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Several algorithms have been shown to generate a metric corresponding to the Speech

Transmission Index (STI) using speech as a probe stimulus [e.g., Goldsworthy and Greenberg, J.

Acoust. Soc. Am. 116, 3679–3689 (2004)]. The time-domain approaches work well on long speech

segments and have the added potential to be used for short-time analysis. This study investigates

the performance of the Envelope Regression (ER) time-domain STI method as a function of win-

dow length, in acoustically degraded environments with multiple talkers and speaking styles. The

ER method is compared with a short-time Theoretical STI, derived from octave-band signal-to-

noise ratios and reverberation times. For windows as short as 0.3 s, the ER method tracks short-

time Theoretical STI changes in stationary speech-shaped noise, fluctuating restaurant babble and

stationary noise plus reverberation. The metric is also compared to intelligibility scores on conver-

sational speech and speech articulated clearly but at normal speaking rates (Clear/Norm) in station-

ary noise. Correlation between the metric and intelligibility scores is high and, consistent with the

subject scores, the metrics are higher for Clear/Norm speech than for conversational speech and

higher for the first word in a sentence than for the last word. VC 2013 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4821216]

PACS number(s): 43.71.Gv, 43.55.Hy [AA] Pages: 3818–3827

I. INTRODUCTION

The Speech Transmission Index (STI) is a physical met-

ric that has been developed to predict the intelligibility of

speech in the presence of noise and/or reverberation (IEC,

1998, 2003, 2011). The STI is based on a weighted average

of metrics derived from envelope signals in multiple fre-

quency bands spanning the speech spectrum. The STI differs

from other intelligibility metrics such as the Speech

Intelligibility Index (SII) in that it measures reduction in sig-

nal envelope intensity modulations rather than band-specific

signal-to-noise ratios (SNRs) to predict intelligibility (ANSI,

1997). One enhancement of the SII over its predecessor met-

ric, the Articulation Index (AI), is that its estimate of the

intelligibility in the presence of reverberation is very similar

to the STI approach using room reverberation time (RT).

The primary advantage of the STI is that, by using intensity

envelope modulations, it can predict the effects of reverbera-

tion and distinct echoes in addition to interfering noise with-

out requiring explicit knowledge about reverberation times

or signal to noise ratios (Houtgast and Steeneken, 1973).

Several methods have been proposed to compute the

STI. The traditional method, originally proposed by

Houtgast and Steeneken and incorporated into the IEC stand-

ard, measures changes in envelope modulation depth using

intensity-modulated noise as the excitation/source signal

(Houtgast and Steeneken, 1973, 1980, 1985; IEC, 1998,

2003, 2011). Other methods have been proposed which use

speech as the excitation signal rather than artificially modu-

lated noise (Ludvigsen et al., 1990; Ludvigsen, 1993;

Ludvigsen et al., 1993; Drullman et al., 1994; Drullman,

1995; Payton and Braida, 1999; Payton et al., 2002;

Goldsworthy and Greenberg, 2004; Payton and Shrestha,

2008a,b). Using speech as an excitation signal allows one to

compute the intelligibility of a talker during a live perform-

ance or other situation not amenable to modulated noise

probe signals. Most of these speech-based techniques have

been shown to provide nearly the same result as the tradi-

tional STI and as the “indirect method,” described in the

most recent IEC standard, in which the STI is obtained from

weighted signal-to-noise ratios (SNRs) in seven octave

bands and the Fourier transform of the squared room impulse

response (IEC, 2011).

To date, almost all approaches to compute the STI have

used excitation signals lasting at least a minute or two and

generate a metric correlated with long-term speech intelligi-

bility. For example, the Magnitude Cross-Power Spectrum

(MCPS) method (Payton et al., 2002), requires approxi-

mately 100 s of speech to estimate intelligibility due to

acoustically degraded environments. Recently Payton and

Shrestha (2008a,b) demonstrated the feasibility of a speech-

based STI metric to predict changes in intelligibility over

much shorter time intervals.

