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Abstract

Multirobot path planning and task assignment are tra-
ditionally treated separately, however task assignment
can greatly impact the difficulty of the path planning
problem, and the ultimate quality of solution is depen-
dent upon both. We introduce task reassignment, an ap-
proach to optimally solving the coupled task assignment
and path planning problems. We show that task reas-
signment improves solution quality, and reduces plan-
ning time in some situations.

Introduction

Multirobot systems are attractive for surveillance, search
and rescue, and warehouse automation applications. Un-
fortunately, the flexibility and redundancy that make multi-
robot systems appealing also make assigning robots to tasks
and planning collision free paths to perform those tasks dif-
ficult. In our prior work, we developed an approach called
subdimensional expansion for efficiently generating optimal
collision free paths (Wagner and Choset 2011). Subdimen-
sional expansion seeks to decouple planning between robots,
which is difficult in environments that feature bi-directional
traffic passing through narrow spaces. Coupling the task as-
signment problem with the path planning problem allows
such situations to be avoided, reducing time to find a solu-
tion and increasing solution quality.

Work on coupling path planning with task assignment
focuses on distributed execution and resolving execution
time conflicts (Golfarelli, Maio, and Rizzi 1997; Zheng and
Koenig 2009). We are interested in decreasing computa-
tional costs for finding optimal multirobot paths. Opera-
tor Decomposition (Standley 2010) and increasing cost tree
search (Sharon et al. 2011) both exploit decoupling that
arises from taking the cost of the joint path as the sum of
the cost of the individual robot paths. M* exploits the same
decoupling at a finer level (Wagner and Choset 2011).

M:*
M* is an implementation of subdimensional expansion for
solving the multirobot path planning when the configuration
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of each robot is represented by a graph. An individually op-
timal policy is computed for each robot, which specifies the
best action at a given configuration for a single robot, ig-
noring all other robots. A low dimensional search space is
constructed by initially restricting each robot to its individu-
ally optimal policy. The search space is explored using A*,
which maintains an open list of candidate vertices sorted by
f-value, the sum of the cost to reach the vertex plus a heuris-
tic cost to go. A robot is permitted to depart from its in-
dividual policy, thus increasing the local dimensionality of
the search space, at a given joint configuration only if the
A* search has found a path from the current joint configura-
tion to a collision involving said robot. The collision set is
the set of robots for which such a path exists from a given
configuration. rM* is a variant that separates planning for
disjoint subsets of colliding robots, in a manner similar to
Independence Detection (Standley 2010).

Task Reassignment

M* becomes computationally expensive when large num-
bers of robots interact in a small area, such as narrow bot-
tlenecks. Task reassignment generates alternate task assign-
ments for robots involved in collisions to reduce the den-
sity of robot-robot interactions, which reduces planning time
and improves solution quality. In this paper, we describe a
method for finding the optimal combination of task assign-
ment and path.

Task reassignment functions by maintaining a set of ac-
tive task assignments IV = {v1,...}, each conflated with
an M* planner to solve the associated path planning prob-
lem. Search proceeds for all active assignments in an it-
erative manner. At each planning step ¢ the minimum f-
value in the open list of any active assignment, fun(t) =
min~eps f(7y(¢)), is computed. Planning for each assign-
ment in I then proceeds until the open list of the associated
M* planner is exhausted of vertices with f-value less than
or equal to fiin(t). If new robot-robot collisions are found,
additional assignments may be added to IV and exhausted
as described above. If no collision free path has been found
after all new assignments are exhausted, then there is no col-
lision free path of cost fuin(¢). The search loop repeats with
a new, larger fuin (¢t + 1). Task assignment will return the
optimal combination of task assignment and robot paths.

Task reassignment seeks to minimize the number of tasks



Algorithm 1 Add_Assignments(y)

colbots «— C'(y)
Vi Vet
while colbots # () do
{7} is task assignment for i’th robot in ~y }
diff < {i € colbots|vi # i}
if diff £ () then
I+ T'U~y
colbots <— colbots\diff
Vi Vi

that must be added to I by exploiting lower bounds on opti-
mal path cost that are placed by assignments in I'” on similar
assignments.

Let f(y(t)) be the minimal f-value of all vertices in the
open list of « at the start of planning step ¢, which is a
lower bound of the cost of the optimal path for the assign-
ment, ¢(7y). Let h(v) be the sum of the costs of the optimal
paths for all robots ignoring robot-robot collisions. f(v(t))
can then be written as the sum of h(~y) and a coordination
cost a(7(t)), which is the additional cost incurred by robots
deviating from their individually optimal policies to avoid
collisions. As such, a(~y(t)) depends solely on the paths of
the robots in the collision set of the root of the search tree
Cy(t)).

If two assignments -y, and ~;, with h(vy;) < h(vy),
are identical for each robot in C(~y(t)), then C(yx(t)) C
C(v(¢)), which implies that a(yx(t)) < a(v(t)). Since
f(y(t)) is alower bound on ¢(7), f(vx(t)) < ¢(v). In this
case, we say that v bounds ~y; at step t.

Adding new robots to C(v) during exhaustion weak-
ens the bounds v places on other assignments, which re-
quires that new assignments be added to IV. The algo-
rithm then steps along the set of all possible task assign-
ments I', sorted in order of increasing h(vy) (Kuhn 1955;
Murty 1968), starting at vy, 1. An assignment is added to T
if it is not bounded by ~; or any assignments added earlier
in the update process. Pseudo-code is given in Algorithm 1.

Task Reassignment Results

We compared the results of using M* and rM* to find a path
for the heuristically cheapest task assignment to running M*
and rM* with task reassignment, in problems of up to 40
robots, (see Figure 1). When M* is used as the underly-
ing planner, the ability of task reassignment to find easily
solvable assignments offsets the additional overhead of task
reassignment and results in an optimal path and task assign-
ment being found more quickly than a path can be found
for the heuristically cheapest assignment. Furthermore, path
cost decreased by an average of 0.31%. rM* is a more pow-
erful planner which benefits less from discovering more eas-
ily solved task assignments than M*. Furthermore, the hier-
archical nature of rM* reduces the efficiency of task reas-
signment, which can only occur at the highest level of the
hierarchy. As a result, finding a path for the heuristically
cheapest assignment with rM* is faster running rM* with
task reassignment for more than 20 robots.
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Figure 1: Median time to find a path using M* and rM*, for
both the single heuristically cheapest task assignment and
with task reassignment. The plateauing is the result of the
planners reaching the 5 minute time limit.

Conclusions

We present task reassignment, a method for finding the opti-
mal combination of task assignment and path for multirobot
systems. We show that task reassignment imposes moderate
overhead to guarantee that an optimal pair of task assign-
ment and path will be found, which in some situations can
be offset by the benefits of finding easier task assignments.
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