
Formation Change for Robot Groups in Occluded Environments

Wolfgang Hönig, T. K. Satish Kumar, Hang Ma, Sven Koenig, Nora Ayanian

Abstract— We study formation change for robot groups in
known environments. We are given a team of robots partitioned
into groups, where robots in the same group are interchangeable
with each other. A formation specifies the locations occupied
by each group. The objective is to find collision-free paths that
move all robots from a given start formation to a given goal for-
mation. Our algorithm TAPF* has the following features: (a) it
incorporates kinematic constraints of robots in form of velocity
limits; (b) it maintains a user-specified safety distance between
robots; (c) it attempts to minimize the makespan; and (d) it
runs efficiently for hundreds of robots and dozens of groups
even in dense 3D environments with narrow corridors and other
occlusions. We demonstrate the efficiency and effectiveness of
TAPF* in simulation and on robots.

I. INTRODUCTION

We study the formation-change problem for robot groups
in known environments. We are given a team of robots
partitioned into groups, where robots in the same group are
interchangeable with each other. A formation specifies the
locations occupied by each group without regard to which
robot in a group occupies which location meant for the
group. In marching bands, for example, all flute players
are interchangeable with each other in the sense that it
does not matter which location of the goal formation one
of the flute players occupies as long as it is meant for a
flute player. The objective of the formation-change problem
is to find collision-free paths that move all robots from a
given start formation to a given goal formation with the
minimal makespan, see Figure 1 for an example. Robot
applications include search-and-rescue, robotic convoys, and
reconnaissance.

The multi-agent path-finding problem (MAPF) is a spe-
cialization of the formation-change problem where all groups
have cardinality one (that is, no robots are interchangeable
with each other and thus every robot is assigned a specific
location in the goal formation). Solving a formation-change
problem thus consists of two parts, namely assigning each
robot a unique location in the goal formation meant for its
group (called target assignment) and multi-agent path finding
for the resulting target assignments.

The formation-change problem with one group can be
solved in polynomial time with maxflow algorithms [1].
However, solving the formation-change problem with more
than one group is NP-hard [2]. Furthermore, robots might

All authors are with the Computer Science Department at the University
of Southern California: whoenig@usc.edu, tkskwork@gmail.com,
and {hangma,skoenig,ayanian}@usc.edu.
Their research was supported by ARL under grant number W911NF-14-
D-0005, ONR under grant numbers N00014-14-1-0734 and N00014-09-1-
1031, NASA via Stinger Ghaffarian Technologies, and NSF under grant
numbers 1409987 and 1319966.

Fig. 1. Formation-change instance with two groups, differentiated by color.
The start formation is on the left, and the goal formation is on the right.
The open door is a narrow passageway. The walls are obstacles.

not stay in formation during a formation change in occluded
environments even if the start and goal formations are
identical except for translation because the robots need to
split up in order to move around obstacles.

We solve the formation-change problem by introducing
TAPF*, that combines two of our recent methods sequen-
tially that both minimize the makespan: The first method
is the conflict-based min-cost-flow algorithm (CBM) [3],
a path-planning method that generalizes the conflict-based
search algorithm [4] from solving MAPF to solving the
target-allocation and path-finding problem (TAPF), which is
a version of the formation-change problem that ignores the
physical properties of robots (such as their sizes and kine-
matic constraints) to search efficiently. CBM uses a two-level
search strategy. The low-level search uses a polynomial-time
maxflow algorithm for target assignment and multi-agent
path finding for all robots from a given group, while the high-
level search resolves collisions between robots from different
groups. CBM is experimentally up to thirty times faster than
a method based on integer linear programming. The second
method is MAPF-POST [5], an execution-monitoring method
that takes the physical properties of robots into account when
using linear programming for a simple temporal network to
determine appropriate velocities that allow them to follow
the collision-free paths determined by CBM.

We do not only combine these methods but also provide
several improvements to MAPF-POST: The user can now
specify the desired safety distance between robots directly
(the distance of two robots in the graph is at least δ and,
for four-neighbor square grids and six-neighbor cubic grids,
their Euclidean distance is at least δ/

√
2 for a user-specified

parameter δ > 0), and MAPF-POST is more efficient since it
no longer uses linear programming. Overall, TAPF* has the
following features: (a) it incorporates kinematic constraints
of robots in form of velocity limits; (b) it maintains a user-
specified safety distance between robots to take their sizes
into account; (c) it attempts to minimize the makespan; and

2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

Daejeon Convention Center

October 9-14, 2016, Daejeon, Korea

978-1-5090-3761-2/16/$31.00 ©2016 IEEE 4836

(a) TAPF instance with two groups, differentiated by color.
The start formation is on the left, and the goal formation is on
the right.

