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Analysis of speech-based speech transmission index methods
with implications for nonlinear operations
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The Speech Transmission Ind€$TIl) is a physical metric that is well correlated with the
intelligibility of speech degraded by additive noise and reverberation. The traditional STI uses
modulated noise as a probe signal and is valid for assessing degradations that result from linear
operations on the speech signal. Researchers have attempted to extend the STI to predict the
intelligibility of nonlinearly processed speech by proposing variations that use speech as a probe
signal. This work considers four previously proposed speech-based STI methods and four novel
methods, studied under conditions of additive noise, reverberation, and two nonlinear operations
(envelope thresholding and spectral subtragtiohnalyzing intermediate metrics in the STI
calculation reveals why some methods fail for nonlinear operations. Results indicate that none of the
previously proposed methods is adequate for all of the conditions considered, while four proposed
methods produce qualitatively reasonable results and warrant further study. The discussion
considers the relevance of this work to predicting the intelligibility of cochlear-implant processed
speech. ©2004 Acoustical Society of AmericdDOI: 10.1121/1.1804628

PACS numbers: 43.71.Gv, 43.60Wy, 43.71KWG] Pages: 3679-3689

I. INTRODUCTION noise with artificial speech-like signals, allowing the STI to
predict the effects of automatic gain control and peak clip-
ping. Other researchers have developed variations that use
speech, rather than an artificial probe, to investigate nonlin-
ear operations. These speech-based methods have been used
to analyze dynamic amplitude compressidgtohmann and
rI&pllmeier, 1995; Paytort al, 2002; Drullman, 1995 spec-
tral subtraction(Ludvigsenet al, 1993, and envelope clip-
ping (Drullman, 1995. In addition, speech-based STI meth-
ods have been used to investigate the intelligibility
differences between clear and conversational spéeaiiton
o8t al, 1994; Paytoret al,, 1999.

The speech-based STI methods have generally failed to
Qpredict performance for nonlinear operations. In some stud-

SNRs. By including modulation reduction in the frequency'es* STI intel!igibility predictions have been qualitatively in-
band analysis, the STI can predict the effects of reverberatioR®nsistent with performance results. A study of envelope ex-
as well as additive noise. Calculation of the STI is based of@nsion found that “the prediction from STl is in the wrong
changes in signal modulation when modulated probe stimuffiréction for the expansion conditiongVan Buurenet al,
are transmitted through a channel of interest. The responsé§98- In an investigation of speech-based STI and spectral
to probe stimuli are measured in multiple frequency bandsubtraction, researchers concluded “STI, even in its modified
for a range of modulation frequencies relevant to speech. Théersion, is an unreliable predictor when non-linear processes
STI successfully quantifies the effects of room acoustics an@'® involved.” (Ludvigsenet al, 1993. Other researchers
broadcast channels on speech intelligibili§teeneken and (Drullman, 1995; Paytoret al, 2002; Hohmann and Koll-
Houtgast, 198 The STI can also be adapted for use withmeier, 1993 have also concluded that speech-based STI
hearing-impaired subjectéHumeset al, 1986; Ludvigsen, Methods proposed thus far do not adequately predict the in-
1987; Paytoret al, 1994. telligibility of nonlinearly processed speech.
Steeneken and Houtgd4980 suggest that applying the In this work, the various speech-based STl methods are
STI to nonlinear operations requires more sophisticate@nalyzed to determine why they fail to predict intelligibility
probe signals than used in their original procedure. Theyor nonlinear operations. Simple modifications are proposed
introduced complex test signals that combine modulatedo overcome problems with the existing speech-based STI
methods. This results in four modified speech-based STI
dAuthor to whom correspondence should be addressed at: Massachuse ?]ethOdS th?‘_t are related to previously proposed m.ethOdS'
Institute of Technology, Building 36, Room 761, 77 Massachusetts Ave., ese modified STI methods are well correlated with the
Cambridge, MA 02139; electronic mail: jgreenbe@mit.edu traditional STI for additive noise and reverberation and also

Early attempts to predict speech intelligibility led to the
development of the articulation inde¢Al) (French and
Steinberg, 1947; Kryter, 1962a, 19628 fundamental prin-
ciple of the Al is that the intelligibility of speech depends on
a weighted average of the signal to noise ratislR9 in
frequency bands spanning the speech spectrum. By accou
ing for the contribution of different regions of the spectrum
to intelligibility, the Al successfully predicts the effects of
additive noise and simple linear filters.

The Speech Transmission Indé$TI) (Houtgast and
Steeneken, 1971; Steeneken and Houtgast, 1980; IEC) 19
is an intelligibility metric that differs from the Al by using
reduction in signal modulation rather than band-specifi
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exhibit qualitatively reasonable behavior for selected nonlin-  The signal-to-noise rati6SNR) in decibels as a function
ear operations. As a result, the modified STI methods aref f is calculated for each frequency band as
promising candidates to predict intelligibility of nonlinearly

processed speech. SNR(f)=10log L'(f) : 2
1-MTF(f)
An overall apparent SNR (aSNRfor each frequency band
Il. BACKGROUND is determined by clipping the SN ) values and then av-

. eraging across modulation frequencies, that is,
Both the traditional and speech-based STI methods em- ging d

ploy a frequency band analysis as illustrated in Fig. 1. A —15, SNR(f)<-15

bank of bandpass filters splits the probe and response signals CSNR(f)=1{ SNR(f), —15<SNR(f)=<15 &)
into frequency bands, wheieindicates the frequency band 15, SNR(f)>15

number. Typically, octave bands with center frequencies ’ ’
from 125 to 8000 Hz are used. For each band, the probe and aSNR=mearicSNR(f)). (4
response envelope signalg(t) andy;(t), respectively, are
computed by rectification and lowpass filtering and the
compared to determine a transmission index,. Thhe T}

nThe transmission index is a linear function of the apparent
SNR for each band, defined to be between zero and one,

values are combined using a weighted average to determine aSNR+15

the STI value. The various STI methods differ in how the ~ Thi=—735—- 5
envelope signals are computed and in how thev@lues are . . .
computed from the envelopes. Finally, the overall STI value is calculated as a weighted

