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Abstract: This paper provides a decentralized solution to multirobot coordination in partially-known
environments where the problems of task assignment, trajectory planning and safe control are concur-
rently solved in the presence of communication constraints. We assume that the robots are homogeneous
(any robot is capable of completing any assigned task), can localize themselves and have access to
a known map of the environment, except for obstacles and hazards that cannot be circumvented and
must be detected through local sensing. Second, we assume that only robots that are within a specified,
known communication range can communicate. A group of communicating robots is able to reassign
tasks within the group to refine and improve the resulting solution in terms of total time or energy
required for traversal. The key contribution of this paper is an approach that concurrently solves the
three typically separated problems of task assignment, path planning, and control under constraints with
proofs of completeness and convergence. We illustrate the application of these ideas through simulations

and experiments with applications to surveillance of multiple destinations.
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1. INTRODUCTION

In many applications, groups of robots must navigate complex
uncertain environments to accomplish a task with only a partial
map. In search and rescue or surveillance, groups of robots may
be deployed to different parts of a building to search for victims
or for intruders. They may encounter blocked passages and
may have to replan their paths or negotiate with other robots to
successfully accomplish their tasks. In many cases, the specific
task or destination assigned to each robot may not be important,
and robots can have the freedom to negotiate and reassign
tasks/destinations as long as every task is accomplished.

In this paper, we present a decentralized solution to task re-
assignment, planning, and control for a team of homogeneous
robots in a partially-known environment that may contain un-
known hazards which fundamentally affect the paths available
to robots. Only robots within a specified communication range
can share information about discovered hazards and can ex-
change destinations/tasks if they enable more efficient solutions
(see later for precisely what this means). These decisions are
made with only a map of the environment and locally available
information, which is limited to the current positions and cur-
rent task assignments of robots in the connected group, and any
information they have collected about the environment.

Each of the three typically separate subproblems of task allo-
cation, path planning, and feedback control are challenging in
their own right, with vast fields of research. In general, central-
ized solutions to these subproblems for large teams of robots
are expensive, even when addressed separately. Finding a solu-
tion for all three subproblems simultaneously, especially in the
presence of uncertainty, is considerably more challenging.
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Fig. 1. Benefits of task permutation. Filled shapes are robots,
unfilled shapes are goal configurations, and the black
shape represents the boundary. While both are optimal task
assignments, (a) is infeasible but (b) is feasible.

Itis not always possible to allocate tasks optimally without con-
sidering the robots’ path to their goals. In Fig. 1, the number of
cells traveled by all agents in both examples is 4, but the task on
the left is infeasible: the circle robot cannot maneuver around
the triangle robot to reach its goal. Concurrent task reassign-
ment and path planning allows solution of otherwise infeasible
problems, e.g. permuting the tasks of Fig. 1a to those of Fig. 1b.
Even concurrent task allocation and path planning can result in
failure without feedback control: wheel slip, model approxima-
tions, and noisy sensor errors can accumulate, preventing con-
vergence. Teams of high-dimensional mobile robots, such as
quadrotors, are modeled approximately to limit computational
complexity. Feedback control compensates for these inaccura-
cies. Thus, task allocation and path planning are not sufficient;
feedback control is critical for multirobot coordination.

In multirobot task allocation, market-based approaches are
an attractive compromise between centralized and distributed
approaches (Dias et al. (2006)). Representative task alloca-
tion algorithms can be seen in Gerkey and Mataric (2003);
McLurkin and Yamins (2005); Golfarelli et al. (1997); Batalin
and Sukhatme (2004). None of these address feedback control.

Once tasks are allocated, determining optimal collision free
paths for multiple robots is exponential in the number of de-
grees of freedom [Hart et al. (1968)]. Approaches which plan
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Table 1. Notation of primary importance.

Symbol Meaning

a,a’ Robots (also referred to as agents)

T Permutation of task assignments

PN Set of all permutations (Symmetric group on {1,2,...,N})
G Graph

Gq Group

pk, p™ Polytope in free space

PqK , PqM Polytope in group configuration space

c Polytope in relative space of agents

H Set of free space polytopes containing hazards
Hq Set of hazardous polytopes known to group g

trajectories or discrete paths such as Carpin and Pagello (2002),
Clark et al. (2003), and Wagner and Choset (2011) suffer a
disadvantage against feedback controllers on real-world sys-
tems, since they cannot account for drift, disturbances, or robot
dynamics. Additionally, Carpin and Pagello (2002) and Wagner
and Choset (2011) are neither decentralized nor online.

