
Forecasting Battery State of Charge for Robot Missions

Ameer Hamza and Nora Ayanian
Department of Computer Science
University of Southern California

Los Angeles, CA, USA
{ahamza, ayanian}@usc.edu

ABSTRACT
Due to limited power onboard, a significant factor for success of
distributed teams of robots is energy-awareness. The ability to pre-
dict when power will be depleted beyond a certain point is nec-
essary for recharging or returning to a base station. This paper
presents a framework for forecasting state of charge (SOC) of a
robot’s battery for a given mission. A generalized and customizable
mission description is formulated as a sequence of parametrized
tasks defined for the robot; the missions are then mapped to ex-
pected change in SOC by training neural networks on experimental
data. We present results from experiments on the Turtlebot 2 to
establish the efficacy of this framework. The performance of the
proposed framework is demonstrated for three distinct mission rep-
resentations and compared to an existing method in the literature.
Finally, we discuss the strengths and weaknesses of feedforward
and recurrent neural network models in the context of this work.

CCS Concepts
•Computer systems organization→ Robotics; Sensor networks;
•Hardware→ Power estimation and optimization; Batteries;

Keywords
Robotics; Mobile robotics; Energy awareness; Persistent robotics;
Battery modeling

1. INTRODUCTION
Uninterrupted, reliable and persistent operation is a significant con-
sideration for distributed teams of robots, as well as individual
robots working cooperatively with others. For distributed teams of
robots, communication is often limited due to distance or cost, and
running out of energy while in the field can cause severe damage or
loss of the asset. For cooperative robots, depleting on-board energy
can result in total mission failure. Power management for battery-
powered robots is especially important for persistent multi-robot

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’17, April 3-7, 2017, Marrakesh, Morocco
Copyright 2017 ACM 978-1-4503-4486-9/17/04. . . $15.00
http://dx.doi.org/xx.xxxx/xxxxxxx.xxxxxxx

systems [11, 20]. Finally, as the push for building ever smaller
robots further limits usable power, it becomes critical to forecast
the power response of robots in multi-robot missions.

Forecasting the mission-specific power consumption of a robot is
necessary to complete missions reliably, smoothly, and efficiently.
Such a forecast can be used to predict and avoid power related fail-
ures. Moreover, it may be helpful in a priori evaluation of mis-
sion design with respect to robot parameters, or determination of
required on-board power for a particular mission. For robots oper-
ating in hazardous or inaccessible environments, predicting power
consumption can prevent loss of expensive hardware. Besides im-
proving reliability, it can also contribute to efficient decision mak-
ing and planning, as well as more realistic and accurate power-
consumption models for robots in simulation.

In this work, we consider the problem of forecasting the remain-
ing battery capacity for a robot. State of charge (SOC) is the most
common metric used for remaining battery capacity and is mea-
sured in percentages representing the complete battery cycle from
100% (fully charged) to 0% (fully discharged).

This paper introduces a framework for mission-specific energy-
awareness in mobile robots, aimed at enabling robots to forecast
energy consumption for a mission by learning from past missions.
The contribution of this work is a generalized framework for fore-
casting mission power consumption in battery-powered robots. Ex-
isting work in the literature focuses on specific types of robots, e.g.,
underwater, whereas this framework can be applied to any type
of battery-powered robot. We explore the efficacy of this frame-
work for three different mission representations, encoding varying
amounts of detail. We execute a number of missions on a battery-
operated ground robot and collect the relevant data, including the
measured SOC during mission execution. We use this data to train
two types of neural networks (recurrent and feedforward) in order
to map actions to the change in SOC caused by their execution. Fi-
nally, we discuss the ability of these models to forecast the SOC
for the duration of a mission under different configurations, and
compare to an existing method in the literature.

2. LITERATURE REVIEW
The need for intelligent battery monitoring and management has
been extensively discussed, especially in the context of electric au-
tomobile applications [12, 21]. Determining the remaining capac-
ity of a battery has been a major objective for a number of electric
circuit-based battery modeling methods [1, 3, 5, 7–9, 18]. Equiva-
lent electrical circuits are designed to model batteries using differ-
ent electrical components [7], including resistors for internal resis-