. . average of the Tlvalues,
A. Traditional method of computing the STI

For the traditional methodSteeneken and Houtgast, STI=E w;Tl;, (6)
1980, the Ti values are determined from an intermediate !
function called the modulation transfer functi@dTF). The  wherew; is a psycho-acoustically derived weighting. The
MTF is a function of modulation frequency, calculated weights,w;, are defined to sum to one, thereby restricting
individually for each value of. For each frequency band, the STI values to a range between zero and one.
the probe signal consists of speech-shaped noise that has
been bandpass filtered and then intensity modulated at a p
ticular modulation frequency. The probe signal is passe
through the system to be evaluated. The fractional change in  This section summarizes four speech-based methods
modulation depth between probe and response intensity eproposed in the literature. The first three speech-based meth-
velopes is quantified for that value 6f and the process is 0ds use intensity envelopes calculated by squaring and then
repeated for other modulation frequencies to determine themoothing, while the fourth uses magnitude envelopes. For
complete MTF for one frequency band. The MTF is typically each method, the description focuses on the calculation of
characterized using modulation frequencies ranging ffom TI; for one frequency band. To simplify notation, the sub-
=0.63 Hz tof =12.7 Hz in one-third octave intervals. As an scripti is omitted for intermediate variables such as MTJ(
alternative to artificial probe signals, Houtgast and Steenekeand aSNR.
(1985 proposed determining the MTF for each frequency )
band from spectra of the intensity envelopes of runningl- Magnitude cross-power spectrum method

. Speech-based STI methods

speech. Omitting the subscriptto simplify notation, this Payton and colleagug2002 proposed a speech-based
approach can be described @sullman, 1994b method where the MTF is based on the magnitude of the
Cross-power spectra as given b
MTECH ):amza [Syy(F) W power sp given by
[X(F)] Sl )’ MTE( )= o 22D o
SWebl

where a::“x/:“yv mx=E{X(t)}, My:E{Y(t)}, and E{-}
denotes expected valupX(f)| and|Y(f)| are magnitude whereS,(f) is the cross-power spectrum of the probe and
spectra, and5,,(f) and S, (f) are power spectra, of the response envelopes. The MTF given by Ef.is used in Eq.
probe and response envelope signals, respectively. (2), and the STl is calculated from Eg®) through(6).
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2. Real cross-power spectrum method TABLE I. Intermediate modulation metrics for speech-based STI methods

. proposed in the literature. These metrics use the normalization term
DrU”man_ and COllea_gue(51994b introduced a phase_- = 15/, . They are calculated for each frequency band and then combined
locked MTF in order to investigate the effects of reducingto produce a single STI value as described in the text.

low-frequency modulations on the intelligibility of speech.

The phase-locked MTE is defined as Magnitude cross- Real cross- Envelope Normalized
P power spectrum power spectrum regression covariance
Siy(f )) \ 2
MTF(f)=aR , (8) _Sy(h) B S(f )) Ny , N\
Si(f) MTF(f )=« 5.1 MTF(f )=a R 5.0 M=a N, =T,

where Re() denotes taking the real part of the complex-
valued function. Although they did not propose a corre-
sponding STI calculation procedure, the MTF in E§) ) ,
could be used to calculate the STI in conjunction with Eqs.dlfferent methods. Ir‘ the case of the gnvelope regression
(2) through(6). method, the quulatlon r_netrlc in Table | is an alternate form
that is derived in Appendix A. For the two cross-power spec-
trum methods, the modulation metric is a function of modu-
lation frequency. For the other two methods there is a single

Ludvigsen and colleague€l990 proposed a method value for each frequency band. The implications of this fun-
where the probe envelope signa(t), and the response en- damental difference are discussed in Sec. VIA. In the fol-
velope signal,y(t), are compared using linear regressionjowing sections, these modulation metrics will be used to
analysis. In this method, the apparent SNR for each freyield insight into the behavior of the speech-based STI meth-
qguency band is defined as ods.

3. Envelope regression method

A
aSNR=10 Iogl()( g x

, (9  1I. PROPOSED METRICS

whereA andB are the parameters that produce the best fif‘ - Normalization based on noise envelope

for the model y(t)=Ax(t)+B. This apparent SNR is Both cross-power spectrum methdd&gs. (7) and (8)]

clipped to values betweeh 15 dB, and the STl is calculated include the terma, which normalizes the envelopes to ac-

via Egs.(5) and(6). count for the power of the probe and response signals. The
alternate form of the envelope regression method derived in

4. Normalized covariance method Appendix A also depends am for this method the apparent
SNR in Eq.(9) can be expressed as

The normalized covariance methdkoch, 1992; Hol-

ube and Kollmeier, 199as based on the covariance between SNR=10] M 14
the probe and response envelope signals. For each frequency a — V1060 1-M/’ (14
band, the apparent SNZR 's calculated as whereM is a modulation metric defined as
r
- A

Ax

wherer is the normalized covariance betwes(t) andy(t .
ee(t) y(®) Thus, the envelope regression method, as well as the two

given by cross-power spectrum methods, include the normalization
) )\iy term a. This term successfully normalizes the envelopes for
= My (1D the cases of additive noise and reverberation; however, for a

with large class of operations this normalization ratio is not ap-

propriate. In particular, when the processing reduces the
My = E{(X(1) = ) (Y(1) = y)} (12 overall amplitude of the response envelop&,), @ may in-
crease without bound. As shown in Secs. VB and V C, this
leads to invalid values of the intermediate modulation met-
A= E{(X(t) — uy)?}. (13)  rics listed in Table I.
An alternative normalization term is proposed here. The
noise envelope is defined as

z(t)=y(t) —x(t)], (16)
5. Summary of speech-based methods and a new normalization term is defined as

The above-described speech-based methods all compute
the STI as a weighted sum of Tl values determined from the  gB= .
envelopes of the probe and response signals in each fre- ot bz
qguency band. The key difference among the methods is howor cases wherg(t)>x(t) for all t (as is typically the case
the Tl values are calculated. Table | summarizes the interméer additive noise and reverberatjothen w,= u,— u, and,
diate modulation metrics used to calculate Tl values for theconsequently8=«. Thus, for certain operations, the pro-

and

The apparent SNR of Eq10) is clipped to values between
+15dB and the STl is calculated via EdS) and (6).