Multirobot control has been addressed in many domains,
among them flocking (Tanner et al. (2007)); formation control
(Leonard and Fiorelli (2001); Olfati-Saber and Murray (2002));
and group navigation (Michael and Kumar (2008); Yang et al.
(2008)); none of these address controller synthesis. Dimarogo-
nas et al. (2006) address coordinating dynamic robots without
robots knowing others’ goal configurations, concurrently solv-
ing path planning and control, but this does not scale to large
teams.

Our goal is to develop a decentralized approach to solving task
allocation, path planning, and feedback control simultaneously.
The solution is guaranteed to be correct, though suboptimal
since the approach is decentralized. We start with an initial
(even random) task assignment. Initially, all robots localize in
the same nominal map of the environment; as they navigate,
they update the map as they sense hazards. Robots within com-
munication range are said to be connected and form a group.
For all practical purposes, the control of a group can be central-
ized since robots within a group can exchange limited informa-
tion: their individual positions and destinations, and obstacles
and hazards not part of the original map to allow reassignment
when beneficial. Groups locally solve the allocation, planning,
and control problems concurrently, guaranteeing completion of
each task. This approach is most effective at reducing computa-
tion for large teams of robots in environments much larger than
the communication range; the larger the communication range,
the more centralized the approach becomes. Key in this method
is the development of a cost-to-goal function (which can be
interpreted as a utility function) that incorporates information
about path planning in the free space, local robot coordination,
dynamics, and control.

2. PROBLEM FORMULATION

Consider a team of N agents V4 = {a’li = 1,...,N} ina
shared constrained, bounded, partially known environment with
N distinct tasks. The team has the configuration or state

X:[X{Xg XF{V]T (1)
x; = [xiyizi ---|T € R?
with the dynamics
X =w,x;,€X,CRY i=1,...,N, )
if the agents are kinematic or
=7, x€X;CcRY i=1,...,N, (3)
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if the agents are dynamic. Initially, each agent is assigned a
task (tasks correspond to achieving and maintaining a goal
configuration). We denote the task assignment as a permutation
m € Py, where Py is the symmetric group, or the set of all
bijections of {1,..., N} to itself. We allow all permutations of
the tasks on the team of robots (i.e. any robot can complete any
task), therefore the switched system dynamics are

%X = fr(x), “

for a kinematic system and
% = hy(x,%), 4)
for a dynamic system, where f (resp. h,) refers to a distinct
piecewise smooth control input for each permutation ! . Each

permutation has a distinct equilibrium X, 405 and the set of
these equilibria is denoted

Xdes = {Xﬂ',des | s PN}
We seek a finite sequence of switches that will guarantee that
the system will achieve a configuration in Xyes.
Problem 1. For some initial state xq and task permutation 7,
consider system (4) (respectively (5) on a dynamic system) on
RN, with permutations Py . Find a switching sequence
(Tl'o,to),(7T1,t1)7(7T2,t2)7-~~ 1(7TFatF)' (6)
where (7, t;,) means that the system evolves according to
X = fr,(x) (resp. X = hg,(x,%) on a dynamic system), for
ty <t < tp41 and control inputs

S = mp;

X = fr,(x), b=0,...,F @)
for a kinematic system or
X=Hhg(x%x), b=0,...,F ®)

for a dynamic system, such that X|t:tp+1 € Xges forsome tpyg.

3. PRELIMINARIES

Definition 2. The configuration space C; of each agent a; is the
set of all transformations of the agent. The free space C!™°° of
a; 1is the set of all transformations of a; which do not intersect
with obstacles in the configuration space.

In this work we assume:

(1) all agents are identical, thus they share the same configu-
ration and free spaces, so that C = C;, Cf7°¢ = CifTee Vi;

(2) C7me¢ has been tessellated into convex, non-overlapping
finite number of polytopes p* with matching facets ? ;

(3) static hazards are contained in a finite, a priori unknown
set of polytopes #H, in which the robots cannot initialize.

(4) CJ7ree is connected and hazards do not cause the environ-
ment to be disconnected.

The key step in defining a group of agents is constructing the
communication graph on C/7¢¢, Recall that a graph is a pair
of sets G = (V, &), with nodes V = {v1,vg,...} and edges
& C V). Pairs of nodes (v;,v;) € are called adjacent.

