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Abstract— We present a novel end-to-end solution for dis-
tributed multirobot coordination that translates multitouch
gestures into low-level control inputs for teams of robots.
Highlighting the need for a holistic solution to the problem
of scalable human control of multirobot teams, we present
a novel control algorithm with provable guarantees on the
robots’ motion that lends itself well to input from modern
tablet and smartphone interfaces. Concretely, we develop an
iOS application in which the user is presented with a team
of robots and a bounding box (prism). The user carefully
translates and scales the prism in a virtual environment; these
prism coordinates are wirelessly transferred to our server and
then received as input to distributed onboard robot controllers.
We develop a novel distributed multirobot control policy which
provides guarantees on convergence to a goal with distance
bounded linearly in the number of robots, and avoids inter-
robot collisions. This approach allows the human user to solve
the cognitive tasks such as path planning, while leaving precise
motion to the robots. Our system was tested in simulation and
experiments, demonstrating its utility and effectiveness.

I. INTRODUCTION

Multirobot applications have been extensively explored in
the literature, including monitoring [1], [2], manufacturing
[3]–[5], and manipulation [6], [7]. Yet while these (and many
other) applications have a potential impact well beyond the
laboratory, most of the results can only be used by experts
with programming and robotics experience, limiting their
reach. Systems that can be used with graphical (or other) user
interfaces are key to bridging the gap between researchers in
the lab and the outside world. Most state of the art controllers
allow a single user to provide input to only a single robot at a
time. This does not scale and we seek to enable a single user
to control many robots simultaneously with a single input.

Developing an end-to-end real-time solution for multirobot
systems present numerous challenges. Two significant chal-
lenges are in designing an effective interface that allows a
user to specify how to use the team of robots, and developing
distributed coordination algorithms which guarantee that
tasks will be completed. Both of these present significant
challenges on their own, but developing a solution for both
simultaneously is an extremely challenging task.

Developing a user interface for robots presents a valuable
opportunity to bring the human in the loop. Humans and
robots have many complementary strengths: while humans
excel at high-level cognitive tasks, robots triumph when
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it comes to repetitive, computational ones. This notion
of human-robot task delegation has inspired a significant
amount of literature. In general, however, this literature does
not address control, focusing instead on human-robot inter-
faces, such as determining useful tasks and how they might
be specified [8], developing natural or intuitive gestures [9],
creating image-based interfaces for nonexperts [10], evaluat-
ing the efficacy of interface technologies [11], or examining
application-specific interaction issues [12].

In the multirobot domain, McCann et al. present a method
by which multiple users can direct a team of robots [13], but
this work does not address control and also only presents
simulation results. Podevijn et al. present a method for
controlling subgroups of swarms using arm gestures and
a Microsoft Kinect [14]. However, since their swarm con-
trollers do not guarantee convergence in environments with
obstacles, long command sequences may result in order
to guide stuck robots to their goals. Those works that do
address control are typically for a single robot, such as using
multitouch gestures to control an articulated robot [15].

There have been many works on synthesis of multirobot
control policies from high-level specifications, e.g. using
linear temporal logic [16] or structured english [17], but
writing these specifications still requires a good deal of skill.

The contributions of this work are an end-to-end solu-
tion for navigating teams of robots from one location to
another in complex environments. We present a solution
that addresses distributed multirobot control in a way that
enables the development of a simplified user-interface. We
also present and demonstrate an example interface for the
system. Our system relies on a human-in-the-loop making
critical decisions about a multirobot team navigating an
environment on a tablet-based multitouch display (using the
Apple iPad). The iPad displays a virtual environment with
four views (three orthographic and one isometric projection)
and real-time robot positions for visual feedback (Fig. 1).
The robots are enclosed by a bounding box (prism) which
the user can translate and scale using multitouch gestures,
maneuvering it to the desired location and avoiding obstacles.
This gives the user the capability to decide which risks are
worth taking, and how close to get to certain hazards. As the
prism is manipulated, its coordinates are regularly recorded.
The union of a subset of these recorded prisms defines the
free space for the robots to navigate to their destination.
Figure 2 provides a pictorial view of our control loop.

