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Abstract—This paper addresses combinatorial problems that
arise in multi-robot battery exchange systems. The multi-robot
battery exchange system addressed herein is characterized by two
types of robots: (a) task robots that provide services at requested
locations; and (b) delivery robots that deliver charged batteries
to task robots when required. Combinatorial problems arising
in these systems involve multiple aspects of resource scheduling
and path planning that make them more complex than well-
known combinatorial problems studied in operations research.
We present several heuristic algorithms for solving these com-
binatorial problems. Our algorithms are inspired by techniques
used in artificial intelligence and the design of approximation
algorithms. We demonstrate the performance of our algorithms
in simulation and analyze how they scale with increasing size of
the multi-robot system.

Note to Practitioners: This paper studies combinatorial
problems arising in multi-robot systems that intend to sustain
themselves using mechanisms for battery exchange. The ideas
developed in this paper are broadly applicable to resource
delivery and scheduling, closed-loop product supply manage-
ment, and pickup and delivery problems for transportation.
Many of the problems studied in this paper are generalizations
of the Traveling Salesman Problem (TSP). Simpler variants of
these have been studied in operations research with the aim
of finding optimal solutions—albeit in exponential time. How-
ever, in this paper, we present heuristic algorithms for solving
battery exchange problems based on techniques developed in
artificial intelligence and the design of approximation algo-
rithms. Our algorithms have polynomial execution times and
therefore scale very well with increasing size of the system.
More expressive variants of battery exchange problems, with a
broader class of constraints, must be addressed in the future. In
addition, future research should also emphasize decentralized
algorithms in order to encourage parallelism and exploit the
computing power available on each individual robot.

Index Terms—Energy-aware planning, multi-robot systems,
battery exchange, mobile robots, persistent robotics, vehicle
routing, path planning, scheduling.

I. INTRODUCTION AND RELATED WORK

Multi-robot path planners which obey energy constraints are
key components of persistent robotic systems. Limited on-
board power is a key challenge for mobile robots on long-
duration missions. While there has been an increasing interest
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in lifelong deployment of robot teams, most of the current
literature addressing the issue of limited power requires robots
to either return to their docking stations to recharge or spend
significant time recharging on-field, both of which can disrupt
the execution of long-duration plans.

Recent work in persistent robotics introduces a persis-
tent operation scheduling algorithm that allows Unmanned
Aerial Vehicles (UAVs) to return to their docking stations
for recharging [1]. Similarly, Derenick et al. propose an
energy-aware multi-robot system for coverage that alters the
team’s configuration to allow low-energy robots to return for
recharging [2]. These approaches repeatedly remove robots
from their assigned tasks and thus cannot be used for ac-
complishing critical long-duration tasks. Song et al. avoid this
problem by replacing discharged robots with new ones but
at the cost of significantly increasing the number of robots
required [3]. In all of these works, travel from and to a
charging station can waste a significant amount of energy,
reducing the usable lifespan of robot during a cycle. Kannan et
al. introduce the Autonomous Recharging Problem (ARP)
and propose an energy-aware design along with static and
mobile charging stations [4]. Mathew et al. allow on-the-
spot recharging for persistent task UAVs but unrealistically
assume instantaneous recharging [5]. Even if this assumption
is obviated, the framework, like that of Kannan et al., prohibits
a recharging robot from attending to its assigned tasks. Other
works present persistent monitoring schemes but ignore battery
exhaustion altogether [6].

Several hardware-only solutions for recharging and docking
mobile robots have been developed [7]–[10]. However, these
methods take the robots out of service while recharging. The
idea of distributable energy was suggested by Ngo et al.
with a policy for energy sharing [11]. While battery sharing
among robots can prolong their working durations, it cannot
completely avoid the problem of robots eventually having to
return to their docking stations for recharge.

Recent works on autonomous battery swapping mecha-
nisms, many of which are specifically tailored for UAVs [12]–
[17], can be used to avoid wasted time and energy incurred
while robots return to and from charging stations. While this
requires a supply of fully charged batteries in preparation for
deployment, the cost of keeping additional batteries available
is significantly lower than the cost of deploying additional
robots that would otherwise be necessary to ensure unin-
terrupted operations. Autonomous battery swapping methods
can be used for changing batteries on the field, effectively
eliminating robot downtime at the marginal cost of having to
keep a relatively small number of delivery robots on hand.
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This paper addresses combinatorial problems that arise in
multi-robot battery exchange systems of a specific kind. In
our setup, there are two kinds of robots: (a) task robots that
provide services at requested locations; and (b) delivery robots
that deliver fully charged batteries to the task robots when they
are required. As a consequence, task robots are not required
to return to their docking stations for recharging. We study
combinatorial problems arising in these systems when the
task robots and delivery robots have communication through a
central controller which can decide their rendezvous locations.

The combinatorial problems that arise in this case involve
multiple aspects of resource scheduling, path planning, and
temporal coordination that make them more difficult to solve
than well-known combinatorial problems studied in operations
research. We present several polynomial-time heuristic algo-
rithms for solving these combinatorial problems. Our algo-
rithms are inspired by techniques used in artificial intelligence
and the design of approximation algorithms. We demonstrate
the performance of our algorithms in simulation and analyze
how they scale with increasing size of the multi-robot system.

Several combinatorial problems akin to ours, like multi-
robot path planning, persistent surveillance, and battery de-
livery, have been recently studied in relation to the multiple-
Traveling Salesman Problem (m-TSP) and the Vehicle Routing
Problem (VRP) [18], [19]. However, these studies mostly
involve formulating these NP-hard problems as Mixed Integer
Programs (MIPs). Kamra et al. [19] show that the MIP-based
solution methods do not scale well with exact solvers.