A
s11

B

E
s21

F
s22

G H
g11

I
g22

C D
g21

(b) Graphical representation of the TAPF instance. The single
pink robot in group 1 (a11) has start and goal locations s11 and
g11 , respectively.

Robot t = 1 t = 2 t = 3 t = 4
1 (a1

1) A→ B B → F F → G G→ H
2 (a2

1) E → F F → G G→ H H → I
3 (a2

2) F → G G→ H H → C C → D

(c) An optimal solution of the TAPF instance.

Fig. 2. Running TAPF instance and an optimal solution.

(d) it runs efficiently for hundreds of robots and dozens of
groups even in dense 3D environments with narrow corridors
and other occlusions. We demonstrate the efficiency and
effectiveness of TAPF* in 2D and 3D simulation and on
ground robots.

II. EFFICIENT PLANNING

For an instance of the target-assignment and path-finding
problem (TAPF) [3], we are given an undirected graph
G = (V,E), where V is the set of vertices (corresponding to
locations) and E is the set of undirected edges, and K robot
groups {group1, group2 . . . groupK}, where groupi consists
of Ki robots {ai1, ai2 . . . aiKi

} that are interchangeable with
each other – for a total of N =

∑K
i=1 Ki robots. Each robot

aij has a unique start location sij ∈ V , and each group groupi

has a set of unique goal locations gi = {gi1, gi2 . . . giKi
} (with

these sets being pairwise disjoint). A solution to a TAPF
instance consists of a target assignment that assigns each
robot a unique goal location meant for the same group (given
by K one-to-one mappings from robots in a group to targets
in the same group, one for each group) and a path (potentially
with sequences of the same location, corresponding to wait
actions) from its start location to its goal location that avoids
collisions with other robots. A solution is optimal iff it
minimizes the makespan (that is, the time when the last robot
reaches its goal location).

We use the conflict-based min-cost-flow algorithm (CBM)
[3] to solve TAPF instances. CBM, like most state-of-the-art
MAPF or TAPF solvers, assumes unit-length edges and dis-
crete synchronized robot movements for holonomic robots,
where each robot either traverses one edge per timestep or
waits at its current location. Two robots collide if they are at
the same location at the same timestep or traverse the same
edge in opposite directions at the same timestep.

A1
0 B1

1 F 1
2 G1

3 H1
4

E2
0 F 2

1 G2
2 H2

3 I24

F 3
0 G3

1 H3
2 C3

3 D3
4

Fig. 3. TPG for the running TAPF instance and the optimal solution from
Figure 2. We assume that all edges in G have lengths one and use δ = 0.25.
Each vertex labeled lji in the TPG represents the event “robot j arrives at
main location l at timestep i.” Each edge represents a temporal precedence
between the events represented by its incident vertices. The colors of the
edges are used in Figure 4.

Figure 2 shows a TAPF instance (with one group of a
single robot and one group of two robots) and an optimal
solution.

III. EFFICIENT EXECUTION MONITORING

Formulating a formation-change instance as a TAPF in-
stance discretizes the possible arrival times of the robots
at locations into integer-valued timesteps, and a solution
to a TAPF instance then provides a complete ordering of
the arrival times. However, an execution-monitoring method
needs leeway to adjust the arrival times to incorporate the
kinematic constraints of the robots and maintain a safety
distance between them, so should relax these restrictions.

We use MAPF-POST [5] as execution-monitoring method.
MAPF-POST first introduces two auxiliary locations for each
edge (u,v) in graph G to be able to guarantee a safety
distance between robots, splitting the edge into a sequence
of three microedges, namely a microedge of length δ from
u to the first auxiliary location, a microedge from the first
to the second auxiliary location of length dist(u, v) − 2δ
(where dist(u, v) is the length of edge (u, v) ∈ E), and a
microedge of length δ from the second auxiliary location
to v, for a user-specified parameter δ > 0. Thus, auxiliary
locations are at distance δ from the main locations.

MAPF-POST then converts a given TAPF solution to
a temporal plan graph (TPG), which captures only the
“essence” of the TAPF solution in form of critical temporal
precedences among the arrival times - resulting in a partial
ordering of real-valued arrival times. The TPG is a directed
acyclic graph G = (V, E), where V is the set of vertices
(corresponding to events of robots arriving at main or,
for vertices that we refer to as safety markers, auxiliary
locations) and E is the set of directed edges (corresponding
to critical temporal precedences between events). The edges
of the TPG correspond to two types of critical temporal
precedences imposed by the given TAPF solution, namely the
order in which the same robot has to arrive at two different
locations (type 1) and the order in which two different robots
have to arrive at the same location (type 2). Type 2 edges
always connect two safety markers. For example, Figure
3 shows the TPG for the running TAPF instance and the
optimal solution. The horizontal edges are type 1 edges and
form chains that have two safety markers between the other
vertices and correspond to robots traversing their paths in the

4837

A1
0 B1

1 F 1
2 G1

3 H1
4

E2
0 F 2

1 G2
2 H2

3 I24

F 3
0 G3

1 H3
2 C3

3 D3
4

Fig. 4. Improved TPG for the running TAPF instance and the optimal
solution from Figure 2. We assume that all edges in G have lengths one
and use δ = 0.25. The colored temporal precedence edges in red, green,
and blue correspond to the temporal precedence edges of the same color in
the TPG from Figure 3.