The benefits of this type user input are many. In applica-
tions when there are multiple risk factors involved it may be
difficult to develop a proper navigation heuristic and a human
may be able to make a quick and appropriate decision. Addi-



Fig. 1: The iPad App interface: four views, with manipulation
options at center. (Left) Touch and drag to translate the prism.
(right) Zoom in or out to scale the prism.
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Fig. 2: A sample (asynchronous) control loop. Commands
are sent from the input device to the server, which sends
prism vertices to the onboard controllers of the robots which
synthesize commands. Robots broadcast their positions to
the server, which relays them to the input device to be
rendered (not pictured is communication between robots
within range).

tionally, some environments are extremely difficult to model.
In many cases, the environment model must be compatible
with a controller–for example, polytope-based controllers
require environments defined using polytopes, which may
be time-consuming or complex to build while maintaining
completeness. Abstracting the robots’ environment to a union
of rectangular prisms reduces its complexity and makes it
easier for a user to choose safer paths in real time.

The outline of this paper is as follows. In Section II
and III we define the problem and preliminary definitions,
respectively. Section IV presents our solution, with analy-
sis in Section V. Software implementation is discussed in
Section VI. We present simulation and experiment results in
Section VII and conclude with a discussion in Section VIII.

II. PROBLEM STATEMENT

Consider a team of n homogeneous robots VR = {ri|i =
1, . . . , n} that must navigate to a destination set D in a
shared, constrained, bounded environment. Each robot has
the configuration xi ∈ Rd, d ∈ {2, 3} representing its
position in Cartesian space, with dynamics:

ẋi = ui, xi ∈ Xi ⊂ Rd, i = 1, . . . , n. (1)

In order to maintain safety, robots must maintain a minimum
distance from each other, λmin > 0.

Problem 2.1: Consider a team of homogeneous robots VR
with dynamics (1). For some initial state x0 and destination

D, find a control policy which will drive the robots to within
a bounded ball of D while avoiding collisions with the
environment and maintaining a distance greater than λmin

between robots.

III. PRELIMINARIES

We seek a solution to Problem 2.1 that can be synthesized
automatically from high-level specifications. The controller
must be usable by non-experts who may not have experience
with code or robots. To that end, we have developed a
solution that generates low-level controllers for individual
robots from simple multitouch inputs on an iOS interface.

In this work, we assume
• a user is capable of navigating a rectangular prism via

multitouch input in a constrained environment such that
the final position of the prism encloses the set D without
colliding with the environment;

• all agents are identical;
• the environment is static;
• robots initiate with at least λmin distance between every

pair of robots;
• each robot is capable of self-localizing;
• robots are capable of transmitting only their current pose

to other robots within a radius δ > λmin;
• robots are capable of globally receiving limited infor-

mation from a server about the environment;
• the initial and goal points in the environment must be

connected.
Note we make no assumption about the goal set other than

being reachable, and that it can be enclosed by a final prism.
The controller is implemented in two parts: an iOS inter-

face to receive and parse user input and display the current
system state, and a Python-based server which receives user
commands and interfaces with the robots via ROS [18].

A. Abstracting the Environment

The environment of the robots is determined by user
inputs on the iOS interface. The interface shows real-time
position of the robots in the environment, and an initial
bounding box for the robots P0. In 3-D, the robots’ bounding
box is a rectangular prism; in 2-D, it is a rectangle. We
assume obstacles do not exist within this initialized prism.
We choose a rectangular prism since it is simply described by
2d halfspaces, and intersections are easy to compute. Other
shapes can also be chosen, with changes to the virtual forces
(Sec. IV). We henceforth refer to the rectangle or rectangular
prism simply as a prism.

The user manipulates the prism on the screen (Fig. 1),
dragging and scaling, so it navigates the space without
contacting obstacles in the environment (while this requires
the user to avoid obstacles, a physics engine could be used to
detect and prevent collisions). Since the robot state is defined
as a single point and does not capture the robot’s physical
extent, on the interface the environment must be padded by
the robots’ size to ensure robots do not collide with obstacles.

