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Abstract
This paper defines the research area of Diversity-enhanced Autonomy in Robot Teams (DART), a novel paradigm for
the creation and design of policies for multi-robot coordination. While current approaches to multi-robot coordination
have been successful in structured, well understood environments, they have not been successful in unstructured,
uncertain environments, such as disaster response. While robot hardware has advanced significantly in the past
decade, the way we solve multi-robot problems has not. Even with significant advances in the field of multi-robot
systems, the same problem-solving paradigm has remained: assumptions are made to simplify the problem, and a
solution is optimized for those assumptions and deployed to the entire team. This results in brittle solutions that prove
incapable if the original assumptions are invalidated. This paper introduces a new multi-robot problem-solving paradigm
which uses a diverse set of control policies that work together synergistically within the same team of robots. Such an
approach will make multi-robot systems more robust in unstructured and uncertain environments, such as in disaster
response, environmental monitoring, and military applications, and allow multi-robot systems to extend beyond the
highly-structured and highly-controlled environments where they are successful today.
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1 Introduction
The field of multi-robot systems (MRS) is growing at
a rapid pace. Research in MRS spans many different
areas, including automated delivery (Agha-mohammadi
et al. (2014); Lonsdorf (2017); Sung et al. (2013)),
surveillance (Glaser (2017)), and disaster response (Schurr
et al. (2005); Jennings et al. (1997)). There have also
been many successful demonstrations of increasing numbers
of robots (Chung et al. (2016); Glaser (2016); Hauert
et al. (2011); Kushleyev et al. (2013); Preiss et al. (2017);
Rubenstein et al. (2012)). MRS have also been successfully
deployed in the field including in warehousing (D’Andrea
and Wurman (2008)), manufacturing (Hagerty (2015)), and
entertainment (Barret (2016)). While these outcomes show
the promise of MRS, the environments in which MRS have
been successful are highly controlled, and some are highly
instrumented, enabling precise tuning of controllers and
nearly perfect knowledge of environmental conditions.

Many environments where MRS could be beneficial are
not highly controlled or equipped with the extensive infras-
tructure often necessary to coordinate large teams of robots
with state-of-the-art algorithms. For example, containing
wildfires, searching collapsed buildings, patrolling borders,
monitoring infrastructure, and containing oil spills all occur
in highly dynamic and unique environments (no two col-
lapsed buildings are the same), with high uncertainty and
little control over other non-robot agents in the environment.
One of the most desirable benefits of MRS is robustness,
wherein robots can compensate for loss of capabilities by
relying on other robots in the team. However, the uncertainty
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of many real-world environments renders current state-of-
the-art algorithms and controllers, even those designed for
robustness, ineffectual. While robot hardware has advanced
significantly in the past decade, the way we solve multi-robot
problems has not. Many control policies are so specialized
and optimized for specific capabilities and conditions that
they do not empower robots to cope with uncertainty. Incor-
porating diversity, in the form of an ensemble of control
policies that work synergistically across the team, can help
to realize the true benefits of robustness in the face of
uncertainty for teams of robots. Single robot systems can also
benefit from ensembles of control policies, from which they
can draw when faces with control failure.

2 Motivation
In disaster response alone, the potential impact of
autonomous MRS is substantial: 60,000 people die each
year in natural disasters, mostly in developing countries
(Kenny (2009)). This makes robots an ideal tool for disaster
response. In fact, DJI announced that one properly equipped
drone can find a missing person more than five times faster
than traditional search methods (DJI (2016)). However, most
robots used in search and rescue today are teleoperated (Liu
and Nejat (2013)), requiring trained operators which may
not be nearby. Autonomous robots equipped for disaster
response that can automatically synthesize control policies
without the need for an expert operator can reduce response
time and save many more lives, especially when a trained
operator may be hours away.

The potential applications of autonomous MRS go well
beyond disaster response, including military, agriculture,
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transportation, manufacturing, and fulfillment applications.
However, current solutions for MRS have not successfully
transitioned from controlled environments such as labora-
tories or warehouse facilities to the inherently high uncer-
tainty in these complex environments. Without infrastructure
that provides communication and localization, and without
knowledge of or control over the environment, current state-
of-the-art methods fail.

