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Abstract—In this paper, we study the Complex Routing Prob-
lem (CRP), where several homogeneous robots need to visit given
task locations to accomplish complex tasks in a cooperative
setting. Each task location hosts a task. The complexity level
of a task is defined as the number of robots that need to
be simultaneously present at its location to accomplish it. The
robots need to be routed so that all tasks get accomplished with
minimal makespan. We present a new centralized algorithm,
called SAGL, for solving the CRP heuristically. SAGL is inspired
by the application of linear programming duality to the Steiner
Forest Problem. It makes less restrictive assumptions than the
state-of-the-art distributed Approach with Reaction Functions
and scales better in both the complexity levels of tasks and the
number of complex tasks (whose complexity levels are greater
than one), although it results in somewhat larger makespans.

I. INTRODUCTION

In this paper, we study the Complex Routing Problem
(CRP), where several homogeneous robots need to visit given
task locations to accomplish complex tasks in a cooperative
setting. Each task location hosts a task. The complexity level
of a task is defined as the number of robots that need to
be simultaneously present at the location to accomplish it.
A task (and its location) is called simple if its complexity
level is one and complex otherwise. The robots need to be
routed so that all tasks get accomplish with minimal makespan
(the time when the last task gets accomplished). The initial
robot locations, the task locations and the complexity levels of
tasks are known. All locations are embedded in a metric space
where the triangle inequality holds, which is realistic since the
locations are often embedded into the Euclidean plane with or
without obstacles. The CRP arises in real-world applications.
For example, multiple robots might be required to lift heavy
pieces of debris in a search-and-rescue domain.

The Traveling Salesman Path Problem (finding a Hamil-
tonian path with a given start vertex) is a special case of
the CRP where there is only one robot and all tasks are
simple. Thus, all intractability and inapproximability results
about the Traveling Salesman Path Problem carry over to the
CRP. For example, the Traveling Salesman Path Problem and
thus also the CRP are NP-hard to solve optimally, and at
least the triangle inequality is needed to approximate them
efficiently [1]. The CRP has previously been solved [2]. The
Approach with Reaction Functions (ARF) [3] [4] is considered
a state-of-the-art CRP approach for the minimization of both
makespan and the sum of the travel distances of the robots [5],

[6], [7], [8]. A reaction function characterizes the cost of a
given robot for visiting a given complex task location at a
given time in addition to all its assigned task locations. In
each iteration of ARF, each robot submits to an auctioneer its
reaction functions for all complex tasks, and the auctioneer
then assigns more tasks to robots. ARF was inspired by
auction-like approaches for a special case of the CRP where
all tasks are simple [9]. On the other hand, game-theoretic
approaches are typically used in a competitive setting [10],
[11], where self-interested agents try to maximize their own
utilities [12], [13].

In this paper, we present a new centralized algorithm, called
SAGL (which stands for its 4 steps: Spanning tree construc-
tion, Task assignment, Global visitation order determination
and Local visitation order determination), for solving the CRP
heuristically. SAGL is inspired by the application of linear pro-
gramming duality to design a two-approximation algorithm for
the Steiner Forest Problem [14]. SAGL makes less restrictive
assumptions than ARF and scales better in both the number of
complex tasks and their complexity levels, although it results
in somewhat larger makespans. For example, the runtime of
ARF is exponential in the number of complex tasks assigned
to each robot and their maximum complexity level, which is
why ARF imposes upper bounds on these quantities [3]. The
runtime of SAGL, on the other hand, is polynomial without
such restrictions.

II. PROBLEM FORMULATION

The CRP can be mathematically formulated as a septuple
hV,R, T , d, ⌧, `, ci, where

• V is the set of locations;
• R is the set of robots;
• T is the set of tasks;
• d is the distance function that maps two locations to a

positive real number (d : V⇥V ! R>0

), which represents
the distance from the first to the second location;

• ⌧ is the traversal function that maps two locations to a
positive real number (⌧ : V⇥V ! R>0

), which represents
the travel time from the first to the second location;

• ` is the function that maps a robot to its initial location
and a task to its location (` : R [ T ! V); and

• c is the function that maps a task to a positive integer
(c : T ! N+), which represents its complexity level.



A candidate solution is an assignment of task locations to
all robots along with a visitation order for each robot that
determines in which order the robot has to visit its assigned
task locations. Each location of some task t 2 T has to be
assigned to exactly c(t) different robots. When a robot arrives
at the location of task t, it waits until c(t) robots (including
itself) are present. The earliest such time is the completion
time of the task since we assume without loss of generality
that all tasks are accomplished instantaneously once all robots
are present.1 The makespan of a candidate solution is the
largest completion time of any task. A candidate solution with
a deadlock (where some robot waits forever for other robots)
has an infinite makespan. A candidate solution with minimum
makespan is called optimal. The task is to find a close-to-
optimal candidate solution.