Recent works have also proposed heuristics for solving
such m-TSP and VRP-based formulations faster [20]–[22].
Sariel et al. employ a dynamic task selection scheme to
generate priority-based rough schedules for the m-TSP [20].
Yu et al. draw connections between multi-agent path planning
and network flows, thereby formulating the problem as an
Integer Linear Program (ILP) and solving it with principled
heuristics [22]. Although these works provide efficient heuris-
tics to solve the m-TSP and/or the VRP, they do not address
the rich temporal aspect of our combinatorial problem that is
required for coordination between the various task and delivery
robots. They also do not reason about the capacity constraints
imposed on delivery robots that set an upper bound on how
many batteries each of them can physically carry.

Mathew et al. have considered a battery exchange problem
similar to ours, but they discretize their state space and have
fixed paths for task robots requiring periodic recharge [21],
[23]. Our task robots have continuous non-trivial paths which
change with service locations, hence our recharging times
do not admit any periodic structure. We additionally have
capacity constraints on the delivery robots and use fast plan-
ning heuristics instead of relying on ILP formulations. Our
temporal planning component guarantees the fastest possible
coordination (i.e., the minimum horizon) as opposed to the
approximate fixed-horizon/receding-horizon planner in [21].

Similar combinatorial problems have also been studied in
the multi-robot coverage literature [24]–[26] but they neither
impose capacity constraints nor require temporal coordination.
Furthermore, our methods work in continuous space and time,
whereas the aforementioned approaches make the problem

tractable by discretizing space and/or time.
The rest of the paper is organized as follows. Section II

formalizes our problem and discusses some preliminaries
required to understand our subroutines used in our battery
exchange planning algorithm. Section III describes our subrou-
tines for the makespan minimization objective with multiple
robots while accommodating on-board power and capacity
constraints. Section IV describes the full battery exchange
planning algorithm. Section V provides proofs and analysis for
the battery exchange planning algorithm. Section VI describes
our simulations and discusses the results obtained. Lastly, we
summarize our work and allude to some avenues for future
work in Section VII.

II. PROBLEM FORMULATION

We assume the availability of a fixed number of task robots
and a fixed number of delivery robots. Within each group, we
assume that the robots are functionally indistinguishable.

Let the task robots be {rt1, rt2, . . . , rtM} and let the delivery
robots be {rd1 , rd2 , . . . , rdN}. Let the requested service locations
be {`1, `2, . . . , `T }. For simplicity of exposition, we assume
that there is a single service request at each service location1.
Service requests can be satisfied only by the task robots;
however, task robots have limited on-board power. Let Dt be
the distance that a task robot can travel on a fully charged
battery before exhausting it completely. We assume that a
battery drains with distance traveled (not with time).

The role of the delivery robots is to keep the task robots
active by exchanging task robots’ drained batteries for fully
charged ones whenever needed. This would allow the task
robots to make longer service trips without returning to the
charging stations. Delivery robots are capable of carrying
a small number of task robot batteries on-board. Let this
capacity be C. We assume that the delivery robots are smaller
and more agile, and consequently, can travel much longer
distances than task robots even though the batteries that power
them are smaller than those of the task robots. Let Dd be the
distance that a delivery robot can travel on a fully charged
battery before exhausting it completely. We further assume
that a delivery robot can replenish the batteries of task robots
but not those of other delivery robots or of itself. We then study
the combinatorial problem of routing and scheduling both task
and delivery robots in order to minimize the makespan, i.e.,
the total time taken to complete plan execution.

We develop an algorithm for solving the above core com-
binatorial problem based on polynomial-time approximation
techniques used for variants of the TSP. We consider different
combinatorial aspects of our problem one at a time. In the
subroutines presented leading up to the final algorithm, we
often use K to represent the number of relevant robots in order
to generalize their applicability to the task robots as well as
the delivery robots.

A. Preliminaries
One of the basic building blocks of our algorithm considers

the TSP on a single robot with its own location and the service

1If this is not the case, the common location can be assigned a “composite”
service request, or duplicate service locations can be dealt with explicitly.
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Algorithm II.1 A polynomial-time factor-2 approximation
algorithm for the TSP in a metric space.

Input: robot location `r; service locations `1, `2, . . . , `T .
Output: a tour τ visiting each service location exactly once.
Construct a complete edge-weighted undirected graph G
with nodes {`1, `2, . . . , `T } ∪ {`r}.
Assign the weight on each edge to be the geometric distance
between its endpoint locations.
Let M be the MST computed on G.
Let τ be a depth first search (DFS) tour of the nodes in
G starting from `r that circumnavigates each edge of M
twice.
Short-circuit τ by removing duplicate nodes after their first
occurrence.
return τ .

locations embedded in a metric space. It is well known that the
distances must satisfy the triangle inequality in order to design
any reasonable polynomial-time approximation algorithm for
the TSP [27]. Such an assumption is therefore also required
for our problem since it involves variants of the TSP as
subproblems and is consequently at least as hard as the TSP.

In the inner loop of our algorithm, we use the well-
known polynomial-time factor-2 approximation algorithm for
the TSP [28]. This algorithm is based on first constructing
the minimum spanning tree (MST) over all locations and, in
a subsequent phase, short-circuiting a circumnavigation of the
MST that traverses each edge twice in opposite directions.
Algorithm II.1 presents the details of this procedure. It serves
as a factor-2 approximation algorithm since the cost of the
optimal tour has to be greater than the cost of M but the
cost of the produced tour τ can only be less than twice the
cost of M after short-circuiting.2 Moreover, the algorithm runs
in polynomial time since the MST can be computed easily.
While the inner loop of our algorithm uses the procedure in
Algorithm II.1, better approximation algorithms for Euclidean
TSPs can be used in lieu of it, if required.