http://dx.doi.org/xx.xxxx/xxxxxxx.xxxxxxx

tance [8], suitable RC circuits for dynamic loads [3, 9], diodes for
switching between equivalent circuits for charging and discharg-
ing [18], and Zener diodes to model battery response for a range
of load currents [1]. A number of data-driven models for report-
ing remaining battery capacity, offline and on-line, have been ex-
plored [2,6,15,16,19,22]. Some methods employ neural networks
for approximating battery models using voltage, load currents, in-
ternal resistance and temperature inputs [19, 22]. Others also in-
clude remaining capacity as input to improve predictions [15]. A
trained network can provide a priori estimates for a Kalman filter
for on-line SOC estimation [2]. Both the circuit-based and data-
driven modeling methods described can be used to predict battery
state of charge given precise load characteristics (current, voltage,
temperature, etc.). However, for robots it is often infeasible to esti-
mate these load characteristics in advance for a mission.

Various approaches characterize robots’ power consumption in re-
lation to the environment. Pentzer et al. characterize terrain by es-
timating parameters for skid-steer robots [14]; this requires knowl-
edge of vehicle geometry and mass distribution. Sadrpour et al.
apply a longitudinal dynamics-based linear regression model and a
Bayesian regression model, both based on prior terrain and driving
style information, for ground vehicles [17]. LeSage et al. clus-
ter recorded loads for different terrains in order to characterize a
range of power demands and using battery models to predict battery
power requirements [10] . These methods rely on knowledge of the
physical parameters of the robot (e.g., vehicle dynamics, weight
distribution) and environment.

In the present work, we do not rely on knowledge of physical pa-
rameters; instead, we investigate ways to use common mission rep-
resentations to predict battery response. If physical parameters
are available, they can be used to train the model, and thus im-
prove the prediction. If environmental information is not available,
our method allows tuning previously learned models on a small
amount of mission execution data (e.g., loss of 10% SOC) to sig-
nificantly improve predictions. This makes our framework readily
implementable without precise knowledge of the robots’ physical
properties and operating environment.

Other methods measure power consumption of individual compo-
nents of a robot in order to estimate parameters for a power con-
sumption model. One approach estimates linear model parameters
for power estimation of an underwater robot, by executing a se-
quence of trajectories influencing only one degree of freedom [4].
Parasuraman et al. build a model by measuring power consumption
while running a sequence of single-component operations, then es-
timate the total power use as the sum of the power consumed by all
of the components [13]. These methods depend on prior knowledge
of how various components of the robot operate during execution
of a given mission, which may require detailed knowledge of the
functioning of the robot. We present a comparison of our frame-
work with that of Parasuraman et al. [13] in Section 5.5.

Using environment-based and component-based models requires
the robot’s assigned mission to be broken down into terrain-specific
or component-wise operations, respectively, which may be infeasi-
ble. In this work, we consider a robot and its operating environ-
ment as a whole, and model power consumption as a function of
the mission representation. We propose a generalized framework
for forecasting power requirements by using information typically
available in mission descriptions. This makes our method more
readily applicable across platforms and environments since char-
acterizing loads or estimating the physical parameters of the robot

and operating environment are not necessary.

3. PROBLEM FORMULATION
Let a job-set J be a set of atomic operations (e.g., turn on motor,
transmit data, etc.) defined for a robot r such that any tasks al-
located to the robot can be completely described as combinations
of jobs in the set. Each job element j ∈ J is defined in terms of
parameters param(j). We define a mission of length T as an or-
dered sequence of actions M = 〈a1,a2, . . . ,aT 〉, where an action ai
is an ordered vector containing the parameters for all the jobs in the
robot’s job-set ai = 〈param(j1), param(j2), . . . , param(jn)〉.

To illustrate, consider a robot capable of moving forward a distance
x at velocity v and idling for duration t. We can define a job set J ≡
{idle,move}, and the parameters param(j1)≡ t and param(j2)≡
(x,v), resulting in action ai = 〈ti,xi,vi〉. A mission of length T =
2 to move forward for 3 m at 1 m/s, then idle for 10 s would be
represented with two actions a1 = 〈0,3,1〉 and a2 = 〈10,0,0〉, as
M = 〈a1,a2〉.

Defining a job-set is an engineering decision, depending on the
type of robot, operating environment, and nature of the mission.
The job-set J must consist of jobs that suitably encode parameters
that significantly impact power consumption. For example, terrain-
related parameters must be encoded in the mission description, in
order to predict the SOC in multi-terrain scenarios. There are trade-
offs in selecting different levels of abstraction for a job-set, which
we describe in Section 3.3.