TAPF solution with sequences of the same location collapsed
to the first one. The remaining edges are type 2 edges. In
the optimal solution, robot 1 (= a11) moves from A via two
auxiliary locations to B, from B via two auxiliary locations
to F , and so on, until it eventually arrives at H . Thus, it
must arrive at the auxiliary location after A (toward B) after
it arrives at A, which corresponds to the thick black type 1
edge in the figure. In the optimal solution, robot 2 (= a21)
arrives at F before robot 1. Thus, robot 2 must arrive at the
auxiliary location after F (toward G) before robot 1 arrives at
the auxiliary location before F (from B), which corresponds
to the thick red type 2 edge in the figure. Details can be found
in [5].

MAPF-POST then converts the TPG to a simple tempo-
ral network (STN) by annotating the (qualitative) temporal
precedences with (quantitative) upper and lower time bounds
that can encode both different lengths of edges and kinematic
constraints of the robots in form of minimum and maximum
velocity limits. STNs are widely used for temporal reason-
ing in artificial intelligence due to their expressive power,
simplicity, and tractability. The STN is identical to the TPG
but each edge e = (x, y) is now annotated with upper and
lower time bounds [LB(e), UB(e)] that specify that event
y must be scheduled between LB(e) and UB(e) time units
after event x.

MAPF-POST determines arrival times that are consistent
with the temporal constraints imposed by the upper and lower
bounds. It can use shortest path computations on the distance
graph of the STN to minimize the makespan in strongly
polynomial time [6] but solves a linear program instead
to maximize the safety distance [5], which is slower. The
schedule given by the arrival times is then sent to the robots
for execution.

IV. IMPROVED EXECUTION MONITORING
MAPF-POST has two disadvantages. First, the user cannot

specify the desired safety distance between robots (which
typically depends on their size) directly, which forces one to
set δ with trial and error to achieve a desired safety distance.
The user should ideally be able to specify the safety distance
directly. Second, MAPF-POST uses linear programming and
can thus be sped up.

A. Improved MAPF-POST
We now present an improved version of MAPF-POST

that remedies both disadvantages by using more safety

Algorithm 1: Constructing the improved TPG.
Data: A TAPF solution with makespan T for N robots consisting of path

[uj
0, . . . , u

j
T] for each robot j ∈ {1 . . . N}.

Result: The improved TPG G.
1 /* add vertices and type 1 edges */
2 for j ← 1 to N do
3 Create a new vertex (referenced by x) and add it to G
4 v(0, j)← x
5 t′ ← 0
6 for t← 1 to T do
7 if uj

t−1 ̸= uj
t then

8 for k ← 1 to dist(uj
t−1, u

j
t)/δ − 1 do

9 Create a new vertex (referenced by y) and add it to G
10 Add edge (x, y) to G
11 succ(x)← y
12 x← y

13 succloc(t′, j)← uj
t

14 t′ ← t
15 Create a new vertex (referenced by y) and add it to G
16 v(t, j)← y
17 pred(y)← x
18 Add edge (x, y) to G
19 succ(x)← y
20 x← y

21 else
22 v(t, j)← NULL

23 succloc(t′, j)← NULL

24 /* add type 2 edges */
25 for t← 0 to T do
26 for j ← 1 to N do
27 if v(t, j) ̸= NULL then
28 for t′ ← t + 1 to T do
29 for j′ ← 1 to N do
30 if j′ ̸= j and uj

t = uj′

t′ and v(t′, j′) ̸= NULL then
31 Add edge (v(t, j), pred(v(t′, j′))) to G
32 Add edge (succ(v(t, j)), v(t′, j′)) to G
33 if succloc(t, j) = succloc(t′, j′) then
34 x← succ(v(t, j))
35 y ← v(t′, j′))
36 for j′ ← 1 to dist(uj

t , succloc(t, j))/δ − 2 do
37 x← succ(x)
38 y ← succ(y)
39 Add edge (x, y) to G

40 Break out of two loops

markers and temporal precedence edges in the TPG. We
assume that all edge lengths are a multiple of the user-
specified parameter δ > 0. We also assume that each robot
traverses each microedge with constant velocity and stays
at (main or auxiliary) locations only for an instant before it
reaches its goal location. However, its velocity can change
instantaneously at each location. Our implementations use
controllers that approximate this assumption.