While the field of MRS has advanced significantly, the
same problem-solving paradigm has remained. First, the
problem is defined. Next, complexity is reduced by making
several assumptions to simplify the problem, such as terrain
and communication range. Finally, an optimal solution to
that specific problem is designed and applied to all the robots
in the team. This paradigm, pictured in Fig. 1(L), limits the
capability of MRS to cope with real-world environments.
The solutions are brittle, as the assumptions made are easily
invalidated and the optimized controller is not designed for
real environments. In the best case, the controller is able to
overcome these challenges, but it is not the best solution to
the problem, defeating the purpose of optimization. In the
worst case, the controller cannot cope, potentially causing
mission failure, loss of high-value assets, and casualties; after
all, if the environment violates the assumptions and the same
ill-equipped controller is applied to all robots, it is possible
that all of them will fail.

2.1 Leveraging Diversity
Instead of applying the same controller to all robots, a
new approach leveraging diversity in policies within the
robot team can allow MRS to better cope with uncertain
environments. Using an ensemble of diverse control policies
to accomplish a coordinated task within a single team of
robots can enable the team to adjust to different conditions.
For example, with two unmanned aerial vehicles (UAV) on
a large security task, a natural result of using an ensemble
of controllers is for one UAV to position itself high, to view
the entire area, while the other UAV takes a closer look at
areas of interest. Diversity allows the robots to perceive and
respond to failure as they encounter it in the environment.

2.1.1 Diversity in Human Workgroups Diversity is well
established as a way to improve the performance of
human workgroups: studies have shown repeatedly that
diverse groups outperform homogeneous groups (Hoffman
(1978); Hoffman and Maier (1961); Nemeth (1986); Jackson
(1992)). While diverse groups do have a higher likelihood of
conflict (Steiner (1972); O’Reilly and Flatt (1989); Ancona
and Caldwell (1992)), that conflict can be productive. In
studies where conflict due to diverse skill sets was purposely
introduced into the workgroup, it was shown to consistently
lead to higher-quality solutions (Jehn (1995); van de Vliert
and de Dreu (1994); de Wit et al. (2012)).

2.1.2 Diversity in Insect and Animal Behavior Hetero-
geneity has also been studied extensively in insect and
animal behavior. Jandt et al. (2014) study personality at
multiple levels with regard to behavioral syndromes and
insect societies, discussing fitness consequences of intra-
colony behavioral variation. Specifically, under varying envi-
ronmental conditions, maintaining a mixture of individuals
with different behavioral types may be more effective than
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Figure 1. (L) The current MRS problem-solving paradigm is
linear, making the same assumptions and deploying the same
solution to all robots in the team. (R) The proposed novel
paradigm takes advantage of diversity in controllers to handle
various scenarios. Varying assumptions are made, and a
complementary ensemble of control policies is deployed across
the team.

individuals switching between behavioral types, which might
be costly and inefficient. Slower, more accurate individu-
als can bring large quantities of food back to the colony
when good abundance is constant, whereas faster “sloppier”
individuals might be more efficient at exploiting resources
in more frequently changing environments (Chittka et al.
(2009)). Burns and Dyer (2008) found that ant colonies that
maintain a mixture of different foraging types within a group
allows colonies to respond more quickly to environmental
fluctuation. In certain species, groups with a mixture of
aggression types tend to have higher fitness than groups with
only one type (Modlmeier and Foitzik (2011); Pruitt and
Riechert (2011)). On the other hand, maintaining a mixture
of inflexible behavioral types can incur costs to the colony,
such as overly aggressive types being aggressive to their own
nestmates (Crosland (1990)).

These results in insect and animal behavior studies point
strongly to behaviorally heterogeneous teams with the ability
to adapt to the environment and task having higher fitness
in uncertain and dynamic environments, which has inspired
many multi-robot approaches. However, there is a need to
further study the use of diversity as a tool for multi-robot
systems, especially in tightly-coordinated tasks, as well as
single robot systems operating in uncertain environments.