We use this formulation to build a model f that maps action ai to
the resulting change in SOC, f : ai→ ∆SOC(i), where ∆SOC(i) =
SOC(i)−SOC(i−1). Ideally, for a given mission M and the current
action ai, we compute the predicted state of charge, SOCp(i+ k),
of the robot’s battery after k future actions in the mission, such that
the maximum prediction error ε ≥ |SOCp(i+ k)−SOCm(i+ k)| is
minimized, where SOCm(i+k) is the measured SOC. However, the
stochasticity introduced by errors in actuation, wheel slippage, ex-
ecution on a physical system, etc., makes providing such a bound
impossible. Thus, we evaluate our model experimentally, by run-
ning a number of missions, then using networks trained on each of
those missions to predict power consumption in other missions, and
present representative results here. We also compare to one of the
additive models in the literature, showing that our method provides
better predictions.

We demonstrate the efficacy of this framework for missions de-
scribed by three different job-set definitions of varying levels of
abstraction. Twelve missions were executed and the following data
were collected for each mission: action parameters, robot pose, bat-
tery statistics, time-stamps,ăand the measured SOC during mission
execution. We use this data to train two types of neural networks to
map actions to the change in SOC caused by their execution. We
also explore the ability of these learned models to forecast the SOC
for the duration of a mission. A detailed description of the methods
used follows.

3.1 Experimental Setup
Missions were executed on a Turtlebot 2 with additional 6W geared
DC motor and a 3W LED to provide additional modes of power
consumption beyond locomotion. A netbook onboard the robot was
used for control, measurements, and communication.

Figure 1a shows a schematic of the experimental setup. Two lithium-

On-board
Computer

Robot
Hardware

Battery

SOC	Measuring
System

Vicon Motion
Capture	System

Planning	&
Data	Logging	Server

Turtlebot

(a) (b)

Figure 1: (a) Overview of experimental setup. (b) Robot operat-
ing area for missions described in the experiments. A 3-waypoint
polygon is shown (orange) as an example of a High-level action.

ion batteries (4400 mAh, 14.8 V) with distinct states of health (one
new, one old) were used to explore the adaptability of learned mod-
els to changes in battery health. To measure battery voltage, cur-
rent, temperature, and SOC, a Texas Instruments BQ76930 battery
monitor was installed between the battery and the robot hardware.
The circuit module combines voltage mapping with Coulomb count-
ing and temperature compensation to estimate SOC every 250 ms.

The operation area for mission execution (Fig. 1b) was equipped
with a 12 camera VICON MX motion capture system to record data
related to locomotion and provide pose information to the motion
controllers and other software on the robot. An independent server
published the mission as a sequence of actions and logged data.

3.2 Mission Description
Missions are encoded as a sequence of parametrized actions. All
missions are based on the robot traversing a series of waypoints
in the following fashion: the robot starts from rest at waypoint wi,
turns by angle θ with angular velocity ω towards the next waypoint
wi+1, then moves distance x at average speed v towards wi+1, and
comes to rest when wi+1 is reached. The paths are the edges of a
fully connected graph defined on these waypoints (see Fig. 1b). In
our missions, edges have a corresponding speed and parametrized
clean(pwmc) and beam(pwmb) operations, which modulate the op-
erating power for the onboard DC motor and high-powered LED,
respectively. Each mission is a combination of jobs in a job-set.

3.3 Job-set Definitions
Forecast performance was studied with respect to three different
mission representations, Low-level, Mid-level, and High-level.

The Mid-level Job-set (Jm), with five jobs, arises as a natural imple-
mentation of robot functions for execution of the type of missions
we have described. move(x,∆z,v) moves the robot forward dis-
tance x at velocity v and altitude difference between start and end
points ∆z (while our missions were run on fairly flat ground, it is
not completely flat, thus we take height change into account). This
trajectory is susceptible to error, thus it is governed by feedback
controllers. turn(θ ,ω) turns the robot in place by θ ∈ [0,π] radi-
ans with angular velocity ω . beam(pwmb) modulates the power
provided to the high-power LED according to pwmb ∈ [0,100].
clean(pwmc) modulates power to the DC motor according to pwmc ∈
[0,100]. idle(td) keeps the robot idle for td seconds.