Mx

17
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TABLE Il. Intermediate modulation metrics for speech-based STI methodgdjtions, the speech-based STl methods are characterized by

proposed in this work. These metrics use the normalization féms de-  intarmediate modulation metrics for a single frequency band.
fined in Eq.(17). They are calculated for each frequency band and then

combined to produce a single STI value as described in the text. A. Common elements
Magnitude cross- Real cross- Envelope Normalized For all speech-based STI methods, the probe stimulus
power spectrum power spectrum  regression correlation  was a 120 s speech signal formed by concatenating 42 pho-
S.(f) Sy(f) N & netically balanced sentenc€lEEE, 1969. For the tradi-
MTF(f)=p Sxy(f )‘ MTF(f )=8R m) M=B)\—Xy pziﬁy tional method, the probe stimulus was based on a 60 s noise

sequence with the same long-term spectrum as the speech. In
both cases the sampling rate wag=22050 Hz.

The bandpass filters were seven octave-band filters with
posed normalization term equals the original. center frequencies ranging from 125 Hz to 8 kHz. All filters

When the processing reduces the response envelope ¥§re eighth-order Butterworths. Intensity envelopes were
that y(t)<x(t) for some values ot, then u, decreases, calculated by squaring the bandpass-filtered signals and low-
causinge to increase. In some cases, high valuesrahay ~ Pass filtering. Magnitude envelopes were calculated by full-
result in erroneously high values of apparent SNR for thatvave rect|f|c_at|o_n of the bandpass-filtered 5|gna_ls followed
frequency band. Since,+ u, is always greater thap, , 8 by lowpass filtering. In both cases the lowpass filter was an

will avoid characterizing reduced response envelopes as inftighth-order Butterworth with 50 Hz cutoff frequency. Enve-
proved SNR. lopes were downsampled to 200 Hz before calculating the

various metrics. This resulted in discrete-time probe and re-
sponse envelope signalg[n] and y[n], that were N

B. Normalized correlation =24000 samples long for the speech sequence find
We hypothesize that the normalized covariance method 12000 samples long fpr the noise sequence.
(Sec. 11B4 is well suited to nonlinear operations. The nor-  The octave band weighting function used in &8). was

malized covariance defined in E(L1) is a metric that nec- taken from Houtgast and Steenekér®85. All processing
essarily falls between zero and one, with a value of unitVas performed inMATLAB ® on a personal computer with a
achieved only when the envelopes are identical. These corzentium IIl processor.

straints ensure that the method always produces valid values

of the intermediate metric. For the other speech-based metlB. Metric calculation

ods, the intermediate metrics in Table | are not re'stricted t% Traditional method

values between zero and one, and operations that increase the N .

modulation depth may cause the intermediate metrics to take  1he traditional STl was calculated using fourteen modu-
on invalid values greater than one, as demonstrated in Sedgtion frequencies ranging frorh=0.63 to 12.7 Hz in one-

VB and VC. third-octave increments. Because it requires the use of a
As a variation on the normalized covariance method, weProbe noise sequence, it was only practical to compute the
consider the normalized correlatidm, where traditional STI for the acoustic degradation conditions. For
5 each modulation frequency, the noise sequence described in
2_ Pxy (19) Sec. IV A was amplitude modulated byl + cos(2m(f/FJn)
Dy Py to form the probe signal. The response signal consisted of the

probe signal combined with additive noise and/or reverbera-
tion. Both the probe and response signals were bandpass fil-

. . tered into octave bands and intensity envelopes were com-
ping to values between 15 dB, and applying Eqs5) and puted by squaring followed by lowpass filtering. The

(6). The normalized correlation method differs from the nor‘modulation denth of each envelobe was measured as the
malized covariance method only in that the envelope meanrsn aximum vaIuFe) of the cross—covafiance between the enve-
are included in the correlation terms. lope and the function costif/Fgn) normalized by the en-

Table Il summarizes the intermediate modulation met-°° . y .
. - velope mean. The MTF value was determined from the ratio
rics for the proposed speech-based methods. Compari

n ) )
Table Il to Table | reveals the key differences between the(% the response envelope's modulation depth to the probe

methods proposed in this work and those proposed prevgnvelopes modulation depth.

ously.

with ¢, =E{x(t)y(t)} and ¢,=E{x*(t)}. The STl is sub-
sequently calculated by substitutipdor r in Eq. (10), clip-

2. Cross-power spectrum methods

Both the magnitude cross-power spectrum method and
the real cross-power spectrum method use intensity enve-

This section describes the calculation of the varioudopes. Sample envelope means were calculated from the av-
speech-based STI methods for three sets of processing coerage of the envelope signals. The MTF for the two cross-
ditions: acoustic degradation, envelope thresholding, angower spectrum methods requires estimating the auto- and
spectral subtraction. For the acoustic degradation conditiongross-power spectra. This was accomplished using the peri-
speech-based STI values are compared to the traditional STadogram method with 4096-point Hanning windows, 4096-
For the envelope thresholding and spectral subtraction corpoint FFTs, and 50% overlap. The resulting 0.05 Hz fre-

IV. METHODS
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quency bins were averaged to produce values in one-third [ otiginal speech ]
octave intervalgPaytonet al., 1999 centered from 0.63 to
12.7 Hz. This resulted in averaging of three bins for the osf

lowest modulation frequency and 60 bins for the highest f"\ M
modulation frequency. These quantities were used in &gs. ; ‘ : :

and (8) for the original methods, and witg [Eq. (17)] in i T=033 1
place of« for the proposed methods. Then STI was calcu-
lated via Eqs(2) through(6).