2.2 A New Paradigm

Thus, the current problem-solving paradigm in MRS may
not reflect an effective approach to working in teams. In
the current paradigm, one set of assumptions is made,
a single control policy is developed, and it is uniformly
deployed to all robots in the team as in Fig. 1(L).
Instead, an ensemble of control policies may be able to
leverage the strengths of the different control policies under
different conditions much as in human workgroups: varying
control policies should be developed using different sets of
assumptions and/or different styles of interaction, and the
best approaches combined synergistically within the team, as
in Fig. 1(R). In this way, MRS may leverage diversity much
as human workgroups do, to improve robustness in uncertain
environments. Single robot systems may also benefit from
ensembles of control policies, as they would allow the system
to swap policies in the case of control failure.
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3 Current State of the Art

Diversity of robots with different physical embodiments
or capabilities has previously been studied (Parker (1998);
Pimenta et al. (2008); Huang et al. (2006); Prorok et al.
(2017)), but has not led to significant improvements in
robustness of multirobot systems. However, controllers for
those teams are developed using a similar paradigm, making
the same assumptions across the entire team. There has been
relatively little exploration into diversity in control policies
within a single team of robots. Most research in this area is a
result of studying ants that take different roles in foraging
and house hunting (Dorigo et al. (2006); Sugawara et al.
(2004); Berman et al. (2007)) or collective transport (Kumar
et al. (2013)), and applied to similar problems in robotics.
Unfortunately, in trying to model ant algorithms closely,
these works do not take advantage of robot capabilities,
including communication, sensing, and computation, which
could expand the solution space and lead to better, more
appropriate solutions for a larger set of problems.

Bheavioral or control diversity in teams of robots has also
been explored. In Tang and Parker’s ASyMTRe architecture
based on schemas, robots take different roles depending on
environmental conditions (Tang and Parker (2007); Parker
and Tang (2006)), but the robots are all programmed to react
the same. This leaves them vulnerable to unforeseen changes
in capabilities or the environment, and does not enable robots
to individually adjust their approaches.

A majority of work exploring control diversity in
robots exists in behavior-based systems, most notably
Balch’s work in learning behavioral specialization for robot
teams (Balch (1997, 2000)). Goldberg and Matarić (1997)
evaluate multi-robot controllers based on the amount of
interference and describe caste arbitration, where all robots
have the same capabilities, but have different conditions
for activating behaviors. Schneider-Fontan and Matarić
(1998) conclude that adapting group behavior is a balance
between minimizing interference and maximizing synergy,
and interference is the key stumbling block in the way of
efficient group interactions.

More recently, evolutionary robotics and agent-based
systems have been appearing as a method for encouraging
behavioral diversity and plasticity (individuals changing
roles over time). Mouret and Doncieux (2011) review and
benchmark published approaches to behavioral diversity,
and show that fostering behavioral diversity substantially
improves the evolutionary process in the investigated
experiments, regardless of task. Pugh et al. (2016)
review quality diversity algorithms, which have resulted
in a new class of algorithms that return an archive
of diverse, high-quality behaviors in a single run.
Vassiliades and Christodoulou (2016) design behaviorally
plastic agents (capable of switching between different
behaviors in response to environmental changes), by
taking inspiration from neuroscience, using artificial neural
networks, neuromodulation, and synaptic gating. Umedachi
et al. (2015) attempt to understand the underlying
mechanism of the behavioral diversity of animals, then
use the findings to build truly adaptive robots. However,
all of these approaches focus on training agents to act
independently in the environment, and thus are not directly

applicable to multi-robot problems where task completion
relies on tight coordination, such as box-pushing, shape
formation, wildfire containment, cooperative transport, etc.
Furthermore, agents are trained in the environments where
they will be used, which, especially in natural disasters, may
not be possible.

There is also a significant body of work on large-
scale simulation of crowds, that generate realistic-appearing
simulated crowds (Bera et al. (2016); Guy et al. (2010);
Pelechano et al. (2007); Lee et al. (2007)). While these
approaches generate diverse behaviors, diversity in crowd
simulation plays a different role than the one we seek. While
we seek diversity to enhance performance, diversity in crowd
simulation is cosmetic.