For reasoning about the temporal dimension of our problem,
we use the framework of the Simple Temporal Problem
(STP) [29]. STPs are widely used in temporal reasoning for
their expressive power and tractability. An STP S is a con-
straint satisfaction problem with n+1 temporal variables rep-
resenting executing times of events X = {X0, X1, . . . , Xn}.
It is typically represented as a graph (V,E). Here, |V | = n+1
and vi ∈ V represents the execution time of the event Xi ∈ X .
A directed edge e = (vi, vj) ∈ E is annotated with the bounds
[LB(e), UB(e)] indicating that event Xj must be scheduled
between LB(e) and UB(e) time units after event Xi. A
special node v0 corresponding to X0 represents the “beginning
of the world” and is set to 0 by convention.

An STP can also be viewed as a collection of difference
constraints of the form vj − vi ≤ wij . Such a collection of
difference constraints can in turn also be represented graphi-
cally as a distance graph where the constraint vj − vi ≤ wij

2Here and in other places, the disambiguation from M also being used to
represent the number of task robots is clear from context.

Algorithm II.2 A polynomial-time factor-2 approximation
algorithm for the TSP in a metric space with multiple robots
and the objective of minimizing the total distance traveled.

Input: robot locations `r1 , `r2 , . . . , `rK ; service locations
`1, `2, . . . , `T .
Output: a tour τi for each robot ri (1 ≤ i ≤ K) such that
each service location is in exactly one tour and the sum of
the distances is minimized.
Construct a complete edge-weighted undirected graph G
with nodes {`1, `2, . . . , `T } ∪ {`r1 , `r2 , . . . , `rK}.
Assign the weight on each edge to be the geometric distance
between its endpoint locations.
Create a fictitious node `0 connected to `r1 , `r2 , . . . , `rK
each with an edge of weight 0.
Let M be the MST rooted at `0.
Let M1,M2, . . . ,MK be the trees obtained after deleting
the root `0 from M .
Let τi be a tour of the nodes in Mi starting from `ri that
circumnavigates each edge of Mi twice.
Short-circuit each tour τi by removing duplicate nodes after
their first occurrence.
return τ1, τ2, . . . , τK .

is represented as a directed edge (vi, vj) annotated with wij .
An STP is known to be consistent if and only if its distance
graph has no negative cost cycles in it [29]. For a consistent
STP, a schedule with the minimum makespan can be found
in polynomial time using shortest path computations on its
distance graph. Because the distance graph can have negative
weights, shortest paths on it are commonly computed using
the Bellman-Ford algorithm [27].

B. Extension to Multiple Robots: Total Distance Minimization

The above polynomial-time factor-2 approximation algo-
rithm can be easily extended to the case of multiple robots
as well. Given T service locations and K robots, each with
its own initial location it must eventually return to, we are
interested in obtaining a tour for each robot such that each
service location is visited exactly once by one of the robots and
the sum of the distances traveled by the robots is minimized.

In order to adapt the procedure of Algorithm II.1 to multiple
robots, we do the following. We first create a fictitious node
`0 connected to the initial locations of all robots, each with
an edge of weight 0. We then build an MST rooted at `0.
After this tree is built, the fictitious node `0 is removed—
leaving behind a tree rooted at each of the initial locations of
the robots. Once we have such a tree for each robot, they are
independently short-circuited to produce a tour for that robot.
Algorithm II.2 shows this procedure.

Algorithm II.2 runs in polynomial time, and by the earlier
argument, provides a factor-2 approximation for the sum of
the distances traveled by the robots [30].

III. SUBROUTINE PREPARATIONS

We now describe more subroutines required to develop a
full battery exchange planning algorithm. These subroutines
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Algorithm III.1 A polynomial-time heuristic algorithm for the
TSP in a metric space with multiple robots and the objective
of minimizing the makespan.

Input: robot locations `r1 , `r2 , . . . , `rK ; service locations
`1, `2, . . . , `T .
Output: a tour τi for each robot ri (1 ≤ i ≤ K) such
that each service location is in exactly one tour and the
makespan is minimized.
Construct a complete edge-weighted undirected graph G
with nodes {`1, `2, . . . , `T } ∪ {`r1 , `r2 , . . . , `rK}.
Assign the weight on each edge to be the geometric distance
between its endpoint locations.
For each i ∈ {1, 2, . . . ,K}, set Mi to be the singleton tree
{`ri}.
Iteratively build trees M1,M2, . . . ,MK as follows until all
nodes in G are covered.
- Consider all edges in G with one endpoint in any of
M1,M2, . . . ,MK and the other endpoint in neither of them.
- Compute the cost of adding each such edge e as follows.
– Add e to obtain the new set of trees M ′1,M

′
2, . . . ,M

′
K .

– Let τ ′i be a tour of the nodes in M ′i starting from `ri that
circumnavigates each edge of M ′i twice.
– Short-circuit τ ′i by removing duplicate nodes after their
first occurrence.
– The cost of adding e is the cost of the longest resulting
tour in τ ′1, τ

′
2, . . . , τ

′
K .

- Add the minimum cost edge emin for the current iteration.
Let τi be a tour of the nodes in Mi starting from `ri that
circumnavigates each edge of Mi twice.
Short-circuit τi by removing duplicate nodes after their first
occurrence.
return τ1, τ2, . . . , τK .

extend the above algorithms to makespan minimization and
accommodate constraints representing limited on-board power
and finite capacities of the delivery robots.

