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This Technical Appendix contains the technical details that establish all propositions 

stated in the text. In addition, we provide here supporting arguments to two incidental 

claims made in the main text of the manuscript. In particular, we show the following. 

1. Proofs to Propositions 1-4. 

2. a) The notion of marginal cost increasing in assortment size is not at odds with  

     decreasing average costs (economies of scope). 

b) The notion of marginal cost increasing in assortment size is not at odds with a  

system that makes it easier to monitor additional SKU’s (marginal cost of 

monitoring decreasing in assortment size) 

3. The channel incentives identified in the “Cournot” model of the main text can be 

demonstrated in a “Bertrand” model, with the low cost retailer setting lower 

prices. 
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TA.1 Proofs of Propositions 1-4 

The following lemma is used to prove Proposition 1. 

 

LEMMA TA.1 (Equilibrium of the Subgame Starting at Stage 1) 

(i) When product i is carried by both retailers, the manufacturer’s and retailers’ 

product-specific profits are, respectively, 
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(ii) When product i is carried by only retailer j then product-specific profits and 

quantity are, respectively, 
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Proof of Lemma TA.1 

Retailers’ optimal reactions to wholesale prices iw , i = 1,2 are given in equation (2). For i 

= 1,2, the manufacturer maximizes )( B
i

A
ii

M
i qqw +=Π , subject to the reactions in (2) 

over 0≥iw . Substitute these values back in to (2) to obtain equilibrium quantities. 

Equilibrium profits for product i are computed by substituting the optimal iw ’s and j
iq   

into (3) and (4). Q.E.D. 

 

Proof of Proposition 1 

The expressions given Table 1 follow from Lemma TA.1 as follows. For outcome F, 

substitute ccc BA ==  into the expressions in part (i) for products i = 1,2 and compute 



 3

profits j
ii

j Π=Π ∑  for j = M, A, and B. For Sp, substitute 0=Ac  and cc B = , with 

product 1 carried by both retailers using expressions of part (i) of Lemma TA.1 and 

product 2 carried by retailer B only using expressions of part (ii) of the lemma. Profits are 
j
ii

j Π=Π ∑  for j = M and B and AA
1Π=Π . For Ex, substitute 0== BA cc , with 

product 1 carried by A and product 2 carried by B using the expressions in part (ii) of the 

above lemma. Profits are MMM
21 Π+Π=Π , AA

1Π=Π , and BB
2Π=Π . For S, substitute 

0== BA cc , with product 1 carried by A and B using expressions of part (ii) of the 

lemma. Profits are jj
1Π=Π , for j = M, A and B.    Q.E.D. 

 

Next, we present two intermediate results that are used to prove Proposition 2. 

 

PROPOSITION TA.1  

Let 2
21 [0,1]),,/( ∈bbac and denote 4 3 5

3 0.64ζ −≡ ≈ . Then there exist 

functions )/( 21 bbf , )/( 21 bbg , and )/( 21 bbh  with 1)/()/(0 2121 <<< bbfbbg  for 

all )1,0(/ 21 ∈bb , 1 2 1 2 1 2( / ) ( / ) ( / )g b b h b b f b b< <  for all ),(/ 3
1

21 ζ∈bb  and 

)/()/( 2121 bbgbbh <  for all 1 2/ ( ,1)b b ζ∈  which characterize the equilibria of the M-

Dominant game as follows. 

(i)  If 3
1

21 /0 << bb  then the unique equilibrium outcome is 

F  if and only if )/(/0 21 bbgac << ; 

Sp  if and only if )/(/)/( 2121 bbfacbbg << ; 

S  if and only if 1/)/( 21 << acbbf . 

(ii)  If ζ<< 213
1 / bb  then the unique equilibrium outcome is 

F  if and only if )/(/0 21 bbgac << ; 

Sp  if and only if )/(/)/( 2121 bbhacbbg << ; 

Ex  if and only if 1/)/( 21 << acbbh . 

(iii) If 1/ 21 << bbζ  then the unique equilibrium outcome is  

F  if and only if )(/0 ζgac << ; 
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Ex if and only if 1/)( << acg ζ . 

 

Proof of Proposition TA.1 

In the M-Dominant game, the manufacturer implements its preferred distributional 

strategy based on outcome leading to the most profits. Comparing profit levels across 

these four outcomes requires pair-wise comparisons using the profit expressions in 

Proposition 1. Specifically, five (5) such comparisons are sufficient to determine the 

equilibrium in all regions of the parameter space 2[0,1] . Direct comparisons of profits 

leads to the following:  
M M
F Ex
>Π Π<  ⇔  / 1 3 / 2c a< −> .      (TA.1) 

M M
S Ex
>Π Π<  ⇔  1 2/ 1/ 3b b <

> .       (TA.2) 

M M
F Sp
>Π Π<  ⇔  1

1 22/ ( 1) /( ) ( / )c a g b bδ δ< − − ≡> .   (TA.3) 

where )4/(1 21 bb+≡δ . The function g is strictly increasing in 21 / bb  on [0,1] and 

represents M’s indifference curve for Sp and F. The last two comparisons that are need 

are the following. 