There have been efforts to develop other short-time

speech intelligibility predictors. The Articulation Index (AI)

and Speech Intelligibility Index (SII) have been modified to

compute short-time intelligibility to help predict
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performance of noise reduction algorithms (Kates, 1987) or

effects of fluctuating noise (Rhebergen and Versfeld, 2005;

Rhebergen et al., 2006). Those approaches used speech-

shaped Gaussian noise instead of actual speech to approxi-

mate signal levels and used analysis windows as short as

6.4 ms. Boldt and Ellis (2009) developed a metric based on

the correlation of a time-frequency binary mask of the clean

speech envelope with a time-frequency representation of the

degraded speech envelope to estimate intelligibility of

speech in fluctuating and stationary background environ-

ments using 80 ms windows. Ma et al. (2009) studied the

performance of several speech-based metrics, including the

STI-based Normalized Covariance Method, using 20–30 ms

frames of speech degraded by realistic environmental noises.

Falk et al. (2010) used 256 ms windows to compute a metric

based on modulation spectra vs filterbank center frequency

of reverberant/processed speech to predict the performance

of dereverberation algorithms. Taal et al. (2011) proposed a

metric, similar to a short-time implementation of the

Normalized Correlation metric described in Goldsworthy

and Greenberg (2004), which used 384 ms windows to ana-

lyze nonlinearly processed speech. In 2012, Schlesinger

(2012) created a “transient-based STI” using 400 ms analysis

windows to predict the intelligibility of nonlinearly proc-

essed speech that built upon the preliminary results of

Payton and Shrestha (2008a).

Clearly there is significant interest in short-time intelli-

gibility metrics that can track speech intelligibility in time-

varying environments, whether those environments are due

to fluctuating backgrounds or speech enhancement algo-

rithms. For a metric such as the STI, which has already been

established as a standard, one necessary demonstration for

any short-time version is that it approach the long-term

results when averaged over many frames unless there is evi-

dence that the long-term STI either over or under estimates

intelligibility in a condition and the short-term version is a

better fit to listener performance. In addition, a short-time

metric should track speech intelligibility on the scale (win-

dow length) over which it is computed.

The current work examines both issues. It compares

short-time predictions of one speech-based STI technique,

the Envelope Regression (ER) metric, to short-term theoreti-

cal STI results. The ER metric is based on the speech-based

STI method proposed by Ludvigsen et al. (1990) then refor-

mulated by Goldsworthy and Greenberg (2004) who also

demonstrated that the long-term characteristics of the metric

were almost identical to the long-term STI for noisy and/or

reverberant environments. The short-time theoretical STI is

calculated using a frame-based application of the IEC indi-

rect method, herein referred to as the Theoretical Method.

Frame-level and averaged results are evaluated as a function

of window length for environments degraded by stationary

speech-shaped noise, fluctuating restaurant babble or station-

ary speech-shaped noise plus reverberation. Linear regres-

sion analyses of the short-time ER results vs the Theoretical

Method are performed where computations for both metrics

are made over the same time frame. The averaged results are

also compared to long-term STI, as determined by the

MCPS technique (Payton et al., 2002). Finally, the ER

metric results are compared to listener intelligibility scores

for two talkers, speaking both conversationally and clearly at

normal speaking rates in the presence of stationary speech-

shaped noise.

II. METHODS

A. Stimuli

The stimuli used in this study were three sets of 50 non-

sense sentences from the corpus of Picheny et al. (1985) that

had been digitized at a 20 kHz sampling rate. Nonsense sen-

tences are grammatically correct but do not provide any

semantic context to aid word identification, e.g., “His guests
could teach his turnpike.” Each sentence consisted of four to

six key words (italicized in example) consisting of the nouns,

adjectives, and verbs in the sentence. The set used in Secs.

III A to III C was spoken conversationally by a male talker

(Payton et al., 1994). The second and third sets, used in Sec.

III D, were spoken both conversationally (Conv) and articu-

lated clearly but at normal speaking rates (Clear/Norm) by a

different male talker and by a female talker, respectively

(Krause, 2001; Krause and Braida, 2002, 2004).

B. Degradation conditions

Three types of environmental degradations were consid-

ered: Stationary speech-shaped noise, speech-shaped noise

plus simulated reverberation and fluctuating restaurant bab-

ble. The speech-shaped noise was generated by filtering

white Gaussian noise sequences to approximate the average

long-term spectra of speech. The restaurant babble consisted

of multi-talker babble plus random impulsive dish and uten-

sil noises sampled at 20 kHz.