As the user manipulates the prism enclosing the robots
on the screen, new coordinates are transmitted to a server,



Fig. 3: The free space generated by multitouch inputs on
the iOS app is the union of the prisms shown in grey. An
obstacle is shown in blue.

where the union of a subset of those prisms is used as
an abstraction of the environment. A detailed description
of the iOS application is presented in Section VI-A. This
abstraction of the environment defines the free space of the
robots. In the current work, prisms must be axis orthogonal
(i.e. prism rotations are not allowed).

Definition 3.1: The free space of the robots is the finite
union of rectangular prisms F =

⋃P
j=1 Pj , which are a

subset of the prisms generated by the multitouch interface
that satisfy µ(Pj

⋂
Pj+1) ≥ 0.5µ(Pj), where µ(·) is the

Lebesgue measure of the set.
Figure 3 shows the free space of the robots generated from

the iOS app in the experiment in Section VII-B.
Within each prism, a robot activates a different on-board

controller which forces the robot to the centroid of the
prism. Once within the next prism, the robot activates the
controller for that prism, sequentially composing controllers
until reaching the goal. For each robot, we call the prism in
which it is located and for which control is active the current
prism. The current prism is determined as the prism with the
highest index in which the robot is located. This means that
robots can skip over some prisms in the sequence, which is
key to our proof of convergence. It is important to note that
at any time step, the current prism across the team of robots
need not be the same. In other words, the robots progress
through the sequence at an individual pace.

IV. CONTROLLER SYNTHESIS

The abstraction of the environment enables the use of a
simplified control policy, while still providing guarantees of
safety and convergence. Key to our approach is that a prism
Pj ∈ F must overlap the previous one Pj−1 by at least 50%
of the volume (for d = 3) or area (for d = 2) of the previous
prism Pj−1. This guarantees that the centroid of the current
prism is inside the next prism in the sequence.

We use a “virtual force” to drive each robot to the centroid
of its current prism. In the case of a single robot, once
the robot has reached the current prism’s centroid it is
inside the next prism in the sequence, and can switch to
that prism’s virtual forces. Robots cannot move backwards

0 5 10 15 20 25 300

200

400

600

800

1000

Distance from boundary, mm

M
ag

ni
tu

de
 o

f f
or

ce

 

 β = 0.1
β = 0.2
β = 0.3
β = 0.4
β = 0.5
β = 0.6
β = 0.7

Fig. 4: Change in force vs distance from a boundary from
varying β for fixed length of influence (1000mm), α = 1000.

in the sequence of prisms; the index of the next prism
must be higher than that of the current prism. The case
of multiple robots requires additional inter-robot forces to
prevent collisions between robots.

Intuitively, we would like robots to be strongly repelled
from the prism boundaries and into the safer, inner part of the
prism, where they are eased toward the center. Specifically,
at the prism boundary, infinite force must repel the robot,
and the force must disappear to zero at the center.

There are many functions which would satisfy these re-
quirements, including the negative gradient of a navigation
function [19]. However, we choose a function that allows
more control over the magnitude of the force within the prism
without requiring hand-tuned parameters for each prism.
Since we desire similar properties of the prism forces and
interrobot forces (the force must be infinite at the minimum
distance, and zero at the maximum distance), we use a
generalized force function for both types of forces:

f(d) =


∞ , d < 0
α/dβ − γ , d ≤ (α/γ)1/β

0 , otherwise
(2)

Here, d is a distance, and the parameters α, β, γ allow a user
to tailor the function to their application, modulating the rate
of change of the force while forcing it to disappear to zero
over the desired length of influence l = (α/γ)1/β . Figure 4
shows how the magnitude of f(d) changes as β is varied
for fixed length of influence l = 1000mm, α = 1000, and
γ = α/l1/β (to achieve f(d = 1000) = 0).