The High-level Job-set (Jh) encodes the robot’s functionality more
compactly, as one job: traverse_polygon(xh,vh,θ h,ωh,n) causes

the robot to traverse a polygon (sub-graph) with n waypoints for to-
tal distance xh = ∑

n
i=1 xi, weighted average speed vh = 1

xh ∑
n
i=1 xivi,

total turning angle θh = ∑
n
i=1 θi, and weighted average angular

speed ωh = 1
θh

∑
n
i=1 θiωi (a three-waypoint example is shown in

Fig. 1b). Note that this job can be represented as a sequence of turn
and move jobs from the Mid-level Job-set, but without the change
in altitude from the move job. beam_polygon(pwmh

b) defines the
operating power of the LED while a polygon is being traversed, ac-

cording to a weighted average power given by pwmh
b =

∑
n
i=1 xi pwmi

b

∑
n
j=1 pwm j

b
.

clean_polygon(pwmh
c) modulates power to the DC motor while the

polygon is being traversed, governed by a weighted average power

given by pwmh
c = ∑

nh
i=1 xi pwmi

c

∑
nh
j=1 pwm j

c
. Again, idle(td) keeps the robot idle

for td seconds. The High-level Job-set parameters statistically com-
bine the mission parameters associated with the sequence of edges
representing the polygon in the graph, gaining compactness at the
cost of accuracy.

The Low-level Job-set (Jl) encodes the physical parameters of mis-
sion execution more precisely. traverse_segment(xl ,vl ,vl + ∆vl)
attempts to encode the actual trajectory followed by the robot in-
stead of a straight line by segmenting an edge in time. Thus, a
move job in the Mid-level Job-set is represented in the Low-level
Job-set as a sequence of traverse_segment jobs where each job
is parametrized in segment length xl , initial velocity vl , and fi-
nal velocity vl +∆vl . For our experiments, these segments were
based on the data (distance, velocity, SOC etc.) collected every
250 ms. For instance, if the robot takes 5 s to traverse an edge in the
graph, 20 segments are created for the edge and the job parameters
are derived from the collected data for these segments. Note that
these parameters reflect the velocity profile which changes across
the edge, resulting in a more precise encoding of the velocity in
comparison to the average velocity used for equivalent mid-level
jobs. turn(θ ,ω), beam_segment(pwmb), clean_segment(pwmc)
and idle(td) are defined in the same way as in the Mid-level Job-
set, but on these smaller segments. Note that this job-set defini-
tion results in larger mission representations that explicitly encode
the desired trajectories for the robot, which may not be feasible in
many real-world deployments, due to the the difficulty in know-
ing the mission or terrain in detail, and the size of the mission
definition. However, we include this representation since it en-
codes entire trajectories instead of just endpoints, so it automati-
cally encodes deviations from straight line travel (due to actuation
error, slight changes in heading, etc.), and leads to models that have
learned on and can be applied to curved trajectories.

4. EXPERIMENTS
Twelve missions were designed for experimentation. Execution of
each mission took between two to three hours and resulted in vary-
ing final battery SOC. Each mission was executed twice, with bat-
teries of different states of health, resulting in 12 pairs of data-sets.
The three job-set representations were generated for each mission.
During execution, parametrized action vectors were recorded for all
three representations along with battery statistics and timestamps.

To evaluate the framework’s predictive capabilities, each experi-
ment was conducted using a complete record of one mission as
training data and data recorded from the remaining missions as
testing data. Thus, the total number of training and testing sets
for a single battery were 10 and 90, respectively. Two types of neu-
ral networks were used to learn models mapping action parameters

Figure 2: Internal structure of neural networks used with action
parameters as inputs and the resulting SOC as output. Blue nodes
and links represent the feedforward neural network. For recurrent
networks, the input layer also includes a context unit (green), which
encodes SOC predicted by the network after previous action ai−1.

(%
)

Figure 3: Forecast performance in recurrent and feedforward net-
works.

to resulting SOC: feedforward networks and simple recurrent net-
works. The number of input neurons in these networks varies de-
pending upon the length of the action parameter vector. The num-
ber of neurons in the hidden layer was set to 200 whereas the output
layer consisted of one neuron.

A feedforward network takes an action parameter vector ai as input
and predicts the resulting drop in the state of charge ∆SOCp(i). The
predicted state of charge SOCp(i+ k) after execution of a sequence
of actions 〈ai,ai+1, ...,ai+k〉 is given by SOCp(i+ k) = SOCp(i−
1)+∑

k
j=i ∆SOCp(j), where i = 1, . . . ,T , k = 0, . . . ,(T − i).