In Sec. III A, the speech-shaped noise was added to the

speech at an average SNR of 0 dB. For the noise plus rever-

beration condition in Sec. III B, speech plus noise at 0 dB

SNR was convolved with a simulated conference room

impulse response (T60¼ 0.6 s) (Peterson, 1986; Payton et al.,
1994). The restaurant babble was added to the speech at

0 dB SNR in Sec. III C. In Sec. III D, stationary speech-

shaped noise was added to the speech at an average SNR of

�1.8 dB to match the listening conditions reported in Krause

(2001; Krause and Braida, 2002, 2004).

C. Processing steps

Figure 1 depicts a block diagram of the signal process-

ing steps used to obtain the speech-based STI values. The

clean and degraded signals were separately filtered using a

bank of six sixth-order octave-wide Butterworth band-pass

filters with center frequencies from 125 Hz to 4 kHz and a

sixth-order Butterworth high-pass filter with a cutoff fre-

quency of 6 kHz to extract the 8 kHz band. For each fre-

quency band, i, intensity envelopes were extracted from the

clean and the degraded signals by squaring and low-pass fil-

tering with a cutoff frequency of 50 Hz. The lowpass filter

was implemented using a 10 ms (200 point) Hamming win-

dow as the impulse response in order to have a constant

group delay and to avoid negative-valued envelopes.

Frequencies below 50 Hz were attenuated by the filter less
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than 2 dB, the first null occurred at 203 Hz and the side lobe

peaks were at least �42 dB below the main lobe peak.

The clean and degraded intensity envelopes, xi(k) and

yi(k), respectively, were down-sampled by a factor of 49 to

408 Hz. The new sampling rate was selected to decrease

computation time without attenuating envelope frequencies

below 50 Hz due to the anti-aliasing filter. Next, for each

octave band, a modulation metric, Mi, was calculated based

on a comparison of the clean and degraded intensity

envelopes.

For the Envelope Regression (ER) method, each band’s

modulation metric, Mi, was computed from the clean and

degraded envelope signals using Eq. (1):

Mi ¼
lxi

lyi

1

N

XN

k¼1

½xiðkÞyiðkÞ� � lxilyi

1

N

XN

k¼1

½xiðkÞ�2 � ðlxiÞ2
(1)

where lxi and lyi are the means of the clean and degraded in-

tensity envelopes xi(k) and yi(k), respectively. This equation

is a short-time implementation of the ER algorithm proposed

in Goldsworthy and Greenberg (2004). The variable N corre-

sponds to the rectangular window length used, from 43 656

(107 s, the length of 50 concatenated sentences) down to 32

(78 ms) for the analyses presented in Secs. III A to III C

below. Except for the 107 s window, windows were over-

lapped by 75%. The analyses in Sec. III D, with conversa-

tional and Clear/Norm sentences, were performed with

windows equal to either individual sentence lengths or key-

word lengths.

Once the modulation metrics were computed, the apparent

signal-to-noise ratio (SNR) in each band, aSNRi, was com-

puted based on the IEC standard (IEC, 1998, 2003, 2011) as

aSNRi ¼ 10 log10

Mi

1�Mi

� �
(2)

where the results were clipped to 615 dB then converted to

a transmission index, TIi:

TIi ¼
aSNRi þ 15

30
: (3)

Finally, the overall STI value (ranging from 0 to 1) was cal-

culated as a weighted sum of the TIi values:

STI ¼
X7

i¼1

aiTIi �
X6

i¼1

bi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TIi � TIiþ1

p
(4)

where the ai’s represent the octave band weighting factors

and the bi’s represent the redundancy correction factors

specified in the IEC standard (IEC, 1998, 2003, 2011).

D. Reference methods

In order to compare the ER method with the “true” STI,

the long-term STI, was computed using the speech-based

Magnitude Cross Power Spectrum (MCPS) method (Payton

et al., 2002). Also a short-term Theoretical Method based on

the IEC standard’s indirect method (IEC, 2011) was also

calculated.