3.1 Diversity Improving Performance
Diversity has already been shown to improve performance
in some scenarios. In multi-agent systems, Marcolino et al.
(2013) address the problem of selecting the best possible
team to accomplish a goal given limited resources. Varied
agents form a team and vote on the best course of action
in the computer game Go. They compare teams with
the strongest individual members and teams with diverse
members, and find that a team of diverse agents can
outperform a uniform team of the strongest agents when
individual agents outperform the overall strongest agent in
certain states. It’s important to keep in mind, however, that
their diverse agents combine to make a single decision, while
in a multi-robot system, each agent encounters different
scenarios and must make their own decision. Nonetheless,
in scenarios where the team of robots encounters similar
challenges, they may be able to share useful information
about which actions were successful and unsuccessful with
certain parameters. If this can propagate throughout the team,
the entire team may be more informed and thus perform
better.

In single robot systems, diversity can be provided by
switching controllers. For example, Zefran and Burdick
(1998) design stable control schemes for systems with
changing dynamics; in their case, a different controller is
activated in each dynamic regime of the system. However,
to successfully design such a system, one must fully
understand the dynamics of and how to stabilize the system
in each regime. For a multi-robot system in an uncertain
environment, it may not be possible to fully understand the
dynamics of each robot under all possible environmental
conditions, thus it may be difficult to know how to stabilize
the system in advance. Equipping the team with varied
control policies or a set of parameters enables performance
observation of each control policy or parameter set in
parallel, which can then quickly inform individuals of how
to stabilize themselves.

Lyu et al. (2016) explore k-survivability in multi-robot
systems. The k-survivability of n paths is the probability that
“at least k out of n robots following those paths through a
stochastic threat environment reach goals.” The main idea
is that if the best and safest path is known, then it is still
not robust for all robots to take that path, since all the
robots on that path can fall to a single trap. k-survivability
demonstrates that in uncertain environments, diversity can
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be leveraged to improve the performance, and in this case
the survivability, of a team of robots.

In swarm robotics, Li et al. (2004) study the effect of
diversity and specialization in self-organizing, distributed,
artificial systems, correlating the degree of specialization
with the swarm’s overall performance. Since not all diversity
will lead to better performance, they define specialization
as diversity that is evoked for better performance. They
study the stick-pulling problem, where robots search an arena
pulling sticks out of the ground; each stick requires two
(or more, in the generalized case) robots to remove the
stick from the ground, and each robot has a gripping time
parameter, which can be homogeneous or heterogeneous
across the team (Ijspeert et al. (2001); Martinoli et al.
(2004); Martinoli and Mondada (1997)). When the number
of robots was smaller than the number of sticks, this
problem could lead to a deadlock situation where all
robots wait for assistance for extended periods of time.
In this scenario, heterogeneous swarms, in which agents
had in parallel learned their own gripping time parameters,
outperformed both swarms with hardwired homogeneous
and learned homogeneous gripping time parameters, due to
the specialization of the agents.

4 Some Open Problems in
Diversity-enhanced Autonomy for Robot
Teams

Much as human workgroups, as well as insects and animals,
benefit from diversity in composition of the group, such
variation of behavior would be beneficial for teams of robots
operating in uncertain and unstructured environments. Thus,
it is natural to consider enhancing multi-robot autonomy
with diverse control policies designed to work synergistically
together. There exist many open problems in DART; some of
the challenging open problems that must be addressed by the
community are described here.

4.1 Learning for MRS
In order to learn from humans, or to learn directly from
simulations, new machine learning tools must be developed
for many-agent systems. Multi-agent learning is an area
that is not yet well represented in the literature, save for
several works (Matignon et al. (2012); Foerster et al. (2016);
Lowe et al. (2017); Peshkin et al. (2000)), most of which
cannot handle more than a few agents. Other works focus
on tasks that can be learned and completed alone (Matarić
(1994); Recchia et al. (2013)). Tight coordination between
a large team of agents, for example in wildfire containment,
currently presents a significant computational challenge for
existing multi-agent learning tools. Those that are suitable
for tightly coordinated tasks for a few (2-3) agents are
intractable for tasks that require tight coordination among
large numbers of agents (Buffet et al. (2007); Amato
et al. (2014, 2015)). Given tightly coordinated multi-robot
tasks, such as pattern formation, border patrol, or wildfire
containment, automatically learn sets of control policies for
individual robots that enable a teams of robots, equipped
with one or more of those control policies, to complete those
tasks.