We impose the following restrictions in this paper that we
intend to relax in future work: We assume that all distances
satisfy the triangle inequality, as explained earlier. We also
assume that all distances are symmetrical and that all robots
always move with unit speed. Thus, the travel time between
locations is equal to their distance. These restrictions allow
us to embed a CRP instance into a complete undirected edge-
weighted graph G = hVG, EGi, where each vertex represents
a task location or an initial robot location and each edge has a
cost that represents the travel time between the two locations
corresponding to its endpoint vertices.

III. BACKGROUND

SAGL draws on ideas from the application of linear pro-
gramming duality to the Steiner Forest Problem and from
approximations of the Traveling Salesman Problem.

A. Steiner Forest Problem

The Steiner Forest Problem is defined as follows: Given an
undirected edge-weighted graph G = hV,Ei and a collection
S = {S

1

, S
2

, S
3

, . . . , Sn} of sets Si ✓ V , find a minimum
edge-cost forest F such that, for all Si and all u, v 2 Si, there
exists a path connecting u and v in F . The Steiner Forest
Problem can be formulated as an integer linear program where
each edge e 2 E is associated with a 0/1 variable xe:

min
X

e2E

cexe

s.t.
X

e2@H

xe � 1, 8H 2 H

xe 2 {0, 1}, 8e 2 E

(1)

ce is the cost of edge e, H is a subset of V which cuts some
Si into two parts, H is the set of all such subsets, and @H is
the set of all edges which have exactly one endpoint vertex
in H . A two-approximation of the Steiner Forest Problem
can be obtained by relaxing the integer linear program to
a linear program and then solving it using a primal-dual

1If this is not the case, then the time needed to accomplish the task can be
folded into the travel time.

method [14]. Each constraint in the dual formulation corre-
sponds to a variable in the primal formulation and thus also an
edge in the graph. In this two-approximation algorithm, each
iteration uniformly increases the values of all dual variables
corresponding to every minimal unsatisfied set Si until a dual
constraint becomes tight. When a dual constraint becomes
tight, the edge corresponding to this constraint is added to
F and all dual variables are frozen. The two-approximation
algorithm terminates when F is a feasible solution. Intuitively,
each iteration of the two-approximation algorithm can be
understood as expanding “discs of influence” around minimal
unsatisfied sets until two of them “touch” each other along
some edge, which is then added to F .

B. Traveling Salesman Problem

The Traveling Salesman Problem (TSP) is defined as
follows: Given a complete undirected edge-weighted graph
G = hV,Ei, find a minimum-cost cycle that includes all
vertices exactly once. A TSP whose graph obeys the triangle
inequality is called metric. A two-approximation of the metric
TSP can be obtained by first finding a minimum spanning tree
T of G and then performing a depth-first traversal with short-
circuiting [15] on T [16], starting with an arbitrary vertex—
resulting in our metric TSP solver. A TSP with the constraint
that the cycle must be consistent with a given total visitation
order of a subset of the vertices (the “constrained vertices”) is
called path-constrained. A three-approximation of the path-
constrained metric TSP can be obtained as follows [17]—
resulting in our path-constrained metric TSP solver:

1) Add an auxiliary vertex and connect it to all constrained
vertices with zero-cost auxiliary edges.

2) Find a minimum spanning tree T on the resulting graph.
The auxiliary edges from Step 1 are in T since they have
zero costs.

3) Remove the auxiliary vertex and all auxiliary edges from
T . None of the constrained vertices are connected to
each other afterward since they were all connected via
auxiliary edges to the auxiliary vertex. Thus, T now
contains a number of connected components, each of
which contains exactly one constrained vertex.

4) Perform a depth-first traversal with short-circuiting [15]
on each connected component of T , starting with the
constrained vertex. Connect the start and end vertices
of the resulting paths to a cycle that obeys the given
visitation order of the constrained vertices.

IV. SAGL: A NEW CRP ALGORITHM

The CRP consists of two interrelated subproblems, namely
determining which robots should visit which task vertices and
in which visitation order the robots should visit them. SAGL,
our new heuristic CRP algorithm, decouples the solution
of these two subproblems. Steps 1 and 2 solve the first
subproblem, and Steps 3 and 4 solve the second subproblem.
Figure 1 shows an example of the working of SAGL, which
runs in polynomial time (since each step runs in polynomial
time) and prevents deadlocks.
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(a) Initial robot and task vertices
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(c) Step 2: Assignments of robots to task vertices
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(e) Step 4: Local visitation order for each robot

Fig. 1: Illustrates the working of SAGL. Cyan circles are initial robot vertices, yellow circles are simple task vertices, and red
circles are complex task vertices labeled with the complexity levels of the tasks. (a) The figure shows the initial robot and
task vertices on the Euclidean plane. (b) The figure shows the spanning tree resulting from Step 1. (c) The figure shows the
assignment of robots to task vertices (in blue font) resulting from Step 2. (d) The figure shows the global visitation order of
the complex task vertices resulting from Step 3. (e) The figure shows the local visitation order of its assigned task vertices for
each robot resulting from Step 4.