( )1

2

(4 / )( / ) ˆ /
3(1 / )

M M
S Sp

b c a c a f c a
b c a

−> >Π Π ⇔ ≡< < −
.   (TA.4) 

( )
21

31
2

2

(2 / ) 1 ˆ /
1 (1 / )

M M
Sp Ex

c ab h c a
b c a

− −> <Π Π ⇔ ≡< > − −
.   (TA.5) 

Because f̂  is strictly increasing and ĥ  is strictly decreasing in ac /  on [0,1], we define 

for ∈21 / bb [0,1], )/(ˆ)/( 21
1

21 bbfbbf −≡  and )/(ˆ)/( 21
1

21 bbhbbh −≡ , which represent 

M’s indifference curve for outcomes S versus Sp and Ex versus Sp, respectively. 

Conditions (A.4) and (A.5) can be rewritten in the canonical form  
M M
Sp S
>Π Π<  ⇔  1 2/ ( / )c a f b b<

> .               (TA.4´) 

M M
Sp Ex
>Π Π<  ⇔  1 2/ ( / )c a h b b<

> .              (TA.5´) 

The function g is strictly increasing in 21 / bb  on [0,1] and represents M’s indifference 

curve for Sp and F. It is verified (numerically) that )/()/( 2121 bbgbbf >  for all 21 / bb > 
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0, as claimed in the condition of the proposition. Furthermore, since f and g are increasing 

and intersect h at exactly one point (specifically, at 3/1  and atζ , respectively) we can 

write the following: 

 3/1/)/()/( 212121 >
<⇔>

< bbbbhbbf ;    (TA.6) 

( )2/31ˆ/)/()/( 212121 −≡>
<⇔>

< hbbbbhbbg ζ .  (TA.7) 

Note that ζ<3/1 . To show (i), let ∈21 / bb [0,1/3)  then (TA.2) implies Ex is dominated 

by S  and thus can never be an equilibrium for any ac / . If )/(/0 21 bbgac <<  then 

(TA.3) and (A.4´) imply M
S

M
Sp

M
F Π>Π>Π , yielding F as the equilibrium. If 

)/(/)/( 2121 bbfacbbg << , then (TA.3) and (TA.4´) imply M
S

M
F

M
Sp ΠΠ>Π , , yielding Sp 

as the equilibrium. Finally if 1/)/( 21 << acbbf , then (TA.3) and (TA.4´) imply 
M
F

M
Sp

M
S Π>Π>Π , . To show (ii), let ∈21 / bb )(1/3,ζ . (TA.2) implies S is dominated by 

Ex. Conditions (TA.3) (TA.5´) and (TA.6) imply the ordering required for the 

equilibrium description in the proposition. To show (iii), let ∈21 / bb ]1,(ζ . (TA.2) 

implies S is dominated by Ex and conditions (TA.3), (TA.6) and (TA.7) imply that Ex 

dominates Sp. Therefore, F and Ex are the only outcomes possible in equilibrium. 

Finally, (TA.1) implies the ordering required for the equilibrium description in the 

proposition.          Q.E.D. 

 

PROPOSITION TA.2  Let g and h be the functions determined in Proposition 1, 
4 3 5

3 0.64ζ −≡ ≈ , and )/,/( 21 acbb be in Θ . Then the equilibria of the A-Dominant 

game is described as follows. 

(i)  If ζ<< 21 /0 bb  then the unique equilibrium outcome is 

F   if and only if  )/(/0 21 bbkac << ; 

Sp   if and only if  )/(/)/( 2121 bbgacbbk << . 

 (ii)  If 1/ 21 << bbζ  then the unique equilibrium outcome is 

F   if and only if  )/(/0 21 bbkac << ; 

Sp   if and only if  )/(/)/( 2121 bbhacbbk << ; 
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Ex  if and only if  )(/}/(),/(max{ 2121 ζgacbbkbbh << . 