The improved MAPF-POST first splits all edges of graph
G into sequences of microedges of length δ each, connected
via auxiliary locations. It then converts a given TAPF solu-
tion (with auxiliary locations added) to the (now improved)
TPG as before, except that the type 2 edges are different.
MAPF-POST iterates over every pair of vertices x and x′

in the TPG where two different robots a and a′ arrive at
the same (main or auxiliary) location. The robots cannot
arrive at the location at the same time in the TAPF solution
since the paths in the TAPF solution are collision-free. (For
simplicity, one can define the arrival time at an auxiliary

4838

location between two main locations as the minimum of the
arrival times at these main locations.) Assume, without loss
of generality, that robot a arrives at the location before robot
a′ in the TAPF solution. MAPF-POST then adds two type 2
edges to the TPG, one from x to the (unique) vertex y such
that (y, x′) is a type 1 edge and one from the (unique) vertex
z to vertex x′ such that (x, z) is a type 1 edge.

The improved MAPF-POST then converts the improved
TPG to an STN, as before, and finally determines arrival
times that minimize the makespan and are consistent with the
temporal constraints imposed by the upper and lower bounds
with shortest path computations on the distance graph of
the STN [5] rather than a linear program since the temporal
constraints guarantee a safety distance between robots.

The improved MAPF-POST typically runs much faster
than the original MAPF-POST even though its STN is larger.
We can decrease the runtime of the improved MAPF-POST
by reducing the number of temporal precedence edges. We
can remove some or all of those type 2 edges that are in
the transitive closure of the remaining temporal precedence
edges and thus implied by them. Algorithm 1 shows a way
of converting a given TAPF solution (without auxiliary loca-
tions added) to the improved TPG efficiently. For example,
the optimal solution of the running TAPF instance is pro-
vided as follows to Algorithm 1: p1 = [u1

0, u
1
1, u

1
2, u

1
3, u

1
4] =

[A,B, F,G,H], p2 = [u2
0, u

2
1, u

2
2, u

2
3, u

2
4] = [E,F,G,H, I],

and p3 = [u3
0, u

3
1, u

3
2, u

3
3, u

3
4] = [F,G,H,C,D]. Figure 3

shows the resulting improved TPG, which could be simpli-
fied further by contracting all safety markers that have only
one incoming and one outgoing edge.

B. Properties of Improved MAPF-POST
We now prove how large the safety distance between

robots is that the improved MAPF-POST guarantees for
the user-specified parameter δ. The calculation of the safety
distance depends on how the distance between two robots is
measured. In particular, their Euclidean distance (that is, their
straight-line distance in the continuous environment) can be
smaller (but not larger) than their distance in the graph.

Lemma 4.1: Two robots cannot be at the same main
or auxiliary location nor traverse the same microedge in
opposite directions at the same time.

Proof: Consider two vertices x and x′ in the TPG that
correspond to two robots arriving at the same main location.
Two robots cannot be at that main location at the same time
in the TAPF solution since the paths in the TAPF solution are
collision-free. Thus, one robot arrives at the main location
after the other robot in the TAPF solution and the other robot
has left the main location again at that time. This means that
there is a path of temporal precedence edges from one of
the vertices x or x′ to the other one that starts with a type
1 edge. Thus, one of the robots must have left the main
location and arrived at the auxiliary location after it before
the other robot arrives at the main location, and they are not
at the main location at the same time.

Now consider two safety markers x and x′ in the TPG
that correspond to two robots arriving at the same auxiliary

location. Let the auxiliary location be somewhere between
main locations u and v. Assume that robot a moves from u
to v and robot a′ moves from u (v) to v (u). Both robots
cannot be at the same main location nor move from u to
v and v to u at the same time in the TAPF solution. Thus,
robot a′ arrives at location u (v) no earlier (later) than robot
a arrives at location v or robot a′ arrives at location v (u) no
later (earlier) than robot a arrives at location u. This means
that there is a path of temporal precedence edges from one
of the vertices x or x′ to the other one that starts with a type
1 edge. Thus, both robots are not at the auxiliary location at
the same time.

Finally, consider a microedge somewhere between main
locations u and v. Consider a type 1 edge (x,y) in the
TPG that corresponds to robot a traversing the microedge
in the direction from u to v and a type 1 edge (y′,x′)
that corresponds to robot a′ traversing the microedge in the
opposite direction. Both robots cannot be at the same main
location nor move from u to v and v to u at the same time in
the TAPF solution since the paths in the TAPF solution are
collision-free. Thus, robot a′ arrives at location v later than
robot a arrives at location v or robot a′ arrives at location
u earlier than robot a arrives at location u. This means that
there is a path of temporal precedence edges from x′ to x
or from y to y′ that starts with a type 1 edge. Thus, both
robots cannot traverse the microedge in opposite directions
at the same time.