A. Prism Forces

Each prism can be described as the intersection of 2d
halfspaces Pj = {q | Hjq ≤ Kj ,q ∈ Rd} where Hj =
[Hj,1

T Hj,2
T · · · Hj,2d

T]T, with each row ||Hj,k||2 ≡ 1.
The force on each robot ri from its current prism Pj is

the sum of the forces from each facet of the prism,

ui,j = −
2d∑
k=1

fpi (d
p
i,j,k)Hj,k

T, (3)

where :
dpi,j,k = Kj,k −Hj,kxi

is the distance from robot ri to the kth facet of prism Pj , and
fpi (d

p
i,j,k) ≡ f(d

p
i,j,k) with parameters α and β fixed across



Fig. 5: The prism vector field on a 2D prism (blue) shown
with the next prism in the sequence (red). A robot would be
attracted to the center of the blue prism, and would transition
to the red prism once inside it.

all prisms, facets, and robots. We vary γ between prisms and
facets to fix the length of influence so that the force from
each facet disappears to zero at the centroid (chose γ such
that the length of influence is half the length of the respective
side of the prism)1. Figure 5 shows the vector field on a 2D
prism in blue, with the next prism in the sequence in red.

B. Interrobot Forces

We use the same generalized force function to calculate
interrobot forces. Let the distance between a pair of robots
be dri,m = ||xm−xi||2. The minimum safe distance between
robots is dri,m > λmin, where the robots are strongly repelled
(with infinite force at λmin). As mentioned in Sec. III,
we assume that robots can transmit their current position
to robots in a disk of radius δ. To prevent unnecessary
interaction at long distances, we allow robots’ positions to
influence other robots at a maximum distance of λmax ≤ δ.
At λmax, the interrobot force disappears to zero.

Let the Vi ⊆ VR be the set of robots within λmax distance
of robot ri. The interrobot force on ri is the sum

ui,R =
1

|Vi|
∑
m∈Vi

fri (d
r
i,m − λmin)

xi − xm
dri,m

, (4)

where |Vi| is the cardinality of Vi, and fri (d
r
i,m) ≡ f(dri,m)

with parameters α, β the same as for the prism forces,
and γ ≡ γr, fixed across all robots such that (α/γr)1/β =
λmax−λmin. We divide by the number of robots to prevent
interrobot forces from overcoming the prism force (we use
this in Proposition 5.2). The input to each robot is the sum:

ui = ui,j + ui,R. (5)

C. Overcoming local minima by randomized subdivision

Systems which rely on combining multiple potential func-
tions can be subject to local minima. For example, Fig. 6
shows three scenarios where a perfect alignment of robot
and prisms can prevent the progress of the robots.

The scenarios presented in Fig. 6(a-c) correspond to sets
of measure zero, and even a slight misalignment of the robots
will cause forces that will destabilize these unstable minima2.

A simple distributed method can overcome these local
minima. If a robot that is within the length of influence of
another robot does not make progress toward the goal, and

1If prism overlap greater than 50% can be used to reduce jitter in discrete
implementations. Choose γ so that forces reduce to zero before the centroid
but within the smallest overlap region satisfying the overlap percentage.

2In implementation, noise practically eliminates this issue.
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Fig. 6: Scenarios where summing potential functions causes
local minima. (a), (c) The current prism (blue, 1) is the same
for all robots, and perfect alignment prevents any robot from
progressing to the next prism (red,2). (b) Subdividing the
current prism can eliminate local minima. (d) The robot on
the right prevents the robot on the left from progressing from
1 (blue) to 2 (red), and the left robot prevents the right robot
from progressing from 2 to 3 (green). Since robots need not
visit every prism, the left robot can transition directly to 4.

is not within (n− 1)λmax of the goal, it can initiate its own
subdividing sequence. Consider the robots in Fig. 6a. They
can each independently subdivide prism 1 into a smaller
subset, by choosing at random a facet to translate closer to
itself by a random (but small) distance. For example, one
robot might choose to reduce the facet to the right in Fig. 6b
to the dashed line, while the other might choose to reduce
that same facet to the dotted prism. Then, each robot would
apply the control input (3) for their individual new prism,
changing the centroid it is attracted to, and displacing the
balance between the forces. This sequence can continue until
the robots are no longer in a local minimum, when they either
revert back to the original prisms or proceed to a future one.

V. ANALYSIS

In this section, we study the stability and convergence
properties of the controller (5). We will show that all robots
reach within (n− 1)λmax geodesic distance of the goal.