 

Proof of Proposition TA.2 

As argued in the text, A can only implement M’s second-best outcome (F being the first), 

which is either Sp or Ex. From (TA.5’) in the proof of Proposition A.1, we already know 

that M’s second-best is Sp for )/,/( 21 acbb  below h and Ex above. (i.e., Sp and Ex are the 

corresponding equilibrium of the subgame starting in period 1.) A, in period 0, will not 

abandon product 2 if (5) holds. Further, note that k, as defined in (5) satisfies the 

following. For any )1,0(/ 21 ∈bb , 

 )/()/( 2121 bbgbbk < , and       (TA.8) 

 )/()/( 2121 bbhbbk >
< ,  for η>

<
21 / bb ,    (TA.9) 

where 99.0≈η . To verify (TA.8), observe that both k and g are both continuous and 

increasing and then it can be shown that )1()1( gk <  and )()( xgxk =  has no solution in 

(0,1). The condition (TA.9) can be verified by first noting that both k and h are 

continuous with k strictly increasing and h strictly decreasing on (0,1). This implies that 

they cross at most once, which occurs at η . The inequalities in (TA.9) then follow from 

the fact that 32)0(0)0( −=<= hk . It follows from these two conditions that for any 

)1,0(/ 21 ∈bb , F is the equilibrium if )/(/ 21 bbkac < .  

Let η,0(/ 21 ∈bb ) and ))/(),/(min{),/((/ 212121 bbhbbgbbkac ∈ , retailer A implements 

Sp when abandoning product 2. Because Sp is more profitable than F for retailer A, it is 

the equilibrium outcome. Finally, let ηζ ,(/ 21 ∈bb ) and 

))()},/(),/((max{/ 2121 ζgbbkbbhac ∈ . Then retailer A implements Ex when abandoning 

product 2. A finds this more profitable than F if and only if 

 
21

21
21 /1

/
2
31)/(/

bb
bbbblac

+
−≡> .  

Observe that 0)/(' 21 <bbl  for all 21 / bb  and that 5 21
4( ) 0.04174 (1)l hζ −≈ < = . Thus,  

1 2 1 2( / ) ( ) (1) ( / )l b b l h h b bζ< < <  
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for all 1 2/ ( ,1]b b ζ∈ , where the last inequality follows from the fact that h is decreasing. 

Hence, Ex is the equilibrium outcome in the region ηζ ,(/ 21 ∈bb ) and 

))()},/(),/((max{/ 2121 ζgbbkbbhac ∈ .      Q.E.D. 

 

Proof of Proposition 2 

This follows directly from Propositions TA.1 and TA.2. 

 

Proof of Proposition 3 

First consider the M-Dominant game. Clearly, M M
SpA SpBΠ > Π  for A Bc c< , where profit 

expressions can be directly deduced from Lemma TA.1. Also, the fact that Ac c<  

implies that SpA dominates F, Ex, and S for parameter constellations 1 2( / , / ) Spb b c a ∈Θ . 

Hence, SpA is optimal for M and therefore is the equilibrium outcome for the M-

Dominant game. 

In the A-Dominant game, if retailer A abandons product 2 in Stage 0, then 1 2( / , / )Bb b c a ∈  

SpΘ  and Proposition 2 imply that M’s optimal strategy is to distribute both products 

through retailer B. That is, SpB is the equilibrium of the subgame starting in Stage 1 

given that retailer A does not carry product 2. Finally, SpB is the equilibrium of the 

overall game if and only if A A
SpA SpBΠ < Π . A direct comparisons of profit expressions in (6) 

implies that the following condition is sufficient:  

 1
2

2

8 (2 / ) ( / )
3 (1 / )

A A
A

A

b c c a p c a
b a c a

−
< ≡

−
.                (TA.10) 

First note that it can be directly verified that p is strictly increasing in /Ac a . Therefore,  

1 2( / ) [ ( / )]Ap c a p g b b>  since 1 2/ ( / )Ac a g b b> by the assumption 1 2( / , / )A
Spb b c a ∈Θ . 

Finally, the condition (TA.10) follows by noting that 
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           Q.E.D. 

 

Proof of Proposition 4 

Using the expressions for output quantities from Table 1 in equation (7), we arrive at the 

following: 
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We first show that SpF CSCS >  everywhere in Θ . Generally,  

 
2
1

1/
−
−

<⇔>
σ
σacCSCS SpF      (TA.11) 

where 
2

1
16
232 b

b+≡σ . The right-hand side of (TA.11) is increasing and greater than 

122
)12(2

−
−  for all 21 / bb . Since 

122
)12(2

−
− )(1 2

3 ζg=−> , it follows that SpF CSCS >  everywhere 

in Θ . 

 

Comparing consumer surplus in Sp and in Ex, we have the general condition 

( )acm
ac

ac
b
bCSCS ExSp /ˆ

)/1(1
1)/2(

2

2
9
4

2

1 ≡
−−

−−
<⇔> .   (TA.12) 

Observe that m̂  is decreasing and ˆ ( / ) 1m c a =  ⇒  17 3 22
13/ ( )c a g ζ−= > . Therefore, 

1 2( / , / )b b c a ∈Θ  ⇒  / ( )c a g ζ<  ⇒ 1 2ˆ ( / ) 1 /m c a b b≥ > . Hence, (TA.12) holds 

everywhere in Θ .          Q.E.D. 
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TA.2 A Model of Assortment Costs: 

In this section, we derive the notion of assortment costs used in the main text from a 

general model of assortment costs. Denote the retailer’s assortment cost 1({ } , )n
i iC q n= , 

where n is the assortment size (number of products in the assortment) and iq  is quantity 

of product i stocked and sold. As we show, there exists a plausible cost function that 

simultaneously possesses the following properties: 

(1) Marginal (assortment) cost (on each unit iq ) is increasing in assortment size (n). 