- Qo

envelopeomagmtude
1%
I
=
L

0 ‘ ‘ ‘ ‘ ‘
3. Envelope regression method Ir =066 7
The envelope regression method was calculated from the os- .
intensity envelopes using the alternate form derived in Ap-

pendix A. Sample envelope means were computed from the 00 s : 5 5 23 B
average of the envelope signals and the covariance was cal | ~ time (s) '

culated as an unbiased estimate, that is, FIG. 2. Effect of envelope thresholding on a speech envelope for the octave

)\Xy: E{(x[n] _ Mx)(Y[n] _ My)} band centered at 1 kHz, shown for two values of the fractional threshold,
( % (x[i] Yyl ) 19 D. Envelope thresholding
~| = X[ = p) (YL — py). - ) .
N—1/i= * Y Envelope thresholding is a nonlinear operation that con-

For each frequency band, the modulation metht, was sists of setting to zero any samples of the original envelope
calculated using Eq(15) for the existing method and witg ~ that are below a threshold, that is

in place of a for the proposed method. The apparent SNR x[n], x[n]=7max|x[n]|)
was then calculated from E¢L4), clipped to values between y[n]= 0, xnj<rmax|x[n]|),

+15 dB, and used in Eq$5) and (6).
wherex[n] andy[n] are the probe and response envelopes,
respectively, andr is a fractional threshold relative to the
4. Normalized covariance and normalized correlation maximum value of the probe envelope. Figure 2 illustrates
methods the effect of the envelope thresholding on a speech envelope
The normalized covariance and normalized correlatior®nd shows that increasing the value of the threshold results
methods were calculated based on magnitude envelopes. Fr 9reater levels of modulation and increasingly distorted
each frequency band, the normalized covarianceyas cal-  €nvelopes. Intermediate modulation metrics were calculated
culated from Eq.(11), with estimates of the variance and for all speech-based STI methods for valuesrofanging
covariance calculated as in EG.9). The normalized corre- from 0 to 1 in increments of 0.02.
lation, p, was calculated according to E@.8) with the cor-

(21)

relation estimated as E. Spectral subtraction
1\ N _ _ Spectral subtraction attempts to reduce background
byy=E{X[NIY[n]}~| = | 2 (x[i1-y[i]). (200 noise by subtracting a spectral estimate of the noise from
N—-1 =1

short-time spectra of the noisy signal. Generalized spectral
The apparent SNRs were calculated from 8d) (replacing  subtraction(Lim and Oppenheim, 1979scales the noise

r with p for the normalized correlation methpctlipped to  spectral estimate by a constant factor, that is,

values betweerr 15 dB, and used in Eq$5) and (6). .
|P(F)|=ID(F)|—&|N(F)], (22)

where D(F) is a short-time spectrum of the input signal,
N(F) is the spectral estimate of the noig&(F) is the pro-
For the acoustic degradation conditions, speech-shapembssed spectrum, andis a parameter that scales the noise
noise was added to the probe stimulus and the resulting sigstimate.|P(F)| is multiplied by the phase of the original
nal was convolved with a reverberant impulse response. Thieput signal and short-time reconstruction is performed to
speech-shaped noise had the same long-term spectrum as greduce the time-domain output signal.
probe stimulus. Two-second-long reverberant impulse re-  Figure 3 illustrates the effects of spectral subtraction on
sponses were generated using a room simulation based speech envelopes. Far=1, the noise component of the en-
the image methodAllen and Berkley, 197P The speech- velope is suppressed with relatively little effect on the speech
shaped noise was scaled to produce SNRs betwekhand envelope. Foik =8, the noise is suppressed, but the speech
30 dB in 3 dB increments as well as a no-noise conditionenvelope is highly distorted. Spectral subtraction with large
Reverberation timesTg ranged from 0 to 1.5 s in 0.3 s values of x is similar to envelope thresholding in that it
increments. The traditional and speech-based STIs wemistorts the envelope and increases the level of modulation.
computed for all combinations of SNR and reverberation = The speech signal was degraded by noise with the same
time. long-term spectrum as the probe stimul@sdB SNR and

C. Acoustic degradations
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n ‘ " clean speech ‘ ‘ ] show the methods proposed in Sec. Ill. Each curve repre-
o5l / \ [‘\ “ | sents STl values calculated over the 45 dB range of SNRs for

' one level of reverberation.

0 ; : : } ; In Fig. 4, complete agreement between the traditional
speech plus noise ] STI method and a speech-based STI method would appear as

a straight line from the bottom left to the top right of a
particular plot. As seen in Figs(d, (b), and(c), the original

i ‘  spectral subtraction (k=1) ] cross-power spectrum methods and the original envelope re-
o5l | gression method all provide a reasonable match to the tradi-
' tional method, although the real cross-power spectrum
0

envelope magnitude
=3

; | — (1K 5 1 method is slightly less well-matched to the traditional than
r spectral subtraction = T
the other two.

05r ] Comparing Figs. @), (b), and(c) to Figs. 4e), (f), and
0_,J\ N A\ — N ‘ (g) shows that for these acoustic degradation conditions, the
0 0.5 1 1S ime (5) 25 3 modified methods usingd as the normalization term are

equivalent to the original methods usiag As described in
FIG. 3. Effect of spectral subtraction on the envelope of noisy speech for thesec. ||| A. this equivalence is expected because the acoustic
octave band centered at 1 kHz, shown for two values of the control parama d tj ] th | lati to th
eter. x. egradations increase the response envelopes relative to the

probe envelopes.
The normalized covariance metheig. 4(d)] and the
posed normalized correlation methideg. 4(h)] are dis-
tinctly different from the other speech-based methods. The
normalized covariance method does not exhibit a one-to-one
ing f 1o eight in i ts of 0.25. A val ¢ relationship with the traditional method. The curves for dif-
'E% rom zero do f'g in mctrerlnenb? 0 i -£9. A valueno OIferent levels of reverberation are not superimposed, indicat-
B I corfres_pfn s to no ZpEiC r? sg (rjac |ontpr|ocebstsmg[_ aNdify that the normalized covariance method is not consistent
value olx= 1 corresponds to standard spectral subtraction. AWith the traditional method in accounting for reverberation.