Within the proofs, we call a robot that is not within λmax

of any other robot a singleton. For a robot ri, any robot
within λmax belongs to its group (Note that a robot rm in
the group of ri need not have the same group as ri); we can
also say these robots are connected as in a graph. For a robot
ri, any robot to which it is directly or indirectly connected is
in its extended group. We measure progress toward the goal
as transitioning to a future prism in the free space sequence
of prisms.

First we show that no robot can escape the free space or
collide with other robots.

Proposition 5.1: Singletons cannot escape the free space.
Proof: Assume WLOG that xi ∈ Pj and Pj is the

highest indexed prism for which this is true. There are two
scenarios: (A) ri inside and (B) ri outside of the length of
influence of the kth facet of Pj .

(A) If ri is within the length of influence of the kth facet,
the control input (3) due to this facet pushes the robot away
from this facet. Also, the control input due to the opposite
facet has no affect, since ri is outside of the length of
influence of the opposing facet. Therefore, ri will be driven
away from the facet.



(B) If ri is outside of the length of influence of the kth

facet, the facet has no impact on the control input. The
opposing facet pushes ri toward the kth facet, but this input
disappears to zero at exactly the interface between the lengths
of influence of the two facets. Therefore ri will not be driven
any closer to the facet than the length of influence.

This is true for any facet k in any prism Pj , therefore a
singleton cannot escape the free space.

Proposition 5.2: Non-singletons cannot escape the free
space or collide with other robots.

Proof: Assume that a robot has either (A) escaped the
free space, or (B) gotten too close to another robot.

(A) If ri has escaped the free space, this means the
interrobot force has overcome the prism force of its last
current prism Pj , forcing ri to exit through some facet of
the prism, facet k. Since the inward force due to the prism
ui,j on ri is infinite at facet k, this means there exists some
infinite force to overcome ui,j . Since the interrobot forces are
averaged among ri’s group, the worst case is when a single
robot rm is pushing ri directly into facet k with infinite force,
thus ||xm − xi||2 ≤ λmin. But since ri also imposes a force
on rm, rm must move away from ri, thus the interrobot force
will decrease, and ri will move inward from the boundary.
Therefore, ri cannot escape the free space.

(B) If ri has gotten too close to another robot rm, this
means the sum of the forces from the other robots in the
group of ri as well as the prism force have overcome the
force from rm. ri has gotten too close to rm when ||xi −
xm||2 ≤ λmin. Since we assume the robots initialize with
distances between them greater than λmin, this means that at
some time previous instant t, ||xi − xm||2 > λmin. Thus, at
time t, the force imposed on ri from rm is finite. Assume
that the force driving ri toward rm due to other robots and
the prism is infinite. At some t′ > t ri has moved closer
to rm and further away from the other robots and the prism
boundary, such that the force from the other robots and the
prism boundary is now finite. Since this force pushing ri
toward rm is finite, it cannot overcome the infinite force at
||xi − xm||2 = λmin, therefore this cannot occur.

Since we have shown that robots cannot escape the free
space and cannot come within λmin of other robots, we now
show that all robots make progress toward the goal.

Proposition 5.3: Singletons make progress toward D.
Proof: Assume WLOG that the singleton ri is in Pj

and the next prism in the free space sequence is Pj+1. Also
assume that xi /∈ Pj+1. ui,j drives xi to the centroid of Pj .
Since Pj+1 overlaps at least 50% of Pj the centroid of Pj
is inside Pj+1, and the robot progresses to Pj+1. This is
true for any index i in the set P , therefore the singleton will
always make progress toward the goal.

Now we show that in a group of robots, at least one makes
progress, and by recursion, all make progress.

Proposition 5.4: In a group of non-singleton robots, at
least one robot makes progress toward D.

Proof: In an extended group of non-singletons, where
none of the robots are in the last prism, there are two cases.

(A) If the robots are not stuck in a local minimum, at

least one robot is moving until (1) it proceeds to a future
prism (since by construction robots cannot move backwards
in the sequence), in which case one robot has made progress,
or (2) eventually the group comes to equilibrium at a local
minimum, in which case (B) applies.