Lemma 4.2: The distance between two robots in the graph
is at least δ if at least one of them is at a main or auxiliary
location.

Proof: Robots always stay at locations only for an
instant before they reach their goal location. Thus, the times
they are at (main or auxiliary) locations coincides with the
times they arrive at them. Consider a vertex x in the TPG
that corresponds to robot a arriving at location u. Assume,
for a proof by contradiction, that the distance in the graph
between robot a and another robot a′ is less than δ at that
time. Since robot a′ cannot be at u according to Lemma
4.1, it must be in the interior of a microedge incident on u,
which means that it arrived not long ago or will soon arrive
at u. Consider the vertex x′ in the TPG that corresponds
to robot a′ arriving at u. We distinguish two cases: First,
robot a′ moves away from u. Then, robot a′ arrived at u
before robot a. This means that there is a path of temporal
precedence edges from x′ to x that starts with a type 1 edge.
Thus, their distance is at least δ when robot a arrives at u
(and continues to be at least δ in case robot a has reached
its goal location), which is a contradiction. Second, robot
a′ moves toward u. Then, robot a arrived at u before robot
a′. This means that there is a path of temporal precedence
edges from x to x′ that ends in a type 1 edge. Thus, their
distance is at least δ when robot a arrives at u and thus also
while robot a is at u (since robot a cannot have reached
its goal location yet according to Lemma 4.1), which is a
contradiction.

Theorem 4.1: The distance between robots in the graph is
at least δ.

4839

Proof: The theorem follows from Lemma 4.2 if at
least one of two robots is at a main or auxiliary location.
Otherwise, we distinguish four cases where the distance
between two robots could potentially be less than δ in the
graph and show that it is not: First, both robots traverse the
interior of the same microedge in the same direction or the
interiors of two incident microedges toward each other at
the same time. One of the robots will arrive at a location
incident on its microedge first according to Lemma 4.1.
Their distance in the graph will be less than δ at that time,
which is a contradiction with Lemma 4.2. Thus, this case
is impossible. Second, both robots traverse the interior of
the same microedge in opposite directions at the same time,
which is a contradiction with Lemma 4.1. Third, both robots
traverse the interiors of incident microedges (u, v) and (u,w)
away from each other at the same time. One of them left
u last and their distance in the graph was less than δ at
that time, which is a contraction with Lemma 4.2. Thus,
this case is impossible. Fourth, both robots traverse incident
microedges (u, v) and (v, w) in the same direction at the
same time. Let robot a traverse microedge (u, v) and robot a′
traverse microedge (v, w). Robot a′ left v no later than robot
a left u since otherwise their distance in the graph would be
less than δ at that time, which would be a contraction with
Lemma 4.2. Robot a′ will arrive at w no later than robot
a will arrive at v for the same reason. Thus, both robots
traverse their microedges from the time when robot a leaves
u to the time when robot a′ arrives at w. Their distance in
the graph is at least δ at those times according to Lemma
4.2. Since both robots move with constant velocities, their
distance in the graph is at least δ between those times as
well.

Theorem 4.2: The Euclidean distance between two robots
is at least δ/

√
2 for four-neighbor square grids G and six-

neighbor cubic grids G.
Proof: Consider two robots a and a′. Their distance

in the graph is at least δ according to Theorem 4.1. We
distinguish three cases and show that their Euclidean distance
is at least δ/

√
2 in each case: First, both robots are on the

same microedge. Then, their Euclidean distance is at most
δ and thus exactly δ according to Theorem 4.1. Second,
both robots are on incident microedges. Let robot a be
on microedge (u, v) at distance x from v and robot a′

be on microedge (v, w) at distance y from v. Then, their
distance in the graph is x + y ≥ δ. If both microedges
are parallel, then the Euclidean distance of both robots is
equal to their distance in the graph and thus x + y ≥ δ. If
both microedges are orthogonal, then the Euclidean distance
of both robots is

√
x2 + y2 with

√
x2 + y2 ≥ δ/

√
2 since

x2 − 2xy + y2 = (x − y)2 ≥ 0 ⇒ x2 + y2 ≥ 2xy ⇒
2(x2+y2) = 2x2+2y2 ≥ x2+y2+2xy ≥ (x+y)2 ≥ δ2 ⇒√

x2 + y2 ≥ δ/
√
2. Third, both robots are on non-incident

microedges. Then, their Euclidean distance is at least δ.

V. EXPERIMENTS

We first evaluate the runtime of CBM on 3D TAPF
instances. We then evaluate the makespan, safety distance,

0 50 100 150 200 250 300 350 400 450

Agents

0

20

40

60

80

100

120

T
im
e
 [
s
]

0.0

0.2

0.4

0.6

0.8

1.0

S
u
c
c
e
s
s
 R
a
te

(a) Varying the number of robots split into five groups of equal size with
no blocked cells.