A. Extension to Multiple Robots: Makespan Minimization

The above polynomial-time factor-2 approximation algo-
rithm for total distance minimization can be easily extended to
makespan minimization as well. Given T service locations and
K robots, each with its own initial location it must eventually
return to, we are interested in obtaining a tour for each robot
such that each service location is visited exactly once and
the makespan is minimized under the assumption of uniform
velocities of the robots.

In order to adapt the procedure of Algorithm II.2 to
makespan minimization, we modify the manner in which
the spanning tree M is constructed. Algorithm III.1 shows
this procedure. It roots a tree at each initial location of the
robots but iteratively grows them in a slightly different way
as compared to the algorithm for total distance minimization.
In each iteration, it considers all edges that connect a node
in any of the partially built trees to a node outside this set.
Each such edge is evaluated by how much it would increase
the makespan if added. The minimum such edge is chosen

Algorithm III.2 A polynomial-time heuristic algorithm for
minimizing the number of recharges required for a single robot
having to visit a given set of locations.

Input: robot location `r; target locations `1, `2, . . . , `T ;
distance limit D.
Output: a minimum set of tours τ1, τ2, . . . , τK to cover the
target locations—each tour starting and ending at `r with a
cost ≤ D.
For K = 1, 2 . . . do the following.
- Call Algorithm III.1 on {`r1 = `r, `r2 = `r, . . . , `rK =
`r} and {`1, `2, . . . , `T }.
- If the minimum makespan is ≤ D, break.
return τ1, τ2, . . . , τK from the last iteration.

to be added for that iteration. An evaluation of the makespan
for partially built trees first constructs a tour for each robot
circumnavigating the edges of its tree, then short-circuits these
tours, and finally uses the cost of the longest resulting tour. As
before, when the partially built trees cover all nodes, the trees
for the robots are independently short-circuited to produce a
final tour for each robot.

Algorithm III.1 runs in polynomial time; but unfortu-
nately, it does not guarantee a factor-2 approximation for the
makespan. Nonetheless, it works very well in practice as a
heuristic procedure and is used in the auction-based robot
routing literature [31], [32].

B. Including On-Board Power: Single Robot

We can now consider a simple problem that accommodates
limited on-board power. Suppose we are given a set of target
locations and a single robot that needs to visit these locations.
The robot can travel a maximum distance of D before it must
return to its initial location for recharge. We are interested in
minimizing the number of recharges required.

This problem is very similar to makespan minimization for
multiple robots with the initial locations of all robots being
identical. The multiple robots are conceptually analogous to
multiple trips of the same single robot at different times. Thus,
Algorithm III.2 assumes K robots in the inner loop and runs
Algorithm III.1. If the resulting minimum makespan is greater
than D, that iteration is deemed unsuccessful. Starting from
K = 1 and iteratively increasing K in each unsuccessful
iteration, we can determine the lowest value of K for a
successful iteration that would be indicative of the number
of recharges required.

It is easy to note that a solution exists if and only if all
target locations lie within a radius of D/2 around `r. In such
a case, Algorithm III.2 also finds a solution in polynomial time
although it is not guaranteed to be optimal.

C. Including On-Board Power: Multiple Robots

Now suppose we are given a set of target locations and
K robots that need to visit these target locations. Suppose
each robot can travel a maximum distance of D before having
to recharge at its initial location. If we are interested in
minimizing the maximum number of recharges any robot
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Algorithm III.3 A polynomial-time heuristic algorithm for
minimizing the maximum number of recharges required for
any robot given multiple target locations and multiple robots.

Input: robot locations `r1 , `r2 , . . . , `rK ; target locations
`1, `2, . . . , `T ; distance limit D.
Output: a set of tours for each robot ri to cover the target
locations; each tour for ri starts and ends at `ri with a cost
≤ D.
For p = 1, 2 . . . do the following.
- Create p copies of each robot ri at the same location `ri .
- Call Algorithm III.1 on the locations of these pK robots
and {`1, `2, . . . , `T }.
- If the minimum makespan is ≤ D, break.
return the p tours for each of the K robots.

requires, we can generalize the procedure in Algorithm III.2
using a simple “phase counter” p. Starting from p = 1, and
incrementing it by 1 in each iteration, we find the lowest value
for it that passes the following check. In phase p, we create
p fictitious identical copies of each of the K robots rooted
at the same initial location. We then use Algorithm III.1 to
check whether the makespan is ≤ D. If it passes the check,
we stop with the current value of p; else, we increment it for
the next iteration. Because a tour is produced for each of the
pK fictitious robots, p tours are produced for each real robot
which in turn can be traversed by that robot in any order.
Algorithm III.3 shows the working of this procedure.

It is easy to note that a solution exists if and only if the
maximum distance between a target location and any of the
initial locations of the robots is less than or equal to D/2. In
such a case, Algorithm III.3 also finds a solution in polynomial
time although it is not guaranteed to be optimal.

D. Incorporating Capacity Constraints for Delivery Robots

In order to model the capacity constraint C of the delivery
robots, we can use Algorithm III.3 with a slight modification
to its inner procedure. The new inner procedure, built on
Algorithm III.1, maintains partially built trees for each robot
and adds one more edge to some robot tree in each iteration
until all nodes are covered. If a delivery robot has a capacity of
carrying C batteries, no more than C nodes should be assigned
to it in this iterative process. In other words, we can simply
freeze a robot tree—i.e., make it inactive—in Algorithm III.1
after it has been assigned C service locations. The modified
procedure that heeds to the capacity constraint C appears in
Algorithm III.4.