(B) If the robots are stuck in a local minimum, the robots
will initiate the random modification of their current prisms
presented in Sec. IV-C. Since the adjusted facet and the
adjustment size is chosen at random, eventually the robots
will end up with unequal prisms. This will change the
centroid that each robot is moving towards, disrupting the
balance of forces. Eventually, due to the random nature of
the modification, at least one robot will break out of the local
minimum and progress to a future prism.

While Proposition 5.4 applies for a fixed group, if the
group changes (by robots joining or exiting) we can apply
the same results to the new group.

Corollary 5.5: All robots progress toward the last prism.
Proof: Follows by recursion on Proposition 5.4.

Theorem 5.6: Consider the system (1) in the space F ,
with control input (5). Every robot reaches within (n −
1)λmax geodesic distance of the centroid of the last prism.

Proof: Assume WLOG that r1 has reached equilibrium
and is not within (n− 1)λmax geodesic distance of the last
prism. By Proposition 5.4, local minima cannot appear in
a group where none of the robots are in the last prism.
Therefore, at least one robot, which we call WLOG r2, in
the extended group of r1 is in the last prism. However, since
there are only n robots, and the maximum length between
each pair of robots is λmax, the maximum geodesic distance
between r2 and the robot farthest away must be (n−1)λmax.
This contradicts our assumption, and therefore r1 must be
within (n− 1)λmax geodesic distance of the last prism.

Theorem 5.7: The control policy (5) solves Problem 2.1.
Proof: By Theorem 5.6, all robots reach within nλmax

geodesic distance of the last prism. By our assumptions in
Sec. III, the goal D is within the last prism. Therefore the
maximum distance between any robot and the goal D is the
sum (n − 1)λmax + ||L||2, where L is the length of the
diagonal of the last prism.

VI. IMPLEMENTATION

As mentioned previously, the controller is implemented in
two parts: an iOS interface and a Python server. Commu-
nication between the two components is handled via TCP
websockets. The iOS interface is used solely for input and
rendering; computation is done on the server side.

While we use a central server to handle controller input,
control is distributed and does not require a centralized
server. The server functionality could be moved to the input
device or the robots and operated in a distributed fashion.

A. iOS Appplication

The iOS application presents the user with a virtual
environment in which a prism can be translated and scaled
to construct the robots’ free space Although we use iOS, no
iOS-specific features were used and any multitouch platform



Algorithm 1: Chooses subset of prisms for the free space
ReceivePrism(curr corners, curr scale):

Constant threshold ratio
Initialize(best prism, best volume, best ratio =
1.0, old corners, old scale)
if Prism is scaling then

new volume←
curr scale[x] ∗ curr scale[y] ∗ curr scale[z]
if Prism is shrinking then

ratio← new volume
old volume

else Prism must be growing
ratio← old volume

new volume
end

else Prism is translating
overlap← Intersect(curr corners, old corners)
ratio← overlap

oldvolume

end
if ratio > threshold ratio then

if ratio < best ratio then
best corners← curr corners
best ratio← ratio
best volume← new volume

end
else Overlap is below allowed threshold

old corners← best corners
best ratio← 1.0
old volume← best volume
Broadcast(best corners) // Broadcast

prism position to ROS topic
end

could be used instead. The display features four views: three
orthographic and one isometric view (see Fig. 1).

The views feature static opaque world objects such as
floors and obstacles (loaded from an XML file) and the
translucent prism (with a trail of previous prisms). The initial
dimensions of the prism are selected to bound all of the
agents and allow them to rise from the ground to initialize.
The prism can be translated with a touch and drag gesture or
scaled with a ”pinch-to-zoom” gesture within any orthogonal
view (see Fig. 1). As the prism is manipulated, its vertices
are sent to the Python server. If desired, a physics engine
such as Open Dynamics Engine [20] could be employed to
perform collision checking, ensuring that the prism is not
allowed to intersect with any static world objects.

Although we used an iPad (running iOS version 6.1.2) for
our experiments, the iOS implementation can feasibly run on
any iOS device with version 4.2 or higher (to support web
sockets). iSGL3D [21] was used for graphics rendering.