0 20 40 60 80 100

Groups

0

20

40

60

80

100

120

T
im
e
 [
s
]

0.0

0.2

0.4

0.6

0.8

1.0

S
u
c
c
e
s
s
 R
a
te

(b) Varying the number of groups with 100 robots split into groups of
equal size and no blocked cells.

0 50 100 150 200 250 300 350

loc#ed Cells

0

10

20

30

40

50

T
im
e
 [
s
]

0.0

0.2

0.4

0.6

0.8

1.0

S
u
c
c
e
s
s
 R
a
te

(c) Varying the number of blocked cells with 100 robots split into five
groups of equal size.

Fig. 5. Success rate and runtime of CBM. The shaded area indicates the
runtime range for the solved TAPF instances.

and runtime of the original and improved MAPF-POST on
2D TAPF instances. Both of these experiments are run on
a laptop computer (i7-4600U 2.1GHz and 12GB RAM).
We finally demonstrate the efficiency and effectiveness of
TAPF*, the combination of CBM and the improved MAPF-
POST, on formation-change instances for robot groups in 2D
and 3D simulation and on ground robots. The supplemental
material contains videos. While CBM produces paths with
wait actions, MAPF-POST does not use them and robots are
thus not required to stay in place.

A. Experiments with CBM

We use CBM to solve TAPF instances on 10 × 10 × 5
six-neighbor cubic grids with random start and goal cells,
blocked cells, and assignments of robots to groups. We vary
the number of robots, groups, and blocked cells. We consider
an instance to be solved iff CBM finds an optimal solution
within a runtime limit of 120 s.

Figure 5 shows the success rate and runtime of CBM for
the solved TAPF instances averaged over ten trials each. The
success rate begins to drop at about 300 robots (60 percent
robot density), remains at 100 percent independent of the
number of groups, and begins to drop at 150 blocked cells
(30 percent blocked cell density). The runtime of CBM for
the solved TAPF instances increases approximately linearly
with the number of robots until about 250 robots (50 percent
robot density), increases approximately linearly with the
number of groups (being smallest for a single group), and
remains approximately constant independent of the number

4840

TABLE I. Makespan, safety distance, and runtime of the original and
improved MAPF-POST.

Instance MAPF-POST δ Makespan Safety Distance Runtime

Corridor3
Original 0.40 106.0 s 0.53m 0.4 s

Improved 1.00 111.0 s 0.70m 0.1 s
Improved 0.50 97.0 s 0.35m 0.2 s

Kiva100

Original 0.40 74.4 s 0.14m 134.6 s
Improved 1.00 75.6 s 0.70m 3.8 s
Improved 0.50 72.5 s 0.35m 7.8 s
Improved 0.25 70.8 s 0.17m 22.0 s
Improved 0.20 70.4 s 0.14m 32.0 s

of blocked cells until the success rate begins to drop at about
150 blocked cells (30 percent blocked cell density).

B. Experiments with Improved MAPF-POST

We implement the improved MAPF-POST in C++ using
the BOOST GRAPH library [7] for the shortest path compu-
tations. We use the original and improved MAPF-POST to
solve TAPF instances on four-neighbor square grids since the
original MAPF-POST implementation does not support cubic
grids. Table I shows the makespan, empirical safety distance
(measured as the minimum distance of any two robots during
an experiment), and runtime for different values of δ for
two TAPF instances with virtual differential-drive robots.
Since the user cannot specify the desired safety distance
directly for the original MAPF-POST, we tuned its value
of δ to result in a reasonable safety distance. The first TAPF
instance (“Corridor3”) has twenty robots swap sides in equal
numbers in a 7 × 17 grid with a narrow corridor. This
TAPF instance is challenging to solve for CBM, but the
runtimes of the original and improved MAPF-POST are less
than one second. The second TAPF instance (“Kiva100”)
has 100 robots in a 24 × 55 grid that models a warehouse
domain [8]. The runtime of the original MAPF-POST is
larger than two minutes since it uses linear programming.
Furthermore, the resulting safety distance of 0.14m is too
small for deployment on medium-sized robots. In contrast,
the improved MAPF-POST runs faster and achieves a larger
safety distance.

C. Experiments in Simulation

We use TAPF* in conjunction with the robot simulator
V-REP [9] to simulate differential drive robots, six-legged
robots, and quadcopters. The differential drive robots have a
maximum angular velocity of 4.2 rad/s. CBM treats them as
holonomic robots, and the improved MAPF-POST then uses
a large safety distance to account for their non-holonomic
constraints. Figure 6(a) shows an example formation-change
instance on simulated quadcopters.