value of k=8 corresponds to an extreme version where the'Given the success of the traditional STI, this implies that the

spectral subtraction processing eliminates all but the higheﬂormalized covariance method will not be a good predictor
spectral peaks.

of intelligibility for additive noise and reverberation. The
normalized correlation method comes closer to having a one-
V. RESULTS to-one relationship to the traditional method, with some di-
vergence at high SNRs. This implies that the normalized cor-
relation method may perform poorly when accounting for the
Since the traditional STI method is well established aseffects of reverberation in quiet and low-noise environments.
an accurate predictor of speech intelligibility for additive sta- ~ While the relationship between the normalized correla-
tionary noise and reverberation, any proposed speech-basédn method and the traditional STI is approximately one-to-
method must produce similar values of STI under these corene, they are not equivalent metrics. In other words, some
ditions. Figure 4 compares the speech-based STl methods teapping is required to transform the values produced by the
the traditional STI for the acoustic degradation conditions ofnormalized correlation method to values corresponding to
additive noise and reverberation described in Sec. IV C. Figthe traditional STI. To the extent that a unique mapping does
ures 4a)—(d) show the four previously proposed speech-exist for these conditions, the new metric will retain the pre-
based methods described in Sec. II B, while Fig®)4h) dictive power of the traditional STI for additive noise and

then processed by the spectral subtraction algorithm USinEro
the overlap-add method with 25 ms Hamming windows with
50% overlap. Intermediate modulation metrics were calcu
lated for all speech-based STI methods for values mdng-

A. Acoustic degradation

reverberation.

1 1
2 A B C D .
% B. Envelope thresholding
Q@
;‘;’0‘5 05 Figure 5 shows the effect of envelope thresholding on
2 Magnitude Real Envelope Normalized intermediate modulation metrics used to compute the various
& CPS CPS Regression Covatiance

=
=3

speech-based STI methods. Investigating these metrics,
rather than the final STI values, is necessary to identify
05 methods that produce invalid results. All of the intermediate

F G H

speech-based STI
i=3
O

Modified modulation metrics have a valid range from zero to one,
Modified Modified Envelope Normalized T .
o/ Magritude CPS Real CPS Regression Comslation | where zero indicates no preservation of the envelope modu-
0 1

lations and one indicates perfect preservation. Values of the
intermediate metric greater than one indicate a failure of the
FIG. 4. Comparison of speech-based STI methods to the traditional STlcorresponding method.

Each plot shows the relationship between one speech-based method and the P _
traditional STI. Each curve corresponds to the 45 dB range of SNR values Figures %), (b), and(c) reveal that the 0r|g|nal Cross

for one level of reverberation. More reverberant conditions terminate al?OWer spectrum methods and the Original envelope regres-
lower values of the traditional STI. sion method fail for envelope thresholding. In all three plots,

0.5 0 0.5 0 0.5 0 0.5
traditional STI  traditional STI traditional STI traditional STI
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FIG. 5. Intermediate modulation metrics of speech-based STI methods fdf!G- 6. Intermediate modulation metrics of speech-based STI metasds
envelope thresholding as a function of threshatdFor the cross-power N Fig. 5 for spectral subtraction as a function of control parametell
spectrum(CPS methods, the intermediate metrics are the MTFs from Eqslresults are for the octave band centered at 1 kHz. The dotted line indicates
(7) and(8) averaged over modulation frequency. For the envelope regressioHNity, the maximum valid value for all metrics.

methods, the intermediate metricNé [Eq. (15)]. For the normalized cova-

riance and normalized correlation methods, the intermediate metrias are . - . ——
[Eg. (11)] andp [Eq. (18)], respectively. All results are for the octave band yelope manlpulatlon has been shown to decrease |nteII|g|b|I

centered at 1 kHz. The dotted line indicates unity, the maximum valid valudty (Drullman, 1993. T_herefore, the methOdS that accoun_t
for all metrics. for envelope thresholding by decreasing as the threshold in-

creases are viable candidates for speech-based STI.