B. Server implementation

The server is in charge of two main tasks. First, it accepts
the current vertices of the prism from the iOS application and
decides whether to broadcast it over ROS topics. Second, it
periodically transmits the current locations of the agents to

the iOS application for display. We used Twisted [22] to
implement our event-based server.

The first task of the server is implemented in Algorithm 1.
The server begins with knowledge of the last broadcast
prism, which we call the old prism. It then uses the ap-
propriate method to compute the overlap between the old
prism and the latest received prism. If the overlap is greater
than some user-specified threshold ≥ 50% (80% was used in
our experiments) but smaller than any other prism received
so far, that is retained in memory as the ”best” prism. Once
the computed overlap dips below the set threshold or the old
prism’s centroid is not located in the new prism the server
broadcasts the best prism and repeats the process.

For axis-aligned rectangular prisms, calculating intersec-
tions is trivial. However, to allow for future extensions with
rotated prisms, we use QHULL [23] to compute intersections
and ensure the centroid of the original prism is inside the next
one. Since data is transmitted wirelessly, we assume the rate
of touch input, thus the rate of generation of prisms, is high
enough that the algorithm is robust to dropped packets.

Since the last prism may not satisfy the overlap threshold,
the server automatically broadcasts if no prisms have been
broadcast within a certain time (3 seconds in our implemen-
tation) to ensure the final prism generated is broadcast.

VII. SIMULATIONS AND EXPERIMENTS

We have tested our controller in various simulations and
experiments. Here we present two interesting and successful
results, which are also shown in the supplementary video.
Experiments use the Ascending Technology Hummingbird
quadrotors (we also base our simulations on these). The
controller runs in real time in a distributed way on a single
computer (each robot has their own thread and clock). For
both the simulated and physical systems, we used the inputs
generated by (5) to create waypoints for the system. Since
this is a discrete implementation of a continuous controller
with possibly infinite inputs, we saturate the maximum
control input to each robot, and ensure that the waypoint
being assigned to any robot is within its current prism.

It is important to note that everything occurs in real time.
Robots have no prior information about the environment, and
receive prism vertices only as the user manipulates the prism
on the app. Robots receive only the current location of other
robots within communication range, not knowing what other
robots’ or their own trajectory will be.

Waypoints update at 10Hz, but actual position is used
every 4 time steps, with each robot estimating their progress
and updating their waypoint in between. This accounts for
some of the jitter in the robots’ positioning as can be seen
in the plots and on the supplemental video.

In our experiments and simulations, we require a prism
overlap of 80%. In general, the lower the percentage, the
smoother the trajectory, but choosing too low of a percentage
slows progress, as robots move more slowly near the centroid
of their current prism. Choosing too high creates very similar
cubes in the free space, thus the robots switch controllers
very often, resulting in increased jitter.



Fig. 7: Sequential frames in a five quadrotor simulation. Robots initiate on the left side, and must navigate to the right.

Fig. 8: Results from a 5-robot simulation. The environment is
grey, with +y wall removed for clarity. (top) Prisms compos-
ing the free space in yellow in a side view. (middle) Isometric
view of trajectories. (bottom) Top view of trajectories.
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Fig. 9: Distance between robot pairs in 5-robot simulation.
λmin = 600mm is maintained.

A. Simulations

We have tested the system in simulations with up to
5 robots in four different environments. Figure 7 shows
the initial, a middle, and final frame of a representative
simulation with n = 5 robots in a complex environment as it
appears in the bottom left view of the iOS interface. The goal
is to maneuver robots through the trench from the left to the
right side. In the left frame, the system initiates with a prism
enclosing all robots (robots occluded by obstacles are shown
with a yellow dot). In the middle frame the user manipulates
the prism to navigate it through the environment; the prism
need not be large enough to accomodate all robots. In the
right frame, all the robots have made it into the final prism.