D. Experiments on Robots

We use eight iRobot Create2 robots equipped with single-
board computers (such as ODROID-C1+), that interface to
the robots via their serial ports. The computers run the
improved MAPF-POST on Ubuntu 14.04 with ROS Jade
and communicate via WiFi with a single roscore on a host
computer that runs CBM. Localization is provided by a 12-
camera VICON MX optical motion capture system in a space

approximately 5m× 4m in size. CBM and MAPF-POST
use a grid cell size of 0.75m× 0.75m. Our chosen value
of δ = 0.75m guarantees a safety distance of 0.75m/

√
2 ≈

0.53m, assuming perfect execution on holonomic robots. To
prevent collisions of the robots (whose diameter is 0.35m)
due to this wrong assumption, the improved MAPF-POST
limits their maximum translational velocity to 0.2m/s, even
though the robots can move with a translational velocity
of up to 0.5m/s. Figures 6(b) and 6(c) show an example
formation-change instance on the robots.

VI. RELATED WORK

The research reported in [10] is not concerned with
formation change for robot groups but shares some ideas
with our approach. We now discuss related work in robotics
not covered in [5] and [3]. Methods for formation control
try to move robots in a given formation and restore the
formation in case the robots split up in order to move around
obstacles. Examples include behavior-based [11], leader-
follower [12], virtual structure [13], potential field [14],
and graph-based [15] methods. Formation-control methods,
different from TAPF*, are often decentralized, assume that
no robots are interchangeable with each other, and provide no
guarantees on solution quality. Research done in the context
of quadcopters includes [16] and [17].

Simple formation-change methods assume, different from
TAPF*, that the robots are not allowed to split up in
order to move around obstacles [18]. Many of the more
general formation-change methods assume that all robots are
interchangeable with each other. Some of these methods are
centralized and optimal [19]. Research done in the context
of quadcopters includes [20] and [21], but these formation-
change methods, different from TAPF*, tend to be very slow
since they consider richer kinematic and dynamic constraints.
Other methods are, different from TAPF*, decentralized and
provide no guarantees on solution quality [22]. Research
done in the context of quadcopters includes [21]. One
interesting application that makes the latter assumption are
the PixelBots, which use formation changes to implement a
display. PixelBot implementations exist for swarms of both
differential-drive robots [23] and quadcopters [24].

Some methods for formation change, like TAPF*, consider
groups of robots. For example, K-color multi-robot motion
planning (where K is the number of groups), different from
TAPF*, considers robots of polygonal shapes in a continuous
environment but provides no guarantees on solution quality
and is very slow [25].

VII. CONCLUSIONS

In this paper, we solved the formation-change problem for
robot groups in known environments. We are given a team
of robots partitioned into groups, where robots in the same
group are interchangeable with each other. Our algorithm
TAPF* has the following features: (a) it incorporates kine-
matic constraints of robots in form of velocity limits; (b)
it maintains a user-specified safety distance between robots;
(c) it attempts to minimize the makespan; and (d) it runs

4841

(a) Formation-change instance with a V-REP
simulation of three groups of four quadcopters
each, differentiated by color. Some quadcopters
fly through and others around the obstacle.

(b) TAPF instance with two groups of four
robots each, differentiated by color. The
start formation is on top, and the goal
formation is at the bottom.

(c) Formation-change instance on Create2 robots that
corresponds to the TAPF instance in (b). The four robots
with a white flag (on the left) belong to the same group.

Fig. 6. Examples of experiments in simulation and on robots.

efficiently for hundreds of robots and dozens of groups even
in dense 3D environments with narrow corridors and other
occlusions. TAPF* achieves efficiency by combining two
of our recent methods sequentially that both minimize the
makespan: The first method is CBM, a path-planning method
that solves a version of the formation-change problem that
ignores the physical properties of robots (such as their sizes
and kinematic constraints) to search efficiently. The second
method is MAPF-POST, an execution-monitoring method
that takes the physical properties of robots into account when
using a simple temporal network to determine appropriate
velocities that allow them to follow the collision-free paths
determined by CBM. We did not only combine CBM and
MAPF-POST but also provided several improvements to
MAPF-POST: The user can now specify the desired safety
distance directly, and it is more efficient since it no longer
uses linear programming.

In the future, we intend to use TAPF* for online re-
planning in case one or more robots deviate from their
nominal velocities. Many such cases require TAPF* only to
add temporal constraint edges to the simple temporal network
and re-solve it, which can be done much faster than running
CBM.

REFERENCES

[1] J. Yu and S. M. LaValle, “Multi-agent path planning and network
flow,” in Workshop on the Algorithmic Foundations of Robotics, 2012,
pp. 157–173.

[2] H. Ma, C. A. Tovey, G. Sharon, T. K. S. Kumar, and S. Koenig, “Multi-
agent path finding with payload transfers and the package-exchange
robot-routing problem,” in AAAI Conference on Artificial Intelligence,
2016, pp. 3166–3173.