(2) Average assortment cost is decreasing in assortment size (n). 

(3) Marginal monitoring cost is decreasing in assortment size (n). 

To illustrate, consider the following generic cost function:

 1({ } , )n
i iC q n= ∑

=

+=
n

i
i nmqnc

1
)()(      (TA.13) 

where )(nc  is the cost that is incurred on each unit sold, which we refer to as the 

marginal (assortment) cost, and )(nm  is other costs. The marginal assortment cost )(nc  

is increasing in assortment size and reflects the additional labor when moving and sorting 

on shelves. The second term in (TA.13), )(nm , captures the additional costs associated 

with, for example, monitoring and tracking SKU’s. It is assumed to be increasing in 

assortment size, n, but at a decreasing rate. We consider the following specifications of c 

and m, which satisfy these properties: cnnc =)( , 0>c  and nnm =)( . 

As we show, the cost function in (TA.13) simultaneously exhibits points (1) and 

(2) above. Specifically, the cost on an additional sale of product i changes with n 

according to 

c
dn

ndc
qn
C

i
==

∂∂
∂ )(2

; 1,...,i n=  

which is positive by c being positive. Therefore, marginal cost increases in n.  However, 

consider the total assortment cost, averaged over total assortment size, 

  
n

cnq
n

nqC
n

AC
n

i
i

n
ii

11),)((1

1
1 +== ∑

=
= . 

As the number of SKU’s grows, average cost is decreasing since  
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2/32
1

nn
AC

−=
∂
∂

 

is negative for all n. Hence, a retailer can enjoy decreasing average costs (economies of 

scope), and decreasing marginal monitoring costs ( 04/)( 2/3 <−=′′ −nnm ) despite the fact 

its marginal (assortment) costs are increasing in assortment size. 

It is instructive consider the marginal impact on total assortment costs in (TA.13) 

when a product is added to a retailer’s assortment. Consider the partial derivative 

n
cq

n
C n

i
i 2

1
1

+=
∂
∂ ∑

=

.  

For a large retailer (large n), the second term diminishes but the first term does not.1    

This reflects the notion that the impact of a growing assortment is dominated by the 

marginal (assortment) costs on each iq  sold. In other words, for retailers with large 

assortments, under this cost specification, the decision to widen assortment does not 

depend much on the adding another SKU to the monitoring or tracking system. Rather, it 

is the added cost to each unit ( iq ) that is relatively important for the assortment decision. 

TA.3 A Bertrand game for Assortment Reduction 

In this section, we develop a generic model of a manufacturer and two differentiated 

retailers engaged in Bertrand competition. The purpose of this alternative model 

formulation is to illustrate the basic channel incentives associated with strategic 

assortment reduction, identified in the main text, are invariant to the choice of the 

strategic variable (price versus quantity). 

Let D be a “generic” demand function such that RD →∞ 2),0[:   is continuous, 

differentiable with ( , ) / 0 ( , ) /D p p p D p p p′ ′ ′∂ ∂ < < ∂ ∂ . We assume the existence of some 

p  such that ( , ) 0D p p =  for all [0, ]p p∈ . Consider the following game. Retailers A and 

B face fixed wholesale prices [0, ]w p∈  for products 1, 2i =  and simultaneously choose a 

pair of prices 1 2( , )j jp p , for ,j A B= . Specify demand for a popular good, labeled 1, at 

retailer j simply by 1 1 1 '( , )j j jD D p p=  for ,j A B= ; 'j j≠ . For the specialty product, 
                                                 
1 Note that n is number of products from all suppliers, even though each supplier may supply only a few 
products. In the model of the main text, for example, we focus on the assortment decision vis-à-vis a single 
manufacturer with two products. 
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labeled 2, scale demand by a factor [0,1]α ∈ . That is, 2 2 2 '( , )j j jD D p pα=  for ,j A B= ; 

'j j≠ . As assumed in the main text, demand is independent across products 1 and 2. 

Finally, recall that the dominant retailer, A in the main text, may choose to carry only 

product 1. In this case, retailer B is the exclusive seller of product 2. To save on notation, 

denote consumer demand by 2 2( , )B BD p −  which reflects the fact that B’s price is the only 

endogenous variable affecting the quantity sold. 

By using this generic form demand formulation, we are able to consider a wide 

class of specifications. In what follows, we are interested in characterizing the demand 

conditions under which strategic assortment reduction is feasible in equilibrium. 