Communication is defined based on polytopes in C/7¢¢. A pair
of robots in a pair of polytopes (pk ,p") can communicate
only if a robot at any position inside p® can communicate
with a robot at any position inside p™. To impose a specific
communication range, or vision-based communication, C free
can be easily subdivided. To ensure collision avoidance, the
distance between pairs of polytopes in which communication
is not allowed must be at least the diameter of the robot.

1 In our notation for switched systems, we closely follow Branicky (1998).
2 A hyperplane supporting adjacent polytopes shares the same vertices in both.
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Fig. 2. Collision constraints for 2-dimensional agents a; and a;.

Definition 3. The communication graph on the team of agents
is the dynamic graph Gy = (Va,En) where Ey =
{(a*,a?)|x; € p*,x; € p™, (p*,p™) allows communication}.
We call pairs of agents (i, j) € En neighbors.

Robots can also relay information from their neighbors.

Definition 4. The information graph on the team of agents is
the dynamic graph Gy = (V4,Er) where &; are pairs of agents
connected on the communication graph 3 .

Definition 5. A group of agents G, is a subset of the team which
forms a complete subgraph on the information graph, i.e. if
(ai,aj) € & and a; € Gy, then a; € G,.

As the team evolves, groups form and dissolve according to
the agents’ locations. Each group acts in a centralized manner
independently of other groups (thus, larger communication dis-
tances correspond to a higher degree of centralization). When
the information graph changes, the new group(s) share their
task locations and known hazards, then evaluate if permuting
tasks is beneficial. This occurs in the group configuration space.

Definition 6. A group configuration space is the Cartesian
product of the free spaces of each agent in a group,

|94l
Co = [ \H,), HyCH ©)
1
Xq = [xgl XZQ e X;gq‘]T € ng7

where H, is the dynamic set of polytopes known to the group
to contain hazards, (]q| the number of agents in the group G,
and q1, g2, - - ., q|g, | the indices of the agents in G,.

We impose a collision constraint on pairs of agents in a group:
)\(Xi,Xj) = |Xi_Xj|oo_5ZO V(ai,aj) Eg], (10)

which corresponds to an infinite annulus which we tesselate

into unbounded convex polytopes {c!,c?, ...} as in Fig. 2.

We guarantee collision avoidance for robots within a single
group by the control algorithm we present in the following
section. For robots not in a single group, by the tessellation and
communication rules on C/7¢¢, they cannot collide.

Definition 7. The group task configuration space Cg is the set
CqT =C,NL (11)
L= {x|x €Cq, A(xi,%5) > 0V(a;,a;) € Er}.

C;F is a space composed of polytopes PqK in which the group
cannot collide with each other or hazards known to the group.

4. SWITCHING POLICY

When a new group is formed, the group evaluates their task
assignments to determine if permuting tasks would result in a
lower cost-to-goal. Note that agents in a group can only permute
tasks within the group. We define the cost-to-goal of a task
permutation as the sum of the costs of the paths each agent

3 Recall agents a; and a; are connected if G contains a path from a; to a;.
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must take to their goal on the local polytope graph which is
a dynamic local version of the lower polytope graph.

Definition 8. The lower polytope graph is a weighted graph
GP = (VP,EP) on the polytopes V, = {p*,p?,...} in CIee,
where £ = {(k,m)|p" shares a facet with p™, Vk, m}. Each
edge (k,m) € EP is associated with a weight w*™ > 0.

All agents initialize with identical maps of the lower polytope
graph, but each agent maintains its own dynamic local map of
the environment. Robots sense hazards in adjacent polytopes
and within a specified distance; when an agent discovers a
hazard, each agent in that group updates its local list of hazards
Hle¢ C H, removing the associated edges from its local
polytope graph. When groups form, they synchronize graphs.

Definition 9. The local polytope graph for robot a; is a
weighted dynamic graph G? = (V?,EP) on the polytopes V,.
EP = {(k,m)|p* is adjacent to p™, k,m ¢ H¢, Vk,m} is
the set of transitions in C/"¢¢ which are perceived to be allowed.
Each edge (k, m) € EP is associated with the weight w®™ > 0.