4.1.1 Multi-Robot Learning from Humans Humans pro-
vide a pool of diverse resources that can be tapped to develop
diverse controllers that work well together. However, due to
differences in human and robot capabilities (communication,
locomotion, sensing, etc.), it is difficult to learn controllers
by observing human in-person interaction. By limiting inter-
action to an interface (such as a mobile phone, tablet, or
laptop), communication, locomotion, and sensing can be
restricted to robot-like capabilities (Tavakoli et al. (2016)).
A major benefit of human-inspired controllers is the ability
to communicate with and easily motivate study participants,
as opposed to animal-inspired controllers. However, learning
from human cooperation requires multi-agent learning tools
for many agents. While there is a recent interest in learning
from demonstration for multi-robot systems (Martins and
Demiris (2010); Freelan et al. (2015); Chernova and Veloso
(2010)), these works either require a significant amount of
domain knowledge, leading to potential bias in the creation
of design policies, or do not apply to tightly coordinated
tasks. New approaches to learning are necessary in order
to learn truly novel behaviors from demonstration. Given
data generated by humans completing a coordinated task,
find a set of control policies that, when deployed on a
team of agents, produce qualitatively and quantitatively
similar results. In order to produce functional behaviors, this
requires automatic solutions to the correspondence problem,
which would eliminate designer bias and pave the way for
novel behaviors; the agents to understand both the state of
the human as well as the goal of the behavior; and measures
of behavioral similarity between humans and agents.

4.1.2 Automatic Correspondence In learning from
humans or other animals, it is necessary to solve the mapping
between demonstrators and imitators automatically. Using
primitive behaviors that are hand-coded, as has traditionally
been done, limits the behavior space of the team of robots
to those determined by the system designer, which can
lead to a biased set of behaviors. Given demonstrative data
generated by a human or animal completing a coordinated
task, find automatically, without hand-coding, a set of robot
behaviors that produce qualitatively similar results to the
demonstrator.

4.2 Automatic Abstractions for Complex
Observations

With large numbers of agents interacting in a space,
and a very rich set of possible observations or features
(potentially millions or more), it is necessary to use
abstractions for the observation or feature space of each
agent. For example, variations of regular or polar grids
can be used with occupancies or sampling can be
utilized. Abstractions can simplify the decision making
process, but their utility depends on encoding relevant
information, which can be task-specific. Thus, developing
useful abstractions, whether automatic or hand-coded, is
imperative; if done automatically, one can avoid the use
and potential bias of expert knowledge. Given a large
number of agents interacting in a space, find efficient
representations for the agents’ observable state that enable
decision making in individual agents. With respect to
learning from demonstration, find efficient representations
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of the observable state of the demonstrator that enable
computer-controlled agents to mimic the behaviors of the
demonstrator. Efficiency can be measured by how much
information is encoded in the representation, and how
quickly it can be accessed and shared if necessary.

4.3 Measures of Behavioral Similarity
It is necessary to measure quantitatively how similar two
behaviors are, whether comparing between two computer-
generated behaviors or a demonstrator-imitator pair. Given
two behavioral policies, develop metrics that measure their
similarity.

4.4 Measures of Diversity
Taking inspiration from the study of behavioral diversity
in social insect colonies, there is a need for understanding
the impact of behavioral diversity on MRS in tightly
coordinated tasks, and, if learning from demonstration, to
measure the diversity in the demonstrators’ behaviors and
the resulting imitators’ behaviors. This is distinct from
measuring behavioral similarity, as similarity compares a
pair of behaviors while diversity pertains to the team as
a whole. To that end, measures of diversity and must be
developed that apply to MRS, such as the Hierarchic Social
Entropy of Balch (2000) or the diversity metric of Prorok
et al. (2017). Given an ensemble of agent behaviors or
control policies, find a metric that quantifies the diversity of
the team in a way that meaningfully differentiates between
agents. As in the social science literature, diversity of a
robot team can be measured in many different ways. Thus,
the word meaningful here can be subjective: there are many
possible measures, and perhaps different measures would be
useful for different tasks, for example, depending on whether
a team with small differences in parameters that do not lead
to significant differences in behavior should be considered
diverse.