Algorithm 1: Spanning tree construction.
1 Function SpanningTree()

Output: a spanning tree of G.
2 M = hV,Ei := hVG, ;i;
3 while M has more than one connected component do
4 E0

:= edges in E connecting two connected components of M ;
5 E := E [ {argmin(u,v)2E0 d(u, v)/(g(u) + g(v))};

6 return M ;

7 Function g(u)
Input: u: a vertex of M .
Output: the growth rate of u.

8 CC = hV,Ei := the connected component of M containing u;
9 return max{1,maxt2T |l(t)2V {c(t)} � |{r 2 R|l(r) 2 V }|};

A. Step 1: Spanning Tree Construction

Step 1 builds a spanning tree M that Step 2 then uses to
assign all task vertices to robots, see Algorithm 1. Step 1 is
inspired by the application of linear programming duality to
the Steiner Forest Problem [14]. A connected component in
the following text corresponds to a minimal unsatisfied set, and
the growth rate g(u) of connected component u corresponds
to the expansion rate of the disc of influence around the
corresponding minimal unsatisfied set.

Step 1 initializes M to contain the vertices VG and no
edges. M thus contains |VG| connected components. Step 1
expands a disc during each iteration around each vertex with
the growth rate of the vertex, which is the growth rate of
the connected component that contains the vertex. It adds an

edge to M between the first pair of vertices from different
connected components whose discs touch (ties can be broken
arbitrarily), which merges the two connected components into
one and might change the growth rates of the vertices that it
contains. Step 1 terminates when there is only one connected
component. Thus, the resulting connected component is a
spanning tree.

The growth rate of a connected component is defined to
be the maximum complexity level of all tasks whose vertices
are contained in it minus the number of robots whose initial
vertices are contained in it. The idea behind this definition is
that the robots whose initial vertices are contained in it will
likely be assigned to the task vertices that are contained in it.
The growth rate of the connected component, if it is not less
than one, is thus the smallest number of additional robots that
need to be assigned to the task vertices in it. If the growth
rate is less than one, then it is set to one to ensure that Step
1 builds a spanning tree rather than a spanning forest.

B. Step 2: Task Assignment

Step 2 uses the spanning tree M from Step 1 to assign all
task vertices to robots. The vertex of each task t is assigned
to its nearest c(t) initial robot vertices using the distances on
the spanning tree.

C. Step 3: Global Visitation Order Determination

Step 3 determines a global visitation order D of the complex
task vertices by running the metric TSP solver on only the
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Fig. 2: Illustrates Step 1. Cyan circles are initial robot vertices,
yellow circles are simple task vertices, and red circles are
complex task vertices. Tasks T

1

and T
2

have complexity levels
one and two, respectively. The outside circles represent the
growth rates of the vertices. (a) The growth rate of the vertex
of T

2

is two, and all other growth rates are one. The discs
of the vertex of T

2

and the initial vertex of R
1

touch each
other first. (b) The edge between these vertices is added to
M to form a new connected component with one robot and
one task with complexity level 2. Thus, the growth rates of all
vertices in this connected component are one, resulting in all
growth rates now being one. The discs of the vertex of T

1

and
the initial vertex of R

1

touch each other next. (c) The edge
between these vertices is added to M . All growth rates remain
one. The discs of the vertex of T

1

and the initial vertex of R
2

touch each other next. (d) The edge between these vertices is
added to M , resulting in the spanning tree.

complex task vertices (that is, on the subgraph of G induced
by these vertices) and then removing the edge with the largest
cost from the resulting cycle. It then uses the resulting path
for the global visitation order. All robots have to visit their
assigned complex task vertices in the global visitation order,
which makes it impossible for them to wait for each other and
thus prevents deadlocks. They can visit their assigned simple
task vertices between their assigned complex task vertices.

D. Step 4: Local Visitation Order Determination

Step 4 determines the local visitation order of its assigned
task vertices for each robot by running the path-constrained
metric TSP solver on only its initial vertex and its assigned
task vertices (that is, on the subgraph of G induced by these
vertices) with the constraint that the cycle must be consistent
with the global visitation order D of the complex task vertices

from Step 3. It then removes the edge in the cycle that returns
to the initial robot vertex and uses the resulting path (starting
with the initial robot vertex) for the local visitation order. Each
robot visits its assigned task vertices in the local visitation
order. When it arrives at the vertex of some task t, it waits
until c(t) robots (including itself) are present.