Blue nodes and links in Fig. 2 represent the feedforward neural
network. Note that the predicted output is not fed back into the
feedforward network. Recurrent neural networks can be created by
adding a context unit (green) which enables the network to use its
own prediction at the previous time-step as input. The complete
network shown in Fig. 2 is the recurrent neural network. Thus,
the recurrent network maps action parameters ai and the previ-
ous state of charge SOC(i− 1) to the resulting state of charge,
f : (ai,SOC(i− 1))→ SOC(i) such that SOC(i) = f (ai,SOC(i−
1)). A future state of charge forecast SOCp(i+ k) for a sequence
of action parameters 〈ai,ai+1, . . . ,ai+k〉 is computed recursively:
SOCp(ti+k) = f k(ai+k, f k−1(ai+k−1, . . . , f 1(ai,SOC(i − 1)) . . .)),

Figure 4: Absolute and relative temporal errors for both networks.

where i= 1, . . . ,T and k = 0, . . . ,(T− i). Henceforth, we use exper-
iment to refer to the process of training a network on data recorded
from a mission and using the trained network to forecast the SOC
for another mission.

5. RESULTS AND DISCUSSION

5.1 Recurrent Neural Networks
A trained recurrent neural network takes the ith action parame-
ter along with the state of charge before the action is performed
SOC(i−1) as input, and outputs the predicted state of charge after
the action has been performed SOCp(i). Fig. 3 shows the fore-
cast performance of the recurrent network trained on mission data-
set M5 and tested on M4, represented with the Mid-level Job-set,
by superimposing the forecast SOCp (green dashed) on the mea-
sured state of charge SOCm (red solid). Absolute error εa(i) =
|SOCm(i)− SOCp(i)| is also shown in Fig. 3 (bottom). Note that
this forecast is generated by feeding the network’s SOC prediction
back to its input for the next prediction.

We are also interested in estimating the time it will take the bat-
tery to reach a certain SOC during a mission. Figure 4 shows the
absolute and relative temporal forecast errors given by εt(SOC) =

|tm−tp| and εr(SOC) =
|tm−tp|

tm , respectively. Here, tm and tp denote
measured and predicted times for the battery to drop to a certain
SOC, respectively. Figure 4 shows that the temporal errors accu-
mulate as a mission progresses which may result in higher final
temporal error for longer missions.

5.2 Feedforward Neural Networks
The input to a feedforward network is an action parameter vector ai,
and the output is the predicted change in state of charge ∆SOC. Fig-
ure 3 includes the forecast and errors of the feedforward networks
(blue dashed) trained and tested on the same data-set to provide a
quantitative comparison of the two networks’ performance.

Recurrent neural networks outperform feedforward networks (i.e.,
they are more accurate) for all mission pairs, demonstrated in the
box-plot of mean absolute errors in Fig. 5. This is because recurrent
neural networks also take into account the previous SOC in addition
to the action parameters for their forecasts.

Figure 5: Box-plot comparison of mean absolute errors for three
mission representations.

5.3 Adaptability
While recurrent networks perform better than feedforward
networks, feedforward networks offer advantages due to their struc-
ture. Ideally, a previously learned network should quickly adapt to
changes in the robot (e.g., a new battery) while executing a mission.
Recall that each mission was executed with two different batteries
to evaluate the adaptability of a trained network to changes in sys-
tem parameters. We extract partial data for mission execution for
a 10% drop in SOC and use it to tune a previously trained feedfor-
ward network to the new battery.

The structure of a feedforward network allows us to tune a trained
network to the new parameters with partial data because it only
uses action parameters as input. Figure 6 shows the forecast for
M9 with battery 2 (green), produced by a feedforward network ini-
tially trained on data-set M6 (battery 1). The blue line shows the
same network tuned with partial data (10% drop in SOC) from M9
(battery 2). The network tuned on partial data produces an im-
proved forecast. Absolute errors for both the forecasts show that
the tuned network performs significantly better than the original
network. For a recurrent neural network, measured SOC is an in-
put to the network, but data available for tuning only covers 10%
of the input space for SOC. We show in Sec. 5.4 that the networks
must be trained on the entire parameter space, thus recurrent net-
works can not be used for partial tuning.

5.4 Parameter-space for Training
Figure 7 and 8 show uniformly downsampled parameters x (denot-
ing length of the edges between waypoints to be traversed in the
mission) and θ (denoting angle of turns the robot has to make dur-
ing the mission), respectively, for each of these missions. Networks
trained over data from two missions (M2, M7, marked in red in
Figs. 7 and 8) had poor performance compared to networks trained
on other missions (c.f. Fig. 9).