We first consider a pricing game played by the two retailers, both of whom carry 

the same product i. Let '( , )ij ij ijp pΠ  be the payoff to retailer ,j A B=  from product 

1, 2i = , when retailer j j′ ≠  also carries product i. Then 
' '( , ) ( ) ( , )ij ij ij ij j ij ij ijp p p c w D p pΠ = − − ,    (TA.14) 

where jc  denotes the marginal cost for retailer ,j A B= . These costs correspond to the 

assortment cost in the main text. Define a class of pricing games, in strategic form, 

,( , ) ( ,[0, ])A B ij
i j A BG c c p == Π , which are parameterized by costs. Our first objective is to 

establish the existence of a unique equilibrium, which is achieved in the following 

lemma. 

 

LEMMA TA.2 

If 2

2( )
2 /ij ij

ij ij
D D

p p
p∂ ∂

∂ ∂
< −  for all [0, ]ijp p∈  then iG  has a unique equilibrium 

' 2ˆ ˆ( , ) [0, ]ij ijp p p∈  such that 

(a) ˆ ijp  is increasing in Ac  and Bc  for 1, 2i =  and ,j A B= ; and 

(b) 'j jc c<  implies that 'ˆ ˆij ijp p<  for 1, 2i =  and , ,j j A B′ = ; j j′ ≠ . 

 

Proof: iG  is supermodular: (i) Strategy spaces are compact lattices; (ii) Payoffs are 

(trivially) supermodular in own strategies; and (iii) Payoffs exhibit increasing differences 

in rival’s strategies (strategic complements). Thus iG  has an equilibrium (Vives 1990). 
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The condition on the second derivative of demand ensures uniqueness (dominant 

diagonal condition). To show (a), note that  
2

'( , ) 0
ij

ij ij ij
ij j ij D p p

p c p
∂ Π ∂ ⎡ ⎤= − >⎣ ⎦∂ ∂ ∂

,     (TA.15) 

for 1, 2i = ; , 1, 2j j′ =  and j j′ ≠ . Hence, ijΠ  has strictly increasing differences in 

( , )ij jp c . By the monotone comparative statics property of supermodular games, we have 

the result in (a). (See Milgrom and Shannon 1995 or Vives 1999, Chapter 2.) To show 

(b), first consider the case of equal costs: A Bc c c= = . Then, the unique equilibrium is 

symmetric: ˆ ˆiA iBp p= . Depart from the symmetric case by unilaterally decreasing 
Ac c c′= < . This decreases A’s best response function, ( , )iA iB AB p c . That is, 

( , ) ( , )iA iB iA iBB p c B p c′ <  for all iBp . On the other hand, B’s best response function 

( , )iB iA BB p c  is unchanged. Since ( , )iB iA iAB p c p>  for all ˆ[0, ]iAp p∈ , we conclude that 

the equilibrium of ( , )iG c c′  is characterized by a lower price for A  than for B. In other 

words, the fixed point of the best reply function: 2 2( , ) :[0, ] [0, ]iA iBB B p p→  lies “above” 

the 045  line. See Figure TA.1        Q.E.D. 

 

 This lemma establishes the existence and uniqueness of the pricing game that 

ensues after the agents have determined the distributional strategy. Furthermore, part (b) 

of the lemma implies that lower assortment costs yield lower retail prices. Hence, under 

the conditions that yield a strategic assortment reduction, it also follows that the retailer 

with lower assortment costs also has lower prices. 

 Before identifying the incentives for choosing assortments, it is also necessary to 

consider the case when retailer j is the exclusive dealer of product i. Denote by 

( , )ij ijpΠ −  as the payoff to retailer j from the sale of product i when retailer j j′ ≠  is not 

selling product i. Then 

 ( , ) ( ) ( , )ij ij ij j ij ijp p c w D pΠ − = − − − .     (TA.16) 

The maximization of (TA.16) is well defined under the condition in the lemma above.  

Before examining the manufacturer’s and the dominant retailer’s preferences over 

distributional outcomes, we make two regularity assumptions on demand. These 
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assumptions are made to give the manufacturer non-trivial trade-offs when deciding 

between distribution options. 

 

ASSUMPTION TA.1  For , 1, 2i i′ = , , , ,j j A B j j′ ′= ≠ . 

(1) ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( , ) ( , )ij ij ij ij ij iA iA iA iB iB iAD p p D p D p p D p p′ < − < +  

(2) 
ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( , )ij ij i A i A i B i B i B i A

j j

D p D p p D p p
c c

′ ′ ′ ′ ′ ′∂ − ∂ + ∂
≤

∂ ∂
 

 

In part (1), the first inequality states that a monopoly in product i has more sales than a 

competitor in duopoly. Without this condition, the manufacturer would never prefer Sp 

over F. The second inequality ensures that equilibrium sales are always higher with two 

retailers relative to one. Part (2) of this inequality simply states that a small change in 

assortment costs of one retailer has no smaller effect on sales when there are two sellers 

than when there is only one.  