We estimate the cost-to-go as the sum of the costs of the shortest

paths for each agent without considering other robots, Zfil Vi,
where ; is a minimal cost path from x; to x,, on GP. The
actual cost can be larger, e.g. if an agent must exit a polytope
to allow another agent through then return, and can only be
determined by searching the joint configuration space of the
group. To this end, we build a discrete representation of Cg.
Definition 10. The group polytope graph is a weighted graph
GEP = (VF,EF) on the polytopes in CI, where V) =
{P;,P2,...}, PK is the K-th polytope in C, and £f =
{(K, M)|PX is adjacent to P}, VK, M}, the set of all pairs
of polytopes which share a (matching) facet. Each edge
(K, M) € E} is associated with a weight w-* > 0.

Each group computes a path in the group configuration space
for all members, but the actual cost-to-goal depends on poly-
topes visited in C/7¢¢. To guarantee the path chosen in the group
configuration space is no worse than the path in the physical
space corresponding to the current permutation, we penalize
changes in the relative position space (robots must not run
circles around each other) but make the penalty small enough
that the optimal solution in the joint space corresponds to the
optimal solution in the physical space. We set weights for edges
corresponding to changes in relative space such that

KoM MiEm wh ™

0<w _—
q Zd(\%q\)

9 V(Ka M) S [gf]relative» (12)
where 2‘1(‘92“) is the maximum number of relative space poly-
topes for |G,| agents in R?. In Fig. 3c, the weight of the edge
connecting qu and qu, corresponding to change in relative
space constraints, would have a much smaller weight than that
connecting qu and PqS, corresponding to change in free space
polytopes. Space constraints limit further discussing this result.
Problem 11. For group G, in polytope PqK € V;D , find a task
permutation 7, and corresponding path K = (PqK s PI)

on the group polytope graph G, where P is the goal node
corresponding to 7, such that

— : K, K+1
mp = arg min E w, .

i K

Each time a new group G, is formed, Problem 11 is solved using
the A* algorithm presented in Ayanian et al. (2011) with the
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Fig. 3. Constructing a 2-agent group polytope graph. (a) C/"*¢ with two robots and collision constraints. (b) Cartesian product of
lower polytope graphs intersected with collision constraints. (c) Using (b), we construct polytopes and determine adjacency.

key difference of having multiple possible goal states. The al-
gorithm simultaneously constructs and searches the group task
configuration space CqT and polytope graph GqP to concurrently
find the task permutation with the lowest cost-to-goal and the
path to the corresponding goal configuration, while guaran-
teeing the existence of a feedback controller. The solution to
Problem 11 may be a set of permutations P; the switching
policy addresses which permutation is chosen.

Algorithm 12. (Switching Policy). Let a group G, be formed at
time ¢, with current task permutation 7;,_1, and the solution set
to Problem 11 be P. There are two classes of outcome.

(1) If mp—1 € P, do nothing.
(2) If mp—1 ¢ P, choose the first optimal permutation 7.

5. NAVIGATION FUNCTIONS AND CONVERGENCE

The solution to Problem 11 in conjunction with Algorithm 12
define a path in qu . This path is then translated into local
navigation functions on each pair of sequential polytopes on
the path using the approach presented in Ayanian et al. (2011).
These functions, used to drive the system to the goal, also
determine the Lyapunov function of each task permutation.

Definition 13. (Rimon and Koditschek (1992)). Let Q be an n-
dimensional compact, simply connected manifold with bound-
ary and let x, , € Q be a unique point. A function ¢ : Q
[0,1] is a navigation function if is twice differentiable on Q,
achieves a unique minimum of 0 at q, € Q, is uniformly
maximal (i.e. evaluates to 1) on the boundary, and is Morse.

We use the navigation function to generate a feedback con-
troller to drive the system to the goal while staying inside
manifold Q. The control law for the kinematic system (2) is

u=—-Vo(x)
and convergence can be shown using the Lyapunov function
V(x) = p(x). (13)

For the dynamic system (3) the control law is given by T and
convergence shown by V' (x, %), where

T =—Vp(x) —TI'x, [ e RN>N?
V(x,%) = p(x) + 0.5 %X %.

(14)
15)

At time ¢, let the task permutation of the group be given by
m, with corresponding path K, = (P}, PZ,...). The naviga-
tion function constructed in Ayanian et al. (2011) drives any
state in qu to a local goal in Pq2 where the function achieves
the minimum 0. This continues through P;’, etc, until a robot
enters or exits the group, or the goal is reached. Since navi-
gation functions are synthesized in obstacle-free polytopes, the
resulting field is free of local minima and saddle points. For
each permutation 7, the system converges to the corresponding
equilibrium X, 45, satisfying all tasks.