Algorithm III.4 assumes that all target locations are covered
before all robot trees are deemed inactive. In other words,
it assumes that a delivery robot doesn’t have to go back to
its initial location for replenishing its own stock of fresh
batteries. When this assumption is not true, a straightforward
generalization of the same algorithm fixes the issue simply by
using the same idea of a “phase counter” as in Algorithm III.3.

Algorithm III.4 A polynomial-time heuristic algorithm for
multiple delivery robots of finite battery-carrying capacities
and the objective of minimizing the makespan.

Input: robot locations `r1 , `r2 , . . . , `rK ; target locations
`1, `2, . . . , `T ; battery-carrying capacity C.
Output: a tour τi for each robot ri (1 ≤ i ≤ K) such
that each target location is in exactly one tour of at most C
nodes; and the makespan is minimized.
Construct a complete edge-weighted undirected graph G
with nodes {`r1 , `r2 , . . . , `rK} ∪ {`1, `2, . . . , `T }.
Assign the weight on each edge to be the geometric distance
between its endpoint locations.
For each i ∈ {1, 2, . . . ,K}, set Mi to be the singleton active
tree {`ri}.
Iteratively build trees M1,M2, . . . ,MK as follows until all
nodes in G are covered.
- Consider all edges in G with one endpoint in any active
tree of M1,M2, . . . ,MK and the other endpoint in neither
of them.
- Compute the cost of adding each such edge e as follows.
– Add e to obtain the new set of trees M ′1,M

′
2, . . . ,M

′
K .

– Let τ ′i be a tour of the nodes in M ′i starting from `ri that
circumnavigates each edge of M ′i twice.
– Short-circuit τ ′i by removing duplicate nodes after their
first occurrence.
– The cost of adding e is the cost of the longest resulting
tour in τ ′1, τ

′
2, . . . , τ

′
K .

- Add the minimum cost edge emin for the current iteration.
- Let M∗ be the tree that gets a new target location added
to it by the addition of emin.
- If M∗ now has C nodes, make it inactive.
Let τi be a tour of the nodes in Mi starting from `ri that
circumnavigates each edge of Mi twice.
Short-circuit τi by removing duplicate nodes after their first
occurrence.
return τ1, τ2, . . . , τK .

IV. A FULL MULTI-ROBOT BATTERY EXCHANGE
PLANNING ALGORITHM

We now put together all the pieces for solving a full-fledged
version of the multi-robot battery exchange problem. The
task robots are denoted by {rt1, rt2, . . . , rtM}; and the delivery
robots are denoted by {rd1 , rd2 , . . . , rdN}. The service locations
are {`1, `2, . . . , `T }. Dt is the distance that a task robot can
travel on a fresh battery before exhausting it completely. Dd

is the distance that a delivery robot can travel on a fresh
battery before exhausting it completely. In our model, the
battery drains linearly with distance traveled. Dd is generally
much larger than Dt since the delivery robots are fast and
agile with lower power consumption rates compared to the
task robots that are larger, heavier, and consume more power.
C is the capacity of a delivery robot. Finally, we assume that
the maximum velocity achievable by any robot r is V max(r)
and that the robot r can control its velocity to be any value
in the interval [0, V max(r)].

Each task robot travels between service locations complet-
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ing one assigned task after another. It returns to its initial
location after all tasks assigned to it have been completed.
However, it does not return to its initial location for recharge
since the delivery robots supply fresh batteries to it. The
delivery robots keep the task robots alive by exchanging their
batteries when needed. Note that delivery robots can neither
exchange batteries of other delivery robots nor replace their
own batteries. Therefore, they must return back to their initial
locations for recharge.

A successful algorithm that attempts to minimize the
makespan and coordinates battery exchanges between the task
robots and delivery robots should empower task robots to
accomplish tasks that require travel distances much larger
than Dt. We present such an algorithm below. It has a
spatial planning component as well as a temporal coordination
component.

A. Spatial Planning

The spatial planning component of the algorithm can be
described using the following steps.
Step 1: Assign the service locations to the task robots using
Algorithm III.1 in an attempt to minimize the makespan. This
step produces a tour for each task robot while disregarding its
on-board power capabilities. It is deemed as the responsibility
of the delivery robots to keep the task robots alive en route
their tours.
Step 2: Consider each task robot’s tour and the geometric path
it traces. On this path, mark off points at intervals of length
Dt.
Step 3: The marked locations from the previous step indicate
the rendezvous points—locations where the task robots will
need fresh batteries—with qij denoting the jth rendezvous
point on the path of the ith task robot.
Step 4: Assign delivery robots to these rendezvous points
using Algorithm III.4. More specifically, first assign deliv-
ery robots to all first-order rendezvous points (qi1 for all
i ∈ {1, 2, . . . ,M}), then to all second-order rendezvous points
(qi2 for all i ∈ {1, 2, . . . ,M}), and so on, each time calling
Algorithm III.4 as a subroutine.
Step 5: Stitch together the resulting paths for each delivery
robot into one single long delivery path that involves multiple
returns to that robot’s initial location.

The above steps produce paths for task robots to follow in
order to visit the service locations and also paths for delivery
robots to rendezvous with task robots and exchange their
batteries whenever needed.