Figures 7 and 8 show that the parameter space (distance x and an-
gle θ) for missions M2 and M7 is much smaller in comparison to
that of the remaining missions, limiting the learning space for the
networks. A network trained on M2 and M7 will only model the
input space covered by those data-sets. Thus, for more accurate
models, parameters in training missions should be well distributed
and adequately cover typical parameter values.

Figure 6: Forecast performance of the feedforward network with
and without tuning. Data used to tune the network is marked by a
vertical dotted line.

Mission Number

Input Spaces for Parameter x

M
ea

su
re

d
x(

m
)

Figure 7: Parameter x for all missions M1-M12.

5.5 Comparison with existing method
We compare the forecasts produced by our framework with that
of Parasuraman et al. [13], due to the direct relevance of methods
used as well as closely related objectives. Figure 10 shows that our
method performs significantly better in terms of forecast accuracy;
this may be due to their assumption that the power model for loco-
motion is linear with respect to the average speed (this may be true
for smaller robots, but is inflexible). Their additive model also does
not account for voltage being shared across all resources, while our
model learns from concurrent actions. Acceleration effects were
also ignored due to the small size of their robot (the Khepera III is
690 g while the Turtlebot 2 without netbook is 6.3 kg). Thus, our
framework is more robust in forecasting SOC for longer missions.

5.6 Alternate Mission Descriptions
The experiments described so far in this section have been per-
formed on missions represented with Mid-level Job-set. Mean ab-
solute errors were computed over entire missions for forecasts pro-
duced by networks trained for the three mission representations.

Mission Number

Input Spaces for Parameter q
M

ea
su

re
d
q(

ra
d)

Figure 8: Parameter θ for all missions M1-M12.

Figure 9: Absolute and relative temporal errors for the two net-
works.

Figure 5 shows the mean absolute errors for forecasts (10 training-
testing data pairs) of the two types of networks for all three mis-
sion representations. As the mission representation becomes more
compact, the forecast error increases because higher level mission
representations encode less information that is relevant to power
consumption. Thus, a network trained on more abstract job-sets
models the system less precisely, resulting in higher approximation
error. Conversely, low-level mission representations encode more
precise information regarding the dynamics of power consumption
in the execution of the mission. It results in longer mission repre-
sentations and more data on which a network needs to be trained,
but results in lower approximation errors and an overall higher fore-
cast accuracy.

6. CONCLUSION
In this paper, we presented a generalized framework for mission-
specific energy awareness in battery-operated robots. We evaluated
the framework with three mission representations encoding varying
levels of detail. The approach uses recurrent and feedforward neu-
ral networks to predict the change in state of charge (SOC) given a
mission description. We show that recurrent networks are consis-

Figure 10: Comparison of forecast performance of our method with
Parasuraman et al. [13].

tently more accurate predictors of SOC than feedforward networks.
However, feedforward networks can be adjusted to new parameters
(e.g., a battery with different state of health) by tuning a network
learned on different parameters with a small amount of new mis-
sion data. Finally, we compared forecasting performance of our
work to an existing method in the literature, and showed that our
method produces more accurate forecasts.

The work presented is applicable to any type of battery-powered
robot. Note, however, that prediction is most effective in predictable
environments, and that as discussed with respect to Missions 2 and
7, sufficient training under a similar action space is required.

7. ACKNOWLEDGMENTS
This work was supported by Office of Naval Research grant N00014-
14-1-0734.

8. REFERENCES
[1] S. Abu-Sharkh and D. Doerffel. Rapid test and non-linear

model characterisation of solid-state lithium-ion batteries.
Journal of Power Sources, 130(1):266–274, May 2004.

[2] M. Charkhgard and M. Farrokhi. State-of-charge estimation
for lithium-ion batteries using neural networks and EKF.
IEEE Trans Ind Electron, 57(12):4178–4187, 2010.

[3] M. Chen and G. A. Rincon-Mora. Accurate electrical battery
model capable of predicting runtime and iv performance.
IEEE Trans. Energy Convers., 21(2):504–511, 2006.

[4] V. De Carolis, D. M. Lane, and K. E. Brown. Low-cost
energy measurement and estimation for autonomous
underwater vehicles. In OCEANS, Taipei, April 2014.