 As in the main text, we suppose that each retailer faces the same marginal cost 

function, ( )j jc c n= , where jn  is the number of products retailer j carries and that 

0)1()2( =>≡ ccc . We now consider the four possible distributional arrangements F, Sp, 

Ex, and S when retailers set prices according to the corresponding equilibrium strategies 

derived above. Abbreviate notations with ij
xD  as the demand for product i at retailer j 

under the distributional arrangement { , , , }x F Sp Ex S∈ . Similarly abbreviate payoffs j
xΠ . 

Finally, we make the following assumption. 

 

ASSUMPTION TA.2  

(1) 
1 1 1 1( ) ( )A B A B
Sp Sp F F

D D D D
c c

∂ + ∂ +
≤

∂ ∂
; 

(2) ( ) ( ) ( ) ( )1 1 1 1 1 1 1 1A B A B A B A B
S S Sp Sp Sp Sp F FD D D D D D D D+ − + ≤ + − + . 

 

Generally, this assumption states that effects from assortment costs are no stronger at Sp 

than at F. Specifically, part (1) says that for a change in assortment costs, the impact on 
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equilibrium sales levels is no stronger at Sp than at F. Similarly, part (2) ensures that the 

increase in overall sales of product 1 associated with retailer A’s abandonment of product 

2 is not dramatically different than the sales increase in product 1 when retailer B is the 

second retailer to abandon product 2. 

We start with the M’s incentives with respect to outcomes S and Sp. M prefers S 

over Sp if and only if  1 1 2M A B B
Sp Sp Sp Spw D D Dα⎡ ⎤Π = + +⎣ ⎦  < 1 1M A B

S S Sw D D⎡ ⎤Π = +⎣ ⎦ . This is 

equivalent to the condition: 

 M M
S SpΠ > Π  ⇔  

1 1 1 1

2

( ) ( )
( )

A B A B
S S Sp Sp

B
Sp

D D D D
f c

D
α

+ − +
≡ > . (TA.17) 

As in the main text, we evaluate the preferences for M (and later A) by examining 

indifference curves with respect to the parameters c and α . We preserve the notation 

with that of the Figures 2 and 3 of the main text by denoting f as the indifference curve 

for M with respect to outcomes Sp and S. In Figure TA.2, M prefers outcome S, for 

parameter values α  and c lying above the curve f. The shape of this indifference curve 

can be seen by noting that (TA.17) holds with equality at ( , ) (0,0)cα = . Furthermore, 

from Lemma TA.2 (part (a)), ( ) 0f c >  and increasing for 0c > .  

 Similarly, we can characterize M’s preference for Sp over F by the condition: 

( ) ( )1 1 2 2M A B A B
F F F F Fw D D D Dα⎡ ⎤Π = + + +⎣ ⎦  < M

SpΠ . That is  

 M M
Sp FΠ > Π  ⇔  

1 1 1 1

2 2 2( )
A B A B

Sp Sp F F
A B B

F F Sp

D D D D
g c

D D D
α

+ − −
≡ >

+ −
.  (TA.18) 

As with f, (0) 0g =  since the numerator is zero with no assortment costs and the 

denominator is positive under Assumption TA.1. This implies (TA.18) holds with 

equality at ( , ) (0,0)cα = . To see that g is increasing in c, we evaluate the sign of its 

derivative.  Bearing mind symmetry in outcome F (i.e. ' 'ij i j
F FD D=   for , 1, 2i i′ =  and 

, ,j j A B′ = ), we have that ( )g c′  is positive since  
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( ) ( ) ( ) ( )

( )

( ) ( )

1 1 1 1
1 1 2 1 1 2

2

2
1 1 1 1

1 1 2
1 1 1 1

2

1( )

1

0

A B A B
Sp Sp F FA B B A B B

F F Sp Sp Sp Sp

B
Sp A B A A

Sp Sp F F

A B B
Sp Sp Sp A B A B

Sp Sp F F

D D D D
g c D D D D D D

x c c

D
D D D D

c

D D D
D D D D

x c c

⎧∂ + ∂ +⎪′ = + − − + −⎨ ∂ ∂⎪⎩
⎫∂ ⎪+ + − − ⎬∂ ⎪⎭

⎧ ⎫∂ + ∂⎪ ⎪≥ − + + − −⎨ ⎬∂ ∂⎪ ⎪⎩ ⎭
≥

 

where ( )22 2 2 2 0A B B
F F Spx D D D= + − > . The first inequality follows from Assumption TA.2 

part (1). The second inequality is a result of the facts that 1 1j j
Sp FD D>  (by Lemma TA.2 

part (a)) and Assumption TA.1 part (2). Therefore, g and f have similar curves in the 

parameter space ( , )cα . Lemma TA.3 gives an order relation for these two indifference 

curves. 