B. Temporal Coordination

Once paths for all of the task robots and delivery robots are
computed, their velocities must be coordinated in such a way
that the task robots and delivery robots meet at the rendezvous
points for battery exchanges. This coordination should also be
done in a way that the entire plan finishes as early as possible.
Fortunately, we can do this efficiently in the framework of
STPs. The temporal coordination component of the algorithm
can be described using the following steps.
Step 1: Create an STP instance containing each of the

following events: task robots and delivery robots starting from
their initial locations, tasks robots visiting service locations,
rendezvous of task robots and delivery robots at the qij’s, and
task robots and delivery robots returning back to their initial
locations.
Step 2: Include a reference event X0 in the STP representing
the “beginning of the world” and set to 0 by convention.
Step 3: Trace the paths of all task robots and delivery robots as
obtained from the spatial planning component of the algorithm.
Step 4: Whenever a robot r visits two consecutive locations
on its path, with corresponding events Xi and Xj in the STP,
add a directed edge from Xi to Xj annotated with the bounds
[

Lij

V max(r) ,∞] where Lij is the physical distance between these
locations.
Step 5: Obtain the earliest execution time vi for each Xi in the
STP using the Bellman-Ford algorithm on its distance graph.
Step 6: Set the velocity of a robot r traveling between two con-
secutive locations, corresponding to Xi and Xj respectively,
to Vij(r) =

Lij

vj−vi .
The above steps produce velocity profiles for each of the

task robots and delivery robots to follow in order to satisfy the
service requests and also meet at rendezvous points for battery
exchanges. A formal proof for properties of the temporal
coordination algorithm is presented in the following section.

V. FORMAL ANALYSIS AND PROOFS

The foregoing sections described several polynomial-time
heuristic procedures for generating the paths of the task robots
and the delivery robots under various physical constraints.
The STP framework was used for their temporal coordination
at rendezvous points. This section presents a formal proof
that the algorithm produces velocity profiles for each robot to
follow that are in conformance with their maximum velocities,
as well as a formal proof that the temporal coordination is
itself optimal. This section also presents a formal analysis of
the algorithm’s time complexity, as well as a report on its
theoretical properties.

A. Proof of Optimal Temporal Coordination

Given an STP S with events X = {X0, X1, . . . , Xn}, let
vi be the node in its distance graph representation, GS , that
corresponds to the event Xi. We make use of the following two
well-established results [29]: (a) An STP S is consistent if and
only if GS has no negative cost cycles; and (b) For a consistent
STP S, two particular valid assignments of execution times
to all events are given by {Xi ← d0i} and {Xi ← −di0}.
Here, dij is the length of the shortest path from vi to vj in
GS . These two assignments correspond to the latest and the
earliest possible execution times of all events, respectively.

Let S be the STP as defined in steps 1-4 of Section IV-B.
By construction, S contains events for each of the following:
task robots and delivery robots at their initial locations, task
robots visiting service locations, rendezvous of task robots and
delivery robots at qij’s, and the return of all task robots and
delivery robots to their initial locations. S also contains edges
that encode the constraints Xj−Xi ≥ Lij

V max(r) and Xj−Xi ≤
∞ for every pair of consecutive locations visited by robot r
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corresponding to the events Xi and Xj , respectively. Consider
the following claims:

1) S is consistent;
2) The temporal coordination happens in the earliest possi-

ble way, i.e., our assignment A = {Xi ← −di0} is not
only consistent but also guarantees that there exists no
other consistent assignment A′ of execution times to all
events in X such that A′(Xi) < A(Xi) for any Xi;

3) The velocity of any robot r while traversing any edge
is ≤ V max(r).

First, note that the STP framework is used for temporal
coordination since it is representationally sufficient. The paths
generated by the spatial planning component along with the
maximum velocity constraints on the robots traversing them
can be encoded as STP constraints in a straightforward manner
as shown in steps 1-4 of Section IV-B. In addition, any
rendezvous can also be encoded as an STP constraint by
enforcing the equality of the time points at which the task robot
and the delivery robot reach the corresponding rendezvous
point. However, for simplicity of the proof, and without loss
of generality, let’s assume that an STP constraint is used only
to enforce that the task robot arrives no later than the delivery
robot at any rendezvous point. This relaxation does not destroy
generality since simultaneity of arrivals can be retrieved by
simply reducing the velocity of the task robot.

The above claims can now be proved formally as follows.
First, from the theory of STPs [29], it is well know that
proving Claim 1 would automatically also prove Claim 2.
Moreover, since S encodes all the maximum velocity con-
straints into temporal bounds of the form [

Lij

V max(r) ,∞] in
step 4 of Section IV-B, Claim 3 would also be proved as
a consequence of proving Claim 1. In addition, in order to
prove Claim 1, it suffices for us to show the existence of some
consistent schedule for all the robots.3 A convenient schedule
that establishes consistency of S is as follows: (a) set all task
robots to perform their planned tasks; (b) wait until every task
robot either completes its assigned tasks or stalls for a fresh
battery; (c) schedule delivery robots to deliver fresh batteries
to all waiting task robots (at known locations); (d) resume
the activities of task robots that have not yet finished their
assigned tasks; (e) wait until every task robot either completes
its assigned tasks or stalls for the second fresh battery; and so
on.

In summary, the above claims were proved using the fol-
lowing two critical arguments: (1) all coordination constraints
are STP constraints; and (2) proving the consistency of S, i.e.,
showing the mere existence of some solution, also proves the
optimality of the assignment A = {Xi ← −di0} obtained
from its distance graph.

B. Time Complexity Analysis

With one robot and T service locations, Algorithm II.1
works on a graph with O(T ) nodes and O(T 2) edges. Hence,
Algorithm II.1 can be implemented to run in O(T 2 log T ) time

3We note that such a consistent schedule would be chosen for convenience
of the existential proof but wouldn’t be the actual output of the algorithm
itself since the output schedule would be the optimal one.

using Prim’s algorithm with a binary heap for computing the
MST [27]. Algorithm II.2 extends this to K robots and runs
in O((K + T )2 log(K + T )) time.