[5] D. Doerffel and S. A. Sharkh. A critical review of using the
peukert equation for determining the remaining capacity of
lead-acid and lithium-ion batteries. Journal of Power
Sources, 155(2):395–400, April 2006.

[6] D. D. Domenico, G. Fiengo, and A. Stefanopoulou.
Lithium-ion battery state of charge estimation with a Kalman
filter based on a electrochemical model. IEEE International
Conference on Control Applications, pages 702–707, Sept
2008.

[7] F. M. González-Longatt. Circuit based battery models: A
review. In 2nd Congreso IberoAmericano De Estudiantes de

Ingenieria Electrica, Puerto la Cruz, Venezuela, 2006.
[8] V. H. Johnson. Battery performance models in ADVISOR.

Journal of Power Sources, 110(2):321–329, August 2002.
[9] R. C. Kroeze and P. T. Krein. Electrical battery model for use

in dynamic electric vehicle simulations. In IEEE Power
Electronics Specialists Conference, pages 1336–1342,
Rhodes, June 2008.

[10] J. R. LeSage and R. G. Longoria. Characterization of load
uncertainty in unstructured terrains and applications to
battery remaining run-time prediction. Journal of Field
Robotics, 30(3), 2013.

[11] N. Mathew, S. L. Smith, and S. L. Waslander. A graph-based
approach to multi-robot rendezvous for recharging in
persistent tasks. In IEEE International Conference on
Robotics and Automation, pages 3497–3502, Karlsruhe,
Germany, May 2013.

[12] E. Meissner and G. Richter. Battery monitoring and electrical
energy management: Precondition for future vehicle electric
power systems. Journal of Power Sources, 116(1-2):79–98,
July 2003.

[13] R. Parasuraman, K. Kershaw, P. Pagala, and M. Ferre. Model
based on-line energy prediction system for semi-autonomous
mobile robots. In IEEE International Conference on
Intelligent Systems, Modelling and Simulation, pages
411–416, Langkawi, June 2014.

[14] J. Pentzer, S. Brennan, and K. Reichard. On-line estimation
of vehicle motion and power model parameters for skid-steer
robot energy use prediction. In American Control
Conference, pages 2786–2791, Portland, OR, June 2014.

[15] C.-H. Piao, W.-L. Fu, J. Wang, Z.-Y. Huang, and C. Cho.
Estimation of the state of charge of Ni-Mh battery pack
based on neural network. In IEEE International
Telecommunications Energy Conference, pages 1–4,
Incheon, October 2009.

[16] G. L. Plett. Extended Kalman filtering for battery
management systems of LiPB-based HEV battery packs:
Part 1. modeling and identification. Journal of Power
Sources, 134(2), 2004.

[17] A. Sadrpour, J. Jin, and A. G. Ulsoy. Mission energy
prediction for unmanned ground vehicles. In IEEE
International Conference on Robotics and Automation, pages
2229–2234, Saint Paul, MN, May 2012.

[18] Z. M. Salameh, M. A. Casacca, and W. A. Lynch. A
mathematical model for lead-acid batteries. IEEE
Transactions on Energy Conversion, 7(1):93–98, August
1992.

[19] W. Shen. State of available capacity estimation for lead-acid
batteries in electric vehicles using neural network. Energy
Conversion and Management, 48(2):433–442, February
2007.

[20] S. L. Smith, M. Schwager, and D. Rus. Persistent monitoring
of changing environments using a robot with limited range
sensing. In IEEE International Conference on Robotics and
Automation, pages 5448–5455, Shanghai, May 2011.

[21] A. Widodo, M.-C. Shim, W. Caesarendra, and B.-S. Yang.
Intelligent prognostics for battery health monitoring based
on sample entropy. Expert Systems with Applications,
38(9):11763–11769, September 2011.

[22] T. Yamazaki, K. Sakurai, and K. Muramoto. Estimation of
the residual capacity of sealed lead-acid batteries by neural
network. In IEEE International Telecommunications Energy
Conference, pages 210–214, San Francisco, CA, October
1998.

	Introduction
	Literature Review
	Problem Formulation
	Experimental Setup
	Mission Description
	Job-set Definitions

	EXPERIMENTS
	RESULTS AND DISCUSSION
	Recurrent Neural Networks
	Feedforward Neural Networks
	Adaptability
	Parameter-space for Training
	Comparison with existing method
	Alternate Mission Descriptions

	CONCLUSION
	Acknowledgments
	References