To show convergence of the system, it is meaningful to define a
Lyapunov-like function in the sense of Branicky (1998).
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Fig. 4. llustration of Lyapunov-like function for a group with
path (P, qu, Pj). Black dots represent local goals.

Definition 14. Given a strictly increasing sequence of switch-
ing times T' = to,t1,12,..., we say Vy, is Lyapunov-like for
(7) (or (8)) over T if:
o Vi, (x) < 0for ez [t2). t2j11]:
e V., is monotonically non increasing on the even sequence
of T: t07t27t47. PN

It is quite straightforward to develop such a function. For
example, let the path to a goal for a group be (P,, P2, P?).
We can generate an every (or utility) function by scaling the
navigation function in each polytope PqK by the weight of
the corresponding edge in the group polytope graph, starting
with O at the goal. Then the current value of the Lyapunov-

like function for this goal permutation would be V;;, = wg’S +

Ww;@, where 0 < v < 1 (see Fig. 4). This function meets the
criteria of Lyapunov-like for all permutations 7w, € Py, and
is sufficient to show stability and convergence. First, we use a
theorem from Branicky (1998) to show stability.

Theorem 15. (Branicky (1998)). Suppose we have candidate
Lyapunov functions V,, m, € Ppn and vector fields x =
[y (%) (resp. X = hg, (x,%)) with fr, (0) = 0 (resp. hr, (0) =
0) Vrr. Let S be the set of all switching sequences associated
with the system. If for each S' € S we have that for all 7, V,
is Lyapunov-like for f,, (resp. hr,) and the resulting trajectory
xg(+) over the set of times the permutation 7, is active, then the
system is stable in the sense of Lyapunov.

Proof. This is a straightforward application of Branicky (1998).

While the assumption in Branicky (1998) is that V' (0) = 0, the
system can be shifted so the goal configurations are the origin.

5.1 Convergence in a Perfectly Known Environment

We have shown that the system is stable, but convergence can
only occur if a goal is reachable.

Corollary 16. There exists at least one task permutation for
which the goal is reachable.

Proof. The environment is connected, and hazards do not
disconnect the environment. Therefore, each robot can reach
each goal if there are no other robots in the space. If any robots
are blocking another from reaching its goal according to the
current permutation, then since we allow all permutations, the
robots can permute goals to find a reachable solution.

The switching policy (Alg. 12) ensures the system converges.



IFAC NecSys'12
September 14-15, 2012. Santa Barbara, CA, USA

Theorem 17. The system will converge to some Xy ges € Xges-

Proof. Although the exact value of V7, is unknown, the Alg. 12
ensures the system only either (1) keeps the current permutation
or (2) switches to one with a lower maximum Lyapunov value.

(1) Maintain current permutation: If the Alg. 12 maintains
the current permutation, the system’s Lyapunov function
continues to monotonically decrease. This is not a switch.

(2) Switch to new permutation: Let the current cell be qu
and the new permutation be ;. If the switching policy
results in a switch, then 7, has a lower maximum value
in the current polytope than the previous permutation
mp—1. Trivially, a decrease in V,(x), the utility function
for a group, results in a decrease of V(x), the utility
across the team. We cannot be certain that V, (x4, , m) <
Vy(X4l4,, mp—1). In other words, the actual Lyapunov
value may increase, although the maximum attainable
value in the polytope decreases, maxy, e p1 Vq(Xq, M) <
maxy, ep1 Vq(Xq, Tp—1). Since switching occurs only
when an interface is crossed, we know that at the next
time 541 when switching may be considered, the value
V will have decreased. Therefore, should system 7,1 be
reactivated, it will be activated at a lower value than it was
activated previously. Since V;(x,, m,—1) is monotonically
decreasing at switching times, the system will converge.

5.2 Stability in a Partially Known Environment

In an environment with unknown blockages the cost of traveling
between two points is unknown, thus evaluating the true cost-
to-goal of a permutation is impossible. The robots execute the
same switching policy (Algorithm 12), using the local polytope
graph as an estimate of the environment’s state. Unknown
hazards may cause poor decisions that increase the value of the
actual Lyapunov function. However, since the environment is
bounded and the number of hazards is finite, once all hazards
are discovered by all robots (sufficient but not necessary), the
environment is known and Theorem 17 above applies.

6. SIMULATIONS AND EXPERIMENTS

We have successfully tested our approach in simulations and
experiments; here we present selected illustrative examples.