Algorithm III.1 has O(T ) iterations in the outer loop. In
the inner loop, it checks O(T ) candidate service locations to
find the best one to add for that iteration. For each candidate
addition, it checks O(K + T ) possible choices. And for
each such choice, it takes O(K + T ) time for evaluating it
through a DFS and short-circuiting procedure. The overall time
complexity of Algorithm III.1 is therefore O(T 2(K + T )2).

In Algorithm III.2, it is generally hard to estimate the num-
ber of iterations required for termination since this depends on
the value of D and the actual locations of the robot and the
targets. However, a worst-case bound can still be provided. In
the worst case, all target locations are at a distance of D/2
from the robot and it might only be able to visit one target
location per trip. In such a case, Algorithm III.2 requires at
least T calls to Algorithm III.1, hence running in O(T 5) time.
Algorithm III.3 extends this to multiple robots and has a worst-
case time complexity that can be estimated in a similar manner.
It too is O(T 5). Moreover, the worst-case time complexity
of Algorithm III.4 matches that of Algorithm III.3 since the
capacity of each delivery robot is at least one and we already
assume the worst case of a single delivery per trip.

For an STP S with distance graph GS = (V,E), computing
the optimal solution requires the Bellman-Ford algorithm that
has a time complexity of O(|V ||E|) [27].

We now finally analyze the time complexity of our battery
exchange planning algorithm. The full algorithm requires the
following: (a) calling Algorithm III.1 for M task robots and
T service locations; (b) marking rendezvous points on each
task robot’s path: let the total number of rendezvous points
be R; (c) calling Algorithm III.4 with N delivery robots
and R rendezvous points (locations); and (d) solving an STP
with O(M + N + T + R) nodes and O(M + N + T + R)
edges. Aggregating these pieces, the total time complexity is
O(T 2(M + T )2 +R5 + (M +N + T +R)2). A pessimistic
upper bound on R assumes that each service location is at
the end of the radius Dd/2 from the delivery robots; and
hence, a task robot delegated for it would need O(Dd/Dt)

fresh batteries. This makes R as large as O(TDd

Dt ). The total
time complexity of the algorithm becomes O(T 2(M + T )2 +

(TDd

Dt )5+(M +N + TDd

Dt )2). Under the realistic assumptions
that T �M,N and that Dd/Dt is a domain-specific constant
≥ 1, the time complexity of our battery exchange planning
algorithm is simplified to O(T 5).

We note that although the running time of our algorithm
is shown to be only polynomial in the initial number of
robots and service locations, the foregoing worst-case analysis
is rather loose. In fact, actual experiments, as reported in
Section VI, confirm this and indicate that our algorithm scales
much better in practice compared to a fifth-degree polynomial.

C. Effective Coverage Area

One of the primary objectives of our battery exchange
planning algorithm is to have the task robots be able to attend
to service requests that are located far away from them. If the
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Loc: (-350, 950)

Loc: (0, 700)

Loc: (300, 500)RP: (-386, 602.3)

TR: (-700, 300)

Loc: (-650, 400)

Loc: (-500, -500)

Loc: (800, 300)

RP: (567.6, -164.8)

TR: (500, -300)

Loc: (600, -700)

Loc: (1000, -400)

Fig. 1. Shows the spatial plans for task robots. Here, red circles are task
robots, blue triangles are locations where task robots need battery exchanges
(rendezvous points), and white squares are service locations. A node label
indicates its type and its (x, y) coordinates.

task robots do not have the support of the delivery robots
through the battery exchange planning algorithm, they can
only travel a distance of Dt/2 before having to come back
to their initial locations for recharge. Through our algorithm,
however, the delivery robots can keep the task robots alive
at farther distances. The task robots can continue to service
requests indefinitely as long as their rendezvous points occur
within the union of the circular reachable areas around each of
the delivery robots’ initial locations. This extends the effective
coverage areas by distances up to Dd/2 around the delivery
robots’ initial locations. Because the delivery robots are faster,
more agile, and consume lesser power compared to the task
robots, making Dd � Dt, our algorithm achieves a significant
improvement in the effective coverage area of the task robots.

VI. SIMULATION RESULTS

In this section, we present simulation results for the battery
exchange planning algorithm. Ground robots and quadrotors
instantiate the task robots and the delivery robots, respectively.
For quadrotors, their path between any two locations is realisti-
cally assumed to be a straight line flight path (ignoring takeoff
and landing). All experiments were done on a 64-bit machine
with Ubuntu 16.04 LTS, 4th Gen. Intel i7 quad-core processor,
2.5 GHz clock speed and 16 GB RAM. Only a single core was
used for the experiments (no parallelization was in effect).

The parameters for the delivery robots are similar to those
of the AscTec Hummingbird quadrotor: maximum speed
V max
d = 10m/s and a battery life of approximately 20min in

continuous flight. Thus, delivery robots can travel a maximum
distance of about Dd = 12 000m on a fully charged battery.
The battery-carrying capacity of each delivery robot is 2.
The task robots are ground robots with parameters similar to
the ClearPath Robotics TurtleBot 2: average maximum speed
V max
t = 0.65m/s and a battery life of 55min − 60min in

continuous motion. Thus, task robots can travel a maximum
distance of about Dt = 2160m on a fully charged battery.