B. Experiments

We ran experiments with up to 3 quadrotors in five
environments. Here we show an experiment with n = 3

quadrotors in an environment with an obstacle. The envi-
ronment and app-generated free space is shown in Fig. 3.
In this experiment, three quadrotors rise over the obstacle
via translating the prism, change configurations when the
prism is scaled, then land on the opposite side of the obstacle
via another translation. We use a 12-camera VICON motion
capture system [24] for localization, and a linear-quadratic
regulator (LQR) takes waypoints and generates low-level
commands which are sent to each robot via XBee-Pro.

Isometric and top views of the experiment are shown
in Fig. 10. The robots initiate at the colored circles and
the reach equilibrium at the triangle marker. The distance
between the robots is shown in the panel on the right.
One notable result is how much the robots outperform the
convergence guarantee. Although we guarantee robots’ reach
within a distance (n − 1)λmax of the final prism, which
would be 1700 mm, all robots reach within 200mm of the
final prism (red: 40mm, green:inside, blue: 188mm). This is
representative of all of our simulations and experiments; the
robots get much closer to the final prism than the guarantee.
The distance between the farthest robot and the last prism is
heavily dependent on the size of the prisms. The smaller the
prisms, the less room for robots to fill in the final prism.

There is one interesting result from this run that may at
first appear to be cause for concern: one pair of robots break
the minimum distance constraint λmin = 850mm (the blue
and red robots in the trajectory plots; the minimum distance
between them is 638mm). This is likely a consequence of a
number of factors. First, we are implementing a continuous
controller (5) on a discrete system, which, to account for
noise, updates at a forcibly slow rate. Second and more
significantly, the air flow around the quadrotors creates
an unmodelled irregular noise that can greatly affect the
performance of both robots (850mm is extremely close,
as the robots themselves have a radius of 270mm leaving
approximately 310mm between the rotors of two robots).
Our system does not model the on-board LQR controller,
and properly calibrating the LQR gains to account for the
expected noise in the system would prevent the robots from
getting too close. How to set these gains is outside the
scope of this paper, although we note that this is a one-
time pre-processing step for a given cluster of robots and
set of expected conditions (though such tuning might not
be required for all vehicles). It is worth noting that the
robots recover gracefully from this failure, demonstrating the
robustness of our system.

VIII. DISCUSSION

We have presented a novel distributed control policy for
multirobot navigation designed specifically to be synthesized
using only inputs from a straightforward, simple multitouch
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Fig. 10: An experiment with three robots. (far left) A photo of the experimental setup. (left ctr) A top view and (right ctr) a
side view of the robots’ trajectory, showing only every 4th cube for clarity. (far right) The distances between pairs of robots.
The distance for one pair of robots (the pair shown in green, corresponding to the red and blue robots in the trajectory
plots), drops below the safety threshold but recovers. In the trajectory plots, <,> mark the location where this occurs.

interface created for non-experts. We provide an end-to-end
solution for navigation of a team of robots from one location
to another in a constrained environment with obstacles that
provides guarantees on convergence and safety with simple
multitouch gestures as input. The interface allows the user
to decide a general path for the robots, allowing the user
to evaluate the quality and risk of different available paths
rather than creating a complex controller. This gives the user
the ability to determine which risks should be taken and how
close robots should get to certain obstacles. Such end-to-end
solutions lower the barrier of entry to multirobot systems,
enabling even those who have never programmed or used a
robot to operate teams of robots.

Although our current system is robust, it does have
limitations. Using a single prism to enclose the robots at
initialization may not be feasible in some environments,
where obstacles may exist between the robots. Merging
multiple initial prisms, while resulting in a more complex
interface to indicate merging, is a straightforward extension
of this work. Splitting into multiple sets of prisms, however,
is a more complex problem we plan to investigate. We
also plan to incorporate rotations of the prism, which would
allow the robots to more easily navigate more complex
environments, such as those with ramps.

We have produced a simple interface to demonstrate that
a controller that guarantees safety and convergence can be
determined using very high-level inputs. The user experience,
however, is not fully addressed in this work. Various design
choices, e.g. particular gestures and views, remain unevalu-
ated at this time. Designing a truly intuitive user interface
requires coordinating with experts in the field, as well as
extensive user studies. This is a subject of ongoing work.
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