the modulation metrics increase above one as the threshol
increases. These invalid values of the intermediate metric
indicate that these methods are not applicable to the nonlin- Figure 6 shows the effects of spectral subtraction on
ear operation of envelope thresholding. The remaining fivéntermediate modulation metrics used to compute the various
plots reveal that all of the proposed methpBigs. 5e)—(h)], speech-based STI methods. Figuréa),6b), and(c) reveal
as well as the normalized covariance methéig. 5(d)], pro-  that the original cross-power spectrum methods and the
duce valid values of the intermediate metrics. As the thresheriginal envelope regression method fail for spectral subtrac-
old increases, all of the intermediate metrics monotonicallytion. In all three plots, the modulation metrics increase
decrease from an initial value of one. monotonically as the control parameter, increases and
The general effect of envelope thresholding is to emphaeventually reach invalid values greater than one. This indi-
size peaks in the envelope by setting low-amplitude samplesates that these methods are not applicable to spectral sub-
of the envelope to zero. As the threshold increases, morgaction. The remaining five plots reveal that all of the pro-
samples are set to zero. Because this increases the modufmsed method§Figs. Ge)—(h)], as well as the normalized
tion depth of the envelope, most of the previously proposeaovariance methoflFig. 6(d)], produce valid values of the
speech-based STI methods erroneously interpret this operatermediate metrics. As the control parameter increases, all
tion as increasing intelligibility beyond the initial value of of the intermediate metrics initially increase to a maximum
one for speech in quiet. These methods fail because enveloped then decrease.
thresholding reduces the mean of the response envelgpe, The proposed methods as well as the existing normal-
Since it is the denominator of the normalization teray, ized covariance method exhibit behavior that is qualitatively
small values ofu, can lead to extremely large values®f  consistent with a hypothetical trade-off between noise reduc-
Although envelope thresholding also reduces the crosgion and signal distortion. For each of these methods, the
power spectrums,,(f ), and cross-covariance.,,, [which  modulation metric initially increases, predicting slight im-
contribute to the numerator of the modulation metrics in Eqsprovements in intelligibility due to moderate levels of spec-
(7), (8), and(15)], empirical observations indicate that as thetral subtraction k~1), and then decreases, predicting deg-
threshold increases, these terms decrease more graduatdations in intelligibility for more severe processing (
thanu, , leading to invalid values of the modulation metrics. >2). The modified cross-power spectrum methods and the
The modified methods that ugg as the normalization modified envelope regression method predict the most ben-
term do not fail in this way because, for envelope thresholdefit from spectral subtraction with= 0.6, while the normal-
ing, u, varies from zero tqu, as the threshold goes from O ized covariance and normalized correlation method predict
to 1, corresponding to values @franging from 1 to 0.5 for an optimum value ok=1.4. Further studies are required to
the full range of envelope thresholding. This causes the indetermine if the proposed methods predict the intelligibility
termediate metrics to decrease with increasing threshold. of speech processed by spectral subtraction and if they ac-
The results for the three modified methods, as well agzount for the effects of musical noise, an unpleasant artifact
the normalized correlation and normalized covariance methintroduced by spectral subtracti¢Goh et al, 1998.
ods, are qualitatively consistent with the expected effect of  These results imply that spectral subtraction may im-
envelope thresholding on the intelligibility of speech in prove the intelligibility of speech degraded by additive noise.
quiet. The effect of increasing the threshold is to increase th& number of studies have shown that spectral subtraction
distortion of the processed signal, thereby making it less indoes not improve the intelligibility of speech for normal-
telligible. Increasing the threshold of a slightly different en- hearing listenersLim and Oppenheim, 1979 However,

. Spectral subtraction
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spectral subtraction has been shown to improve intelligibilityenvelope regression methods as the energy-weighted average
for cochlear implant listener@\Veiss, 1993; Hochberegt al., of a MTF facilitates comparison with the cross-power spec-
1992. This is discussed in more detail in Sec. VIB. trum methods. One area of concern relates to nonlinear op-
erations that alter envelope spectra at modulation frequencies
above 15 Hz. Such operations will not affect the STI values
produced by the cross-power spectrum methods, because
A. Candidate speech-based STI methods those methods only include modulation frequencies up to the

The results presented in the previous section indicate th@"€-third-octave band centered at 12.7 Hz. Indeed, there is

suitability of the various speech-based STI methods for pre€vidence that modulation frequencies above 16 Hz provide

dicting intelligibility under conditions of acoustic degrada- Ny @ marginal contribution to intelligibility(Drulman,

tion, envelope thresholding, and spectral subtraction. Théd9943. Because the envelope regression and normalized cor-
long-term goal is to identify and validate a speech-based sTielation methods use intermediate metrics that incorporate all
method that accurately predicts intelligibility of speech pro-Téquencies in the envelopdsp to 50 Hz in the current
cessed by a wide variety of linear and nonlinear operationdMPlementation, one might expect these metrics to produce
The immediate goal of this study is to identify speech-based’aStly different predictions of intelligibility for alterations in
STI methods that maintain a one-to-one relationship with thdh® envelope spectra above 15 Hz. However, since the inter-
traditional STI for acoustic degradations while also produc-nediate metrics can be expressed as the energy-weighted

ing qualitatively reasonable results for selected nonlinear op2verage of a MTF, we must consider_ how much. energy is
erations. present at higher modulation frequencies. For typical speech

Of the four original methods, only the normalized cova- Signals, less than 5% of the envelope energy occurs above 15
riance method exhibited qualitatively reasonable behaviofiZ- AS a result, alterations to the envelope spectra above 15
for the nonlinear operations considered in this study. How!Z have only minor effects on the STI values produced by
ever, this method does not have a one-to-one corresponden@? envelope regression and normalized correlation methods.
to the traditional STI for acoustic degradations. The other ~ The normalized correlation method and envelope regres-
three previously proposed methods produce invalid result§ion methods can be calculated efficiently because they re-
for the nonlinear operations considered. Therefore, we corfuire estimates of envelope means and variances, which can
clude that none of the four original methods are suitable folP€ computed using running averages or windows of various
both conventional acoustic degradations and nonlinear ogengths. The cross-power spectrum methods that calculate
erations. the MTF explicitly require at least several seconds of speech

The four proposed speech-based STI methods exhibit & order to estimate power spectra and cross-power spectra
one-to-one relationship with the traditional STI for acousticWith a resolution less than 1 Hz, and calculating these spectra
degradations and produce qualitatively reasonable results fé8 computationally more intensive than calculating means
the nonlinear operations. However, the normalized correlaand variances. Finally, because Figs. 46 illustrate that the
tion method may be less accurate for predicting the intelligi-behavior of the envelope regression method is similar to that
bility of reverberant speech in quiet. Even so, all of the pro-of the cross-power spectrum methods, we conclude that the
posed methods are potential candidates to extend the STI gnvelope regression method is a more practical choice than
nonlinear operations while retaining its applicability to the two cross-power spectrum methods.
acoustic degradations. Additional work is required to deter- ~ The normalized correlation method presents a substan-
mine if any of the proposed methods accurately predictial deviation from the traditional STI. The other proposed
speech intelligibility for these and other nonlinear opera-methods are equivalent to the traditional STI, that is, the
tions. speech-base STI values correspond directly to traditional STI