Loc: (-350, 950)

Loc: (0, 700)

Loc: (300, 500)RP: (-386, 602.3)

TR: (-700, 300)

Loc: (-650, 400)

Loc: (-500, -500)

Loc: (800, 300)

RP: (567.6, -164.8)
TR: (500, -300)

Loc: (600, -700)

Loc: (1000, -400)

DR: (0, 0)

Fig. 2. Shows the spatial plans for delivery robots. Here, red circles are
task robots, blue triangles are locations where task robots need battery
exchanges (rendezvous points), green double-circles are delivery robots, and
white squares are service locations. A node label indicates its type and its
(x, y) coordinates.

v=0.18

v=10v=10

v=0.65

v=0.65

v=0.65

v=0.65

v=0.65

v=0.65

v=0.53

v=0.65

v=0.65

v=0.65

v=0.65

t=2785.35

t=2123.63

t=1568.93

t=3445.46

t=0, 
6507.42

t=5427.75

t=5150.4

t=0, 
3517.0

t=2523.57

t=1403.55

t=634.32

t=3323.08
t=0, 
3555.6

Fig. 3. Shows the complete spatial and temporal plans for all robots. Here,
red circles are task robots, blue triangles are locations where task robots
need battery exchanges (rendezvous points), green double-circles are delivery
robots, and white squares are service locations. A node label indicates the
time at which it is visited, and an edge label indicates the velocity of the
robot traversing it.

Figures 1–3 provide snapshots of the battery exchange
planning algorithm on an example problem instance. In these
figures, task robots are indicated using red circles, delivery
robots are indicated using green double-circles, rendezvous
points are indicated using blue triangles, and service locations
are indicated using white squares.

Our example problem instance has 2 task robots, 1 delivery
robot, and 8 service locations. Figure 1 shows the result of the
spatial planning component of our algorithm. The 2 task robots
have been allotted 3 and 5 service locations each by virtue
of running Algorithm III.1 while ignoring their maximum
traveling distance Dt. It is now deemed as the responsibility
of the delivery robot to keep the 2 task robots alive while
they carry out their plans. Figure 1 also shows the rendezvous
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Fig. 4. The effect of T on running time.

Fig. 5. Shows the effect of M on the running time for different values of T .

points where the task robots will need fresh batteries.
Figure 2 shows the spatial plan for the delivery robot. The

rendezvous points act as the destinations for the delivery robot;
its visits are scheduled according to Algorithm III.4. The
maximum traveling distance of the delivery robot is also taken
into account as per the strategy in Algorithm III.3.

Finally, Figure 3 shows the results of the temporal plan
computed using the STP framework. The computed visit times
are shown next to each node. Here, each edge is also annotated
with the velocity of the robot traversing it. It is easy to verify
not only that all robots stay within their maximum velocities
but also that the temporal coordination happens in the earliest
possible way.

Although the spatial planning component of our algorithm
is based on approximation techniques and therefore does not
guarantee the generation of optimal paths, its temporal plan-
ning component is optimal. Moreover, the overall algorithm
scales very well to large problem instances in simulation and
is therefore likely viable even for real robots.

We now study how the running time of our algorithm scales

Fig. 6. Shows the effect of N on the running time for different values of T .

with increasing the number of task robots, M , the number
of delivery robots, N , and the number of service locations,
T , while keeping Dd

Dt = 12000
2160 = 5.55 fixed. The (x, y)

coordinates of the locations and the velocity parameters are
generated randomly within suitable ranges.

Figure 4 shows the average running time of the full battery
exchange planning algorithm for increasing number of service
locations, T . Here, M and N are held constant at 80 and 40,
respectively. The running time of the algorithm increases only
polynomially with T and not as fast as a fifth-order polynomial
(verifiable empirically).

Figures 5 and 6 show the effect of increasing M and N ,
respectively, on the average running time of the algorithm. In
Figure 5, N is held constant at 40; and in Figure 6, M is held
constant at 80. The figures indicate that the running times are
not significantly affected by M or N , leading us to conclude
that the complexity of the algorithm is dominated by T .

Our experimental results confirm our theoretical analysis.
Under usual conditions, i.e, when T � M,N and Dd

Dt > 1,
the running time of our algorithm is indeed dominated by
T . Furthermore, our experiments indicate a scaling behavior
within the scope of—and actually better than—the theoretical
worst-case analysis of the time complexity of the algorithm.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an important approach to solve
battery exchange problems for multi-robot systems. Our tech-
niques are broadly applicable to many other combinatorial
problems as well, including resource delivery and scheduling,
closed-loop product supply management, and pickup and
delivery problems for transportation. We addressed several
combinatorial aspects of battery exchange problems that are
related to path planning, finite on-board energy constraints,
capacity constraints on delivery robots carrying batteries,
finite maximum velocities, and temporal coordination required
between the various task and delivery robots. We presented
several heuristic algorithms for solving these problems. Our
algorithms are inspired by techniques used in the design of
approximation algorithms for other well-know combinatorial
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problems such as the m-TSP. Although our algorithms do not
guarantee optimality, we conducted experiments to show that
they work remarkably well in practice.

Our work essentially proposed an algorithmic approach
to solve multi-robot battery exchange problems that is in
contrast to the MIP-based modeling approaches popularly used
in robotics and operations research. Representationally, our
algorithmic approach is more accommodating of complicated
domain-specific constraints that are harder to encode in MIP-
based models. Furthermore, MIP-based methods generally do
not scale well with increasing problem size [19]. However, we
showed that the techniques presented in this paper constitute
a polynomial-time algorithm that actually scales very well to
larger problem instances.

There are many avenues for future work. Although we have
shown the effectiveness of our techniques on battery exchange
problems with decoupled planning and temporal coordination
components, an important avenue for future work is to con-
sider scenarios with a tighter coupling of these components.
Such situations might arise when services have associated time
window constraints [18]. It would also be interesting to extend
our techniques to scenarios with precedence constraints on
the services (as in pickup and delivery tasks that have to be
done in a certain order). Finally, it would also be interesting
to extend our techniques to scenarios where services have
rewards associated with them.
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