6.1 SIMULATIONS

Our first representative simulation involves 15 kinematic robots
in an urban environment, computed in MATLAB. Figure 5a
shows the initial configuration and task assignment, as well
as unknown hazards in yellow. Each robot is depicted by a
distinct filled shape and color combination; goals are shown in
corresponding unfilled shape and color. Fig. 5b depicts robot
trajectories after the final permutation. In all, 16 permutation
events occur, at times depicted by vertical lines in Fig. Sc,
including an event at initiation. Dots indicate robots involved in
an event. The time between events increases as the task evolves.

High-fidelity dynamic simulation of KUKA youBots is done
using GAZEBO, ROS, and a ROS-MATLAB bridge (Michael
(2011)); real-time computations and control are done in MAT-
LAB. In Fig. 6, four youBots in an environment with a hazard
(yellow) plan their path without knowledge of the others; the
hazard is initially only known to robot P (purple, dotted line).
Robot B proceeds through its planned path, discovers the haz-
ard and replans (Fig. 6b). When robots R, G, and B form a
group, they permute tasks (Fig. 6¢). Similarly, R and B permute
tasks (Fig. 6d), driving R again towards G, which again permute
(Fig. 6e), then all agents proceed to their task locations (Fig. 6f).
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Fig. 5. A simulation with 15 robots in an urban environ-
ment. (a) Each robot is shown as a distinct filled shape
and color combination at its initial position, with its ini-
tial task shown as the corresponding unfilled shape and
color. Unknown hazards in yellow. (b) Robot pose elapsed
since last permutation. Hazards discovered by at least one
robot shown in yellow. (c) Number of switches by robot
shown as dots against time, vertical lines indicate switch-
ing events. Note the early concentration of switching.

6.2 Experiment

Here we use VICON motion capture, with real-time MAT-
LAB computation on a single laptop although the algorithm is
distributed. Four youBots with goals on antipodal corners of
the environment initially plan without knowledge of the other
robots or the hazard shown in yellow (Fig. 7a). After multiple
encounters and permutations, the initial configuration becomes
the goal configuration. Note the jagged edges, especially for the
red circle robot. Partial VICON failure caused poor tracking,
but the controller was robust to compensate. The cyan triangle
appears out of bounds, but this is a string of incorrect readings.

7. CONCLUDING REMARKS

The central contribution of this paper is a decentralized ap-
proach to coordinating a team of homogeneous robots with
local communication connectivity in a partially-known environ-
ment. This approach concurrently solves task assignment, path
planning, and feedback control, thus guaranteeing convergence
on real robots in environments with unknown hazards.

Critical to our approach is the ability to permute tasks, starting
from a suboptimal or even random task assignment policy,
based on estimated collective distance travelled. Task permu-
tations enable decentralization while avoiding the deadlock
and livelock scenarios that plague decentralized approaches.
Furthermore, task permutations allow efficient handling of
unknown obstacles in the environment. While scenarios we
present here remove a polytope from the workspace if it con-
tains a hazard, this is easily extended to more complex sce-
narios, where the geometry of the space has changed, or when
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Fig. 6. Four robot simulation in GAZEBO. (a) Initial positions
and planned paths. The hazard is only known to robot P
(purple, dotted line). (b) Robot B discovers the hazard
along its path and must replan. (c) Robots R, G, P in-
teract and permute tasks. (d) Robots R, B permute tasks.

(e) Robots R and G interact again and permute their task.
(f) All tasks have been accomplished.

x position (m)

y position (m)

-2 -1

x(m)

(a) (®)

Fig. 7. Experiment with 4 youBots. (a) Robot trajectories. Ob-
stacles are padded (grey) for the robot’s size. Network and
sensor errors result in erroneous data, but the controller is
robust enough to complete the task. (b) z-, y-pose vs. time.

there are partial blocks within a polytope, if robots are capable
of remapping the affected area. In the case of a perfectly known
environment, the switching policy ensures the task assignment
progressively improves with each permutation. For partially-
known environments, the algorithm relies on all changes in the
environment being observed and communicated for complete-
ness and convergence.

An important limitation to our approach is centralization within
groups, which can be difficult in a tightly constrained environ-
ment, leading to inefficiencies due to repeated task permuta-

316

tion. However, the method enables distributed computation and
control, and overcomes the difficulties with scaling to larger
numbers that centralized approaches cannot circumvent.
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