Substantial differences exist among the four proposedalues. However, as seen in Fig. 4, the normalized correla-
methods. The two cross-power spectrum methods are contion method is not equivalent to the traditional STI, or is it a
puted using a modulation transfer function as the intermedilinear transformation of traditional STI. fonlineaj func-
ate variable for each frequency band, and these MTFs aréon is required to map the normalized correlation STI values
computed as a function of modulation frequency. In contrastio the traditional STI.
for the envelope regression and normalized correlation meth-  Another difference, illustrated in Figs. 5 and 6, is that
ods, the intermediate metrics consist of a single value fothe qualitative behavior of the normalized correlation method
each frequency band and are not computed as functions &f substantially different from the other three proposed meth-
modulation frequency. However, it is shown in Appendix B ods. As mentioned above, additional work is required to de-
that the normalized correlation method can be expressed a&srmine if any of the proposed methods accurately predict
the energy-weighted average of an alternate MTF. Thepeech intelligibility. Note that although the normalized cor-
weights applied to the alternate MTF represent the proporrelation method uses magnitude envelopes rather than the
tion of the total energy in the probe envelope at each moduintensity envelopes used in the other methods, the major dif-
lation frequency. A similar derivation can be performed forferences in qualitative behavior cannot be attributed to this
the envelope regression method but is complicated by thdifference in envelope computation. The normalized correla-
fact that the intermediate metric is based on covariancéion metric is admittedly a departure from many of the prin-
rather than correlation. ciples of the traditional STI, and it may be preferable to

This interpretation of the normalized correlation and theconsider it a new intelligibility metric distinct from the STI

VI. DISCUSSION
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except for the common elements of using frequency-bandnethods, if any, are quantitatively accurate in predicting the

envelopes. effects of envelope thresholding ahttof-M processing on
intelligibility.

B. Predicting intelligibility of cochlear-implant While research indicates that spectral subtraction does

processed speech not improve intelligibility for normal-hearing listenef&im

and Oppenheim, 1979it has been demonstrated to improve
intelligibility for ClI users (Weiss, 1993; Hochbergt al,

1992. We hypothesize that this may be related to the effec-
tive spectral resolution of the listeners; normal-hearing lis-

sors. This expectation is based primarily on similarities peleners have relatively fine spectral resolution that permits

tween the STI calculation procedure and CI processing Stra{gercegtlon_ of narr:_?w érectral peaks tf;gttnzetabt(r)]ve thlet_b a?k—
egies; both the STI and conventional Cl processing strategi?:Oun noise, while users are restricted 1o the relatively
h

The STI has already been adapted for use with hearin
impaired subject$Humeset al, 1986; Paytoret al,, 1994,
and it is a good candidate for predicting intelligibility of
speech processed by cochlear-implé@t) speech proces-

use information from the envelopes in a number of frequenc oad frequency bands used by their speech processors and

bands and neglect the fine structure. The STI calculation pro- erefore cannot perceive spectral peaks within a wider band

cedures can be tailored to match a particular Cl speech pr f noise. '?S Ia rebstult,tpormgl—he?hrmg I|ste?ersddo Slottbel_n(teflt
cessor by matching the frequency bands and method of e'r_omlst).ecl raisu rag '03’ S'gceth eytﬁre irez yC{Ij eto :)sen
velope calculation. in relatively narrow bands. On the other hand, Cl users ben-

Although the absolute performance of subjects Iisteningeflt frombgpectrakl)l ?ub:_ratlctlon algorlthtrr?s trt'ﬁt obperaotle |rt1)fre(;
to Cl-processed speech differs from that of subjects listenin uegcg tIrTS Subs ar;lla y narrowe;\ alnt de_ troa etr t_an 'S
to unprocessed speech, additive noise has relatively simil ed by their speech processors. A refated intérpretation 1S

effects in both case@Hochberg, 1992 Therefore, the STI that by suppress_ing narrow freql_Jency bands with low SNR,
methods that accurately predict the relative intelligibility spectral subtraction removes noise from the broadband tem-

among conditions of speech with additive noigéig. 4) poral envelope, an improvement that provides greater benefit

should also be valid for Cl-processed speech with additive® Cl USErs than tq nqrmal .hegrlng listeners. The spectral
noise, although an alternate mapping from ST to percen§ubtractlon results in Fig. 6 indicate that the four proposed

correct scores may be required for Cl-processed speech. It@ethods are potential candidates for predicting the effect of

expected that the same trends will exist for reverberant Cons_pectral subtraction on Cl-processed speech. The intermedi-

ditions, although there has been relatively little research asgftetmet_rlcs |nd|catett?at the prr(]) posed ST(; m_e:;':]hods \{(Vllllprek;
sessing the intelligibility of Cl-processed speech in rever- Ict an improvement for speech processed with spectral sub-
beration. traction algorithms using moderate values of the control

The selection of envelope thresholding as a nonlineaP2rameter. It appears that an appropriate speech-based STI

operation was guided by our interest in Cl-processed speecmay predict the effect of spectral subtraction on intelligibility
Some Cl processors us¢-of-M processing, coding only a more accurately for Cl-users than for normal-hearing listen-
subset N) of the total M) frequency-band e,nvelopes during ers .precisely because it uses a broad frequency-band analysis
each stimulation cycléLoizou, 1998. The stimulation cycle similar to that used. by Cl speech Processors. In fact, the
is relatively short(a few millisecondscompared to the STI success of the traditional STI for normal-hearing listeners

analysis frame(typically several seconiis The effect of may be due to the historic focus on broadband distortion

N-of-M processing is comparable to setting the remainingSUChI as revg(rjbert?]tlon and ?ddmvehbroadb?nddbnmse. Fo: ex
M-N envelopes to zero during intervals when the envelope i mple, consider the case of speech corrupted by a pure tone.

not selected. Although this is not identical to envelope his specialized interference would have little or no effect on
thresholding, it has a similar effect on the shape of the enVeiptelligibility for normal-hearing listeners, but would have a

lope, preserving the envelope in intervals where its amp”_detnmental effect on intelligibility when passed through a

tude is relatively high and eliminating the envelope in inter-CI'SpeECh processor. In comput.ing the ST, the effect of the
vals where its amplitude is low. pure tone would also show up in the apparent SNR for the
f:orresponding frequency band, so that the STI would better