4.5 Value of Diversity
Diversity alone will not solve the robustness issue; it should
bring value to the team as they work on the task. Some
tasks, for example where the optimal policy can be computed
and all robots can execute the optimal policy, may not
require diversity. In the presence of uncertainty, however,
diversity can bring significant value to the team. Given a
team task, predict the value that diversity will bring to that
task. This value can depend on the level of uncertainty,
the size and nature of the task, and potential restrictions
on robot capabilities (whether inherent or induced by
the environment). Prediction is necessary in order to
avoid wasting significant time and resources on developing
diversity within the team.

4.6 Architectures for Diversity
Diversity of behavior within the team may also lead to
different architectures for cooperation. For example, it
may lead to leader-followers type behavior, a hierarchy
of subgroups within the team, a flat organization with
each agent making independent decisions, and many other
possibilities. These architectures will likely be influenced by

the nature of the task as well as the capabilities of the robots
themselves (e.g., computation and communication). Given a
team of robots on a team task, determine the best architecture
for cooperation among the robots.

4.7 Integrating Small Group Theory
Considering potential architectures for diversity leads
naturally to the problem of creating an effective mix of
behaviors within the team. Outside of robotics, human
workgroups have been extensively studied. Many theories
have been developed on effective groups (see, for example,
Poole and Hollingshead (2005), for a collection of works).
These theories can be leveraged in order to better coordinate
teams of robots on complex tasks. Small group theory,
however, must be adapted in order to compensate for
differences in human and robot capabilities. Collaboration
with social scientists who study human workgroups can lead
to novel methods of cooperation for MRS, but only if we
understand the role diversity plays in team success. Quantify
such a property, then use it to construct effective teams
for completing team tasks that perform better than existing
approaches. Given a team of robots on a team task, determine
the best combination of diverse behavioral types to include
in the team.

4.8 Adjusting Policies Online
To successfully utilize a diverse set of controllers, the team
of robots must collectively reason about the role that each
team member plays and automatically adjust their own roles
to achieve an appropriately diverse team with an effective
skill set. To do so, they must have the ability to measure the
success of individual agents on a coordinated task, adjusting
based on their own and others’ shortcomings and successes.
Evaluating an individual’s performance within the team may
not be straightforward. For example, the value of a defender
in a soccer game cannot be quantified by the number
of goals the defender’s team scores. Thus, given a robot
completing part of a team task, develop a metric to evaluate
its performance within that team. Once we can quantify an
individual’s performance, we can consider adjusting control
policies within the team accordingly. Given an ensemble of
control policies within a team of robots, develop methods to
adjust individual agents’ behaviors, either parametrically or
otherwise, based on the agent’s observations of itself or other
agents.

5 Discussion
This paper proposes DART, Diversity-enhanced Autonomy
for Robot Teams, a new research thrust that represents a
paradigm shift in problem-solving for multi-robot systems.
The current problem-solving paradigm is linear: control
policies are optimized for a specific set of assumptions
and applied to the entire team. We propose a paradigm
wherein an ensemble of control policies are developed, with
multiple sets of assumptions or interaction strategies, and
exist synergistically within a team of robots. Such diversity
in control policies may better prepare the team of robots for
unstructured and uncertain environments, much like diversity
in the knowledge base in human workgroups leads to higher
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quality solutions. Adoption of this new paradigm may lead
to expanded success of multi-robot systems in the field,
especially in challenging dynamic environments. The DART
philosophy can also be applied to single robot systems, by
enabling individual robots to switch or adjust controllers
in response to failure conditions. In this way, single robot
systems may also be more successful in uncertain and
unstructured scenarios.

A small sample of open problems in DART were
discussed, but there exist many open problems in this
space. To further the reach of MRS into such environments
will require collaboration of roboticists with experts in
machine learning, biological and social sciences, human-
computer interaction, and many other fields. By explicitly
defining Diversity-enhanced Autonomy for Robot Teams, we
hope to inspire the development of new tools for coping
with uncertain, unstructured environments such as disaster
response, precision agriculture, surveillance, and others.
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