 

LEMMA TA.3  Under Assumptions TA.1 and TA.2, ( ) ( )f c g c<  for all 0c > . That 

is, for any fixed 0c >  and outcomes F, Sp, and S, M prefers S for 0 ( )f cα< < , Sp 

for ( ) ( )f c g cα< <  and F for ( )g cα > . 

 

Proof: The order ( ) ( )f c g c<  can be shown by using Assumption TA.1 and part (2) of 

Assumption TA.2. This means that for 0 ( )f cα< < , the conditions (TA.17) and (TA.18) 

hold (S is preferred to Sp is preferred to F). Increasing α  beyond ( )f c  but short of ( )g c  

implies (TA.17) is violated (Sp is preferred to S) but (TA.18) holds (Sp is preferred to F). 

Finally, for large ( )g cα > , both (TA.17) and (TA.18) do not hold (F is preferred to Sp is 

preferred to S).         Q.E.D. 

 

Figure TA.2 illustrates2 the indifference curves f and g as characterized by Lemma TA.3. 

For the remainder of this technical appendix, we focus attention to regions of the 

parameter space where F is optimal for M. This corresponds to the region: 

                                                 
2 The notation corresponds to that of Figure 2 in the main text.  
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 {( , ) [0,1] [0, ] | ( )}Bertrand c p g cα αΘ = ∈ × > , 

which is region in Figure TA.3 below and to the right of the indifference curve g. As 

defined in the main text: outcome x is a strategic assortment reduction equilibrium 

outcome if and only the following two conditions hold: 

(i) A
F

A
x Π>Π ;   and  (ii)  M

y
M
x Π>Π  for all Λ∈≠ yxy ; , 

where },,{ SExSp=Λ . As Figure TA.3 indicates, S is not a possible strategic assortment 

reduction equilibrium outcome (Sp is always preferred to S in BertrandΘ ). As for Ex, note 

that the Sp distribution is preferred over Ex by M if and only if  
1 2M M A B

Sp Ex Ex Exw D Dα⎡ ⎤Π > Π = +⎣ ⎦ . That is, 

 M M
Sp ExΠ > Π  ⇔  

1 1 1

2 2( )
A B A

Sp Sp Ex
B B

Ex Sp

D D D
h c

D D
α

+ −
≡ >

−
.   (TA.19) 

This indifference curve, h, is downward sloping since the numerator in (TA.19) is 

decreasing in c and the denominator increasing. Furthermore, lim ( ) 0c h c→∞ =  (by 

Lemma TA.2 and Assumption TA.1) and 0lim ( )c h c→ = ∞  which implies the shape 

depicted in Figure TA.2.3  

Figure TA.2 displays the outcome of the M dominant game in some regions of the 

parameter space. For the purposes of this Technical Appendix, we omit discussion of the 

equilibrium outcomes in the regions above g. 

 We now turn to the preferences of retailer A in order to determine the conditions 

in which she would strategically refuse to carry product 2. Since her default payoff is her 

profit under F, it suffices to compare this with her payoffs in the outcomes Sp and Ex. If 

A prefers Sp over F then 1 1ˆ( )A A A
Sp Sp Spp w DΠ = −  > 1 1 2ˆ( )(1 )A A A A

F F F Fp c w D Dα ⎡ ⎤Π = − − + +⎣ ⎦ , 

which implies the condition: 

 A A
Sp FΠ > Π  ⇔  

1 1

1 1

ˆ( )
( ) 1

ˆ2( )

A A
Sp Sp
A A

F F

p w D
k c

p c w D
α

−
≡ − >

− −
. 

As for A’s preference for Ex over F, note that it always holds that A A
Sp ExΠ > Π  since the 

only difference for A is that her rival’s costs are higher in Sp than in Ex. Recall that M 
                                                 
3 In the context of Figure TA.3, it is not possible to establish whether h intersects g within the relevant 
parameter space. 
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prefers Ex to Sp in the region between g and h so that if A abandons product 2 (in stage 0) 

M will distribute only product 2 through retailer B. Therefore, Ex may be optimally 

implemented by A if 1 1ˆ( )A A A
Ex Ex Exp w DΠ = −  > A

FΠ , which implies the condition: 

 A A
Ex FΠ >Π  ⇔  

1 1

1 1

ˆ( )( ) 1
ˆ2( )

A A
Ex Ex
A A

F F

p w Dl c
p c w D

α−
≡ − >

− −
. 

By inspection, one can see that (0) (0) 0k l= =  and that k and l are both increasing in c. 