The envelope thresholding results in Fig. 5 indicate tha i . o
the four proposed methods are potential candidates for pré)_redlct the effect on intelligibility for Cl-processed speech

dicting the effect ofN-of-M processing. If a frequency band than for a normal-hearing listener.
is selected all of the timésquivalent to a threshold of 0o C A intelliaibili .

then the intermediate modulation metric is one, contributing™ ternate intelligibility metrics
a transmission index value (Jlof one for that band. If a Because these quantities can be calculated on arbitrarily
frequency band is never select@djuivalent to a threshold of small speech segments, this raises the possibility of calculat-
10099, then the intermediate modulation metric is zero anding the STI on phoneme-length segments. Traditionally, STI
TI,=0. If a frequency band is selected intermittently, thenhas focused on long-term effects; however, focusing on short
the corresponding modulation metric will fall between zerosegments could prove useful in a number of areas. For ex-
and one, producing a transmission index that reflects thaample, researchers have studied the effect of mutual indepen-
band’s partial contribution to intelligibility. While all of the dence of adjacent frequency bands based on long-term aver-
proposed methods are qualitatively correct in that they deages (Steeneken and Houtgast, 199%However, mutual
crease monotonically from one to zero with increasinginformation may be modeled more accurately using short
threshold, additional work is required to determine whichtime segments that carry information concerning the fluctu-
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ating short-term SNR. Incorporating short-term averageA\CKNOWLEDGMENTS
could potentially lead to speech-based STI metrics that use This work was supported by the National Institute of

mutual information from neighboring frequency bands on @eafness and Other Communicative Disorders under Grant

phor;emltr:] level ratheLthan a gtl)qb_al level. | and 0s. 1-R01-DC00117 and 5-T32-DC0038. The authors are
nother approach to combining spectral and temporal, oo to Karen Payton for her helpful comments on an

information is the physiologically motivated spectro- : ; :
temporal modulation indeSTMI; Elhilali et al, 2003. The ~ Sorer version of this paper.
STMI is based on an auditory modeThi et al, 1999 and  AppENpDIX A: ALTERNATE FORM OF THE ENVELOPE
quantifies the difference in the auditory model output beReGRESSION METHOD

tween clean and degraded speech. It operates along spectral

and temporal dimensions jointly and explicitly accounts for ~ The following is a stochastic reformulation of the enve-
changes in spectro-temporal modulations. The STMI hatope regression methodec. 11 B 3 that facilitates compari-
been shown to be comparable to the traditional STI for adson with other methods. It begins with the assumption that
ditive noise and reverberation. In addition, for nonlinear dis-the linear regression of the sampled response envelope,
tortions consisting of phase jitter or phase shifts, the STMY[n], onto the sampled probe envelopgn], is performed
tracks subject performance on intelligibility tests, while theUsing a minimum mean square error criteri¢toss, 1998
traditional STI does not. Both the STMI and the methods!n this case, the optimal fit is

proposed in this work seek to extend the traditional STI to Ny

nonlinear operations. In order to compare these two ap-  Ywmsel N]=uy+ }\—(X[n]—,ux), (A1)
proaches, future investigations should assess the ability of X

both the STMI and the proposed metrics to capture the efwhere\,, and\, are defined in Eqg12) and(13). Thus, the
fects of a wide variety of nonlinear operations that includesslope (A) and they-intercept @) calculated using a mini-
envelope thresholding, spectral subtraction, phase jitter, an@um mean square error criterion are

phase shifts.

Ay
A= W (A2)
VII. CONCLUSIONS and
The main conclusions of this study follow. B= 1y~ )\_xyﬂx_ (A3)
X

(1) None of the four original speech-based STI methods are o ) )
suitable for both conventional acoustic degradations an@ubstituting Eqs(A2) and(A3) into Eq.(9) and rearranging
nonlinear operations. allows the apparent SNR to be expressed as

(2) All four of the proposed speech-based STI methods pro-
duce reasonable results for conventional acoustic degra- aSNR=10 |0910( 1M ) (A4)
dations, although preliminary evidence suggests that the
normalized correlation method may predict intelligibility whereM is a modulation metric defined as
less accurately than the other methods for reverberant s A
speech in quiet. All four proposed methods produce M=-">-2 (A5)

qualitatively reasonable results for the nonlinear opera- Py Nx

tions considered in this study. Additional work is re- _
quired to determine if any of the proposed methods acAPPENDIX B: NORMALIZED CORRELATION METHOD

curately predict speech intelligibility for these and otherEXPRESSED AS AN ENERGY-WEIGHTED MTF

nonlinear operations. Equation(18) defines the normalized correlation as
(3) The normalized correlation and envelope regression

methods are computationally less complex than the two _ bxy (B1)

cross-power spectrum methods and therefore offer the \/¢X¢y'

I;;?/seslbengZ Z;i%?;ﬁzu:]e%rsezls%nnamS:tEgdtei;ﬁ;)r;gpeigg oV e%)sing the relationship between the cross-correlation func-
the two cross-power spectrum methods, because it prci[.lon’lggy[k]’ ang the _c;]oshs—pogver spgctrul:;y(f ), (P?poﬁ'
duces comparable results with less computational com->’ . toge_t er wit . the observation tha,, equals the
plexity. cross-correlation function computed at zero lag, yields
(4) Of the proposed methods, the normalized correlation 172
method represents the most substantial deviation from bxy= RXV[O]:L:_UZSxy(f )df, (B2)
the traditional STI. Because it produces results that are . N
qualitatively different from the other methods, it pro- Where ¢, =E{x[n]y[n]} and R,[K]=E{x[n]y[n—k]}.
vides an important alternative for fitting data from future The normalized correlation can then be expressed as
speech intelligibility studies.
(5) The proposed speech-based STI methods offer the poten- =
tial to predict the intelligibility of Cl-processed speech. N gy t=-172

1 112

Sy(f)df. (B3)
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