V. EXPERIMENTAL EVALUATION

We implemented SAGL in Java using the JGraphT li-
brary [18] and compiled it using the Open Java Development
Kit 8. The authors of [3] and [4] provided their ARF imple-
mentation in C to us. We compiled it using gcc 4.9.2 with
the “-O3” option. We ran our experiments on a GNU/Linux
workstation with an Intel Xeon Processor E3-1240 v3 (8MB
Cache, 3.4GHz) and 16GB of RAM.

Fig. 3: Shows the percentages of CRP instances that were
solved by the “Mixed,” “Simple-First” and “Complex-First”
variants of ARF [4] for each number of complex tasks within
a time limit of two minutes. SAGL solved all CRP instances
within 0.4 seconds and is thus not shown in the figure.

Fig. 4: Shows the makespans for each number of complex
tasks, averaged over all CRP instances that were solved by
SAGL and the “Mixed,” “Simple-First” and “Complex-First”
variants of ARF [4], respectively, within a time limit of two
minutes. The variants of ARF did not solve any CRP instances
with more than 15 complex tasks, which is why their graphs
end early.

A. Experiment 1

For Experiment 1, we used a discrete 51⇥51 four-neighbor
grid map with square cells that are either blocked or un-



(a) Average makespans (in log scale) for each number of tasks for
maximum complexity level four

(b) Average makespans (in log scale) for each maximum complexity level
for 1,000 tasks

(c) Ratios of the average makespans (baseline/SAGL) for each number of
tasks for maximum complexity level four

(d) Ratios of the average makespans (baseline/SAGL) for each maximum
complexity level for 1,000 tasks

Fig. 5: Shows the makespans for SAGL and the baseline algorithm. Each line color represents a different number of robots.

blocked, as used before in [4]. The grid map models an office
environment with walls and doors [19]. For each number of
complex tasks from one to twenty, we generated 200 CRP
instances with random vertices for 10 robots, 80 simple tasks
and the given number of complex tasks. Figure 3 shows that
SAGL scales better than ARF in the number of complex tasks,
and Figure 4 shows that the makespans of SAGL are between
1.5 and 2.0 times larger than the ones of ARF.

B. Experiment 2

For Experiment 2, we used larger CRP instances than ARF
can solve within a time limit of two minutes. We used an
obstacle-free 300 ⇥ 300 continuous square. For 5, 8 and 10
robots, we generated 15 CRP instances with random vertices
for the given number of robots and 100, 500 and 1,000 tasks,
where the complexity level of each task is randomly chosen
between 1 and a maximum complexity level of 2, 3 and 4.
SAGL solved all CRP instances within the time limit. We
compared it against the following baseline algorithm:

1) Assign the vertex of each task t to its nearest c(t) initial
robot vertices using the distances on G.

2) Generate a random global visitation order of all complex
task vertices to prevent deadlocks (for the reason given
in the context of Step 3 of SAGL).

3) Run the metric TSP solver for each robot on only its
initial vertex and its assigned simple task vertices (that
is, on the subgraph of G induced by these vertices),
remove the edge incident on the initial robot vertex with

the largest cost from the resulting cycle and use the
resulting path (starting with the initial robot vertex) for
its visitation order of its assigned simple task vertices.

4) Create two task queues for each robot, one for its
assigned complex task vertices in the visitation order
produced in Step 2 and one for its assigned simple task
vertices in the visitation order produced in Step 3. The
robot then randomly chooses one of the two queues,
dequeues the next task vertex from it and visits that task
vertex, until both queues are empty.

Figure 5 shows that the makespan of SAGL gets smaller
relative to the one of the baseline algorithm as the number of
tasks and the maximum complexity level increase.

VI. CONCLUSIONS AND FUTURE WORK

We studied the Complex Routing Problem (CRP) and pre-
sented a new centralized algorithm, called SAGL, for solving
it heuristically. SAGL is inspired by the application of linear
programming duality to the Steiner Forest Problem. It makes
less restrictive assumptions than the state-of-the-art distributed
Approach with Reaction Functions and scales better in both the
number of complex tasks and their complexity levels, although
it results in somewhat larger makespans.

Directions for future work include relaxing the restrictions
that we imposed on the CRP, developing a distributed version
of SAGL and extending it to heterogeneous robots and tasks
(for example, where tasks require robots with specific capa-
bilities) and tasks with flexible complexity levels, where the



time needed to accomplish a task depends on the number of
robots present.
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