This implies that the indifference curves k and l pass through the origin, as depicted in the 

graph of Figure TA.3. Note that ( ) ( )l c k c<  for all 0c > . Thus, for any parameter 

constellation located below k, retailer A prefers F and would never abandon product 2 in 

favour of Sp. In contrast, for points above the indifference curve k, Sp and Ex are a 

possible strategic assortment reduction. The condition under which this occurs depends 

crucially on the following notion. Because assortment costs lower margins for retailers, 

they imply a loss of sales. The precise amount of lost sales (of product 1) can be 

measured by the percentage 
1 1

1 1 1 0
A B

Sp Sp
A B

F F

D D

D D
E +

+
≡ − ≥ . In other words, E measures the extent to 

which lower assortment costs generate more category sales (as opposed to raising retailer 

margins).4 If E is large, for example, then the manufacturer has a stronger incentive to 

release costs from the retailer by permitting assortment reduction. A larger E tends M’s 

indifference curve g downward to the horizontal axis in Figure TA.3. On the other hand, 

if E is small then by lowering assortment costs through the abandonment of product 2, 

retailer A’s advantage is strategic vis-à-vis its rival retailer. That is, as E decreases the 

indifference curve g rotates counter-clockwise. For small E, the curve g lies above the 

curve k. In this case, channel incentives are divergent in the wedge between these curves 

and strategic assortment reduction is the equilibrium outcome.  

  

PROPOSITION TA.3  Suppose Assumptions TA.1 and TA.2 hold and define 
1(1)gυ −= .  

                                                 
4 If E=0 then we have a fixed-demand model (e.g. Hotelling). 
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(a) If 
2

1 1( ) 1
B

Sp
A B

F F

D

D D
E k c

+
⎡ ⎤< −⎢ ⎥⎣ ⎦

 for all (0, ]c υ∈ , then there exists a strategic 

assortment reduction equilibrium outcome x (Sp or Ex) for 

( ) min{ ( ),1}g c k cα< < . 

(b) If 
2

1 1( ) 1
B

Sp
A B

F F

D

D D
E k c

+
⎡ ⎤> −⎢ ⎥⎣ ⎦

 for all (0, ]c υ∈ , then no strategic assortment 

reduction equilibrium outcome exists for any parameters. 

 

Proof: (a) The condition on E implies directly that ( ) ( )g c k c<  for (0, ]c υ∈ . (Recall that 
' 'ij i j

F FD D=   for , 1, 2i i′ =  and , ,j j A B′ = .) This implies that there is a region between 

these two curves for which A A
Sp FΠ > Π  and ,M M M

Sp Ex FΠ Π < Π . In this case, Sp satisfies (i) 

and (ii) of the definition of strategic assortment reduction. Depending on the exact degree 

of the curve h, it is possible to have A A
Ex FΠ > Π  and M M M

Sp Ex FΠ < Π < Π  so that Ex is the 

strategic assortment reduction outcome. (b) The condition on E implies directly that 

( ) ( )g c k c>  for (0, ]c υ∈ . In this case: M M
F SpΠ > Π  ⇒  ,A A A

F Sp ExΠ > Π Π .   Q.E.D. 

 

 Proposition TA.3 gives a sufficient condition for the existence of a set of 

parameters for which strategic assortment reduction is possible.5 This case is depicted in 

Figure TA.3. Recall, however, it is not guaranteed that Ex is a possible strategic 

assortment reduction equilibrium outcome without more conditions. Nevertheless, from 

this graphical analysis, we conclude that as long as 0E >  is not too large, the channel 

incentives for carrying the specialty product 2 differ for the manufacturer and for retailer 

A and the wedge between curves g and k (marked by Sp or possibly Ex) represents these 

differences. Outside of this wedge, however, channel incentives are aligned. For large 

values of α  and low values of c, both the manufacturer and retailer A want the additional 

market for product 2 served. This corresponds to the lower right region of the Figure 

                                                 
5 It is important to keep in mind that Proposition TA.3 is not exhaustive. Without more conditions on 
demand, it is not possible to rule out the possibility that the curves k and g intersect for 0c > . In this case, 
strategic assortment reduction is possible. We omit a full analysis of this case as it does not lend to 
additional insights. 
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TA.3. For large c and low α , the manufacturer does not find the channel losses from 

high costs worth the dual distribution of product 2. 

 It is worthwhile to relate this analysis to that of the model of the main text. In 

particular, compare Figure 3 with Figure TA.2. Loosely speaking, the horizontal axes in 

both graphs correspond to the “popularity” of the specialty variety. In particular, large 

values of α  map to large value of the ratio 1 2/b b . Similarly, the assortment costs are 

represented on the vertical axes of both graphs. The region of these parameters that 

supports Sp as an equilibrium correspond, as well.  

 Proposition TA.3 part (b) gives a sufficient condition for when strategic 

assortment reduction will never occur. Under this condition, the incentives of M and A 

are always aligned. Whenever it is optimal for A to reduce assortment, it will also be 

optimal for M.   
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