[3] H. Ma and S. Koenig, “Optimal target assignment and path finding for
teams of agents,” in International Conference on Autonomous Agents
and Multiagent Systems, 2016, pp. 1144–1152.

[4] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based
search for optimal multi-agent pathfinding,” Artificial Intelligence, vol.
219, pp. 40–66, 2015.

[5] W. Hönig, T. K. S. Kumar, L. Cohen, H. Ma, H. Xu, N. Ayanian,
and S. Koenig, “Multi-agent path finding with kinematic constraints,”
in International Conference on Automated Planning and Scheduling,
2016, pp. 477–485.

[6] R. Dechter, I. Meiri, and J. Pearl, “Temporal constraint networks,”
Artificial Intelligence, vol. 49, no. 1-3, pp. 61–95, 1991.

[7] J. G. Siek, L. Lee, and A. Lumsdaine, The Boost Graph Library -
User Guide and Reference Manual. Pearson / Prentice Hall, 2002.

[8] P. R. Wurman, R. D’Andrea, and M. Mountz, “Coordinating hundreds
of cooperative, autonomous vehicles in warehouses,” AI Magazine,
vol. 29, no. 1, pp. 9–20, 2008.

[9] E. Rohmer, S. P. N. Singh, and M. Freese, “V-REP: A versatile and
scalable robot simulation framework,” in International Conference on
Intelligent Robots and Systems, 2013, pp. 1321–1326.

[10] M. Cirillo, F. Pecora, H. Andreasson, T. Uras, and S. Koenig, “In-
tegrated motion planning and coordination for industrial vehicles,”
in International Conference on Automated Planning and Scheduling,
2014, pp. 463–471.

[11] T. R. Balch and R. C. Arkin, “Behavior-based formation control for
multirobot teams,” IEEE Transactions on Robotics and Automation,
vol. 14, no. 6, pp. 926–939, 1998.

[12] T. D. Barfoot and C. M. Clark, “Motion planning for formations of
mobile robots,” Robotics and Autonomous Systems, vol. 46, no. 2, pp.
65–78, 2004.

[13] M. A. Lewis and K. Tan, “High precision formation control of mobile
robots using virtual structures,” Autonomous Robots, vol. 4, no. 4, pp.
387–403, 1997.

[14] N. E. Leonard and E. Fiorelli, “Virtual leaders, artificial potentials and
coordinated control of groups,” in Decision and Control, vol. 3, 2001,
pp. 2968–2973.

[15] J. P. Desai, J. P. Ostrowski, and V. Kumar, “Modeling and control
of formations of nonholonomic mobile robots,” IEEE Transactions on
Robotics and Automation, vol. 17, no. 6, pp. 905–908, 2001.

[16] N. Michael and V. Kumar, “Control of ensembles of aerial robots,”
Proceedings of the IEEE, vol. 99, no. 9, pp. 1587–1602, 2011.

[17] M. Turpin, N. Michael, and V. Kumar, “Decentralized formation con-
trol with variable shapes for aerial robots,” in International Conference
on Robotics and Automation, 2012, pp. 23–30.

[18] A. Krontiris, S. J. Louis, and K. E. Bekris, “Multi-level forma-
tion roadmaps for collision-free dynamic shape changes with non-
holonomic teams,” in International Conference on Robotics and Au-
tomation, 2012, pp. 1570–1575.

[19] L. Liu and D. A. Shell, “Multi-robot formation morphing through a
graph matching problem,” in Distributed Autonomous Robotic Systems,
2012, pp. 291–306.

[20] A. Kushleyev, D. Mellinger, C. Powers, and V. Kumar, “Towards a
swarm of agile micro quadrotors,” Autonomous Robots, vol. 35, no. 4,
pp. 287–300, 2013.

[21] M. Turpin, N. Michael, and V. Kumar, “Capt: Concurrent assignment
and planning of trajectories for multiple robots,” International Journal
of Robotics Research, vol. 33, no. 1, pp. 98–112, 2014.

[22] N. Michael, M. M. Zavlanos, V. Kumar, and G. J. Pappas, “Distributed
multi-robot task assignment and formation control,” in International
Conference on Robotics and Automation, 2008, pp. 128–133.

[23] J. Alonso-Mora, A. Breitenmoser, M. Rufli, R. Siegwart, and P. A.
Beardsley, “Image and animation display with multiple mobile robots,”
International Journal of Robotics Research, vol. 31, no. 6, pp. 753–
773, 2012.

[24] J. Alonso-Mora, M. Schoch, A. Breitenmoser, R. Siegwart, and P. A.
Beardsley, “Object and animation display with multiple aerial vehi-
cles,” in International Conference on Intelligent Robots and Systems,
2012, pp. 1078–1083.

[25] K. Solovey and D. Halperin, “k-color multi-robot motion planning,”
International Journal of Robotics Research, vol. 33, no. 1, pp. 82–97,
2014.

4842

