Math, France, Paris (1979).
- A.Voros, Special functions, spectral functions and the Selberg Zeta function, Comm. Math. Phys. 110 (1987) 439-465.
- W. I. Weisberger, Normalization of the path integral measure and the coupling constants for bosonic strings, Nuclear Phys. B 284 (1987) 171-200.
- E.T. Whittaker, G.N. Watson, A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; With an Account of the Principal Transcendental Functions, Fourth Ed., Cambridge University Press, Cambridge, 1963.
- K.S. Williams, Z.Y. Yue, Special values of the Lerch zeta function and the evaluation of certain integrals, Proc. Amer. Math. Soc. 119 (1993) 35-49.
- T. T. Wu, B. M. McCoy, C. A. Tracy and E. Barouch, Spin-spin correlation functions for the two-dimensional Ising model: exact theory in the scaling region, Phys. Rev. B 13 (1976) 316-374.
- C.-E.Yen, M.-L. Lin, K. Nishimoto, An integral form for a generalized zeta function, J. Fract. Calc. 22 (2002) 99-102.
- M. Yoshimoto, Two examples of zeta-regularization, Analytic number theory (Beijing/Kyoto, 1999), 379-393, Dev. Math., 6, Kluwer Acad. Publ., Dordrecht, 2002.
- Z.Y. Yue, K.S. Williams, Application of the Hurwitz Zeta function to the evaluation of certain integrals, Canad. Math. Bull. 36 (1993) 373-384.