The first set of 50 sentences were concatenated in order

to compute the long-term STI. A degraded version was cre-

ated for each condition in Secs. III A to III C as described in

Sec. II B. Clean and degraded envelopes were computed as

described above. Auto-power spectra and cross-power spec-

tra for each band, i, were estimated using Welch’s averaged,

modified periodogram method with 4096-point FFTs using

Hamming windows and 50% overlap. The resulting 0.1 Hz

wide frequency bins of each spectrum were summed across

one-third octave intervals centered from 0.315 to 25 Hz.

Equation (5) was used to calculate the Modulation Transfer

Function (MTF) as a function of interval frequency, F,

MiðFÞ ¼
lxi

lyi

jSxyiðFÞj
jSxxiðFÞj

(5)

where lxi, lyi, xi(k) and yi(k) are defined above and Sxyi(F) and

Sxxi(F) are the third-octave cross- and auto-power spectra. The

long-term STI was computed by substituting Mi(F) for Mi in

Eq. (2). The resulting variable, aSNRi(F), was averaged

across F after clipping to 615 dB to obtain aSNRi. The long-

term STI then was computed using Eqs. (3) and (4).

The short-term Theoretical Method STI was calculated

over the same window lengths as the ER metric. The speech

and the noise (as opposed to the degraded speech) were

FIG. 1. (Color online) Block diagram of signal processing steps necessary to compute the speech-based intelligibility metric.
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passed separately through the octave-band filter bank shown

in Fig. 1 and, rather than extracting intensity envelopes,

within-band powers were used to obtain the signal-to-noise

ratio [SNRi in Eq. (6)] in each band. The modulation index

in each band, Mi(F), was then calculated as specified by the

most recent version of the IEC standard for the “indirect

method” (IEC, 2011):

MiðFÞ ¼

����
XN�1

0

hiðnÞ2e�j2p F n

����
XN�1

0

hiðnÞ2

0
BBBB@

1
CCCCAð1þ 10ðSNRiÞ=10Þ�1: (6)

The first parenthetical term in Eq. (6) estimates the modula-

tion reduction due to reverberation in band i and uses the

simulated room impulse response, h(n), of length N, filtered

by the ith octave filter. The variable F corresponds to modu-

lation frequency (0.63 to 25 Hz). The second parenthetical

term in Eq. (6) estimates the modulation reduction due to

additive noise in the analysis window in band i where SNRi

is the signal-to-noise ratio in the ith band (in dB). The

Theoretical Method for each window was computed by sub-

stituting Mi(F) for Mi in Eq. (2) then following the steps

described for the long-term STI above.

III. RESULTS

In Secs. III A to III C, the ER metric results are compared

to the Theoretical Method for three degradation condition as

functions of window length. Linear regression analyses for

the metric vs the Theoretical Method results are examined.

Results for two window lengths are presented for the linear

regression analyses. The 0.3 s window results are typical of all

the longer windows. The 78 ms window results demonstrate

metric behavior for window lengths that are too short to track

the Theoretical Method, particularly during silent intervals. In

addition, ER and Theoretical Method averages when different

window lengths are used are compared to the long term STI.

In Sec. III D, regression analyses for the ER metric

results vs the Theoretical Method are presented for window

lengths matched to each sentence or to each keyword for the

two talkers who spoke both conversationally (Conv) and

clearly at normal speaking rates (Clear/Norm). Also, the

resulting metrics are compared to average listener intelligi-

bility scores at both the sentence and word level. Finally,

changes in metric results and intelligibility due to speaking

style are evaluated at the sentence level and at the word

level, based on word position within sentences.

A. Zero dB SNR with stationary speech-shaped noise

In the first experiment, stationary speech-shaped noise was

added to concatenated sentences at 0 dB SNR. Figure 2 depicts

the Theoretical Method and ER metric as functions of time for

2 s of speech mixed with noise. Each panel corresponds to the

metrics calculated using the indicated window length.

As depicted by the dashed line in each panel, an SNR of

0 dB corresponds to a long-term STI value of approximately

0.5 (the exact value depends on the spectral characteristics

of the speech and noise). For windows equal to the entire

corpus of 107 s (not shown) both the Theoretical and ER

methods matched the long-term STI value of 0.49, computed

using MCPS method. As window length was shortened, the

Theoretical Method tracked the short-term fluctuations in

SNR. The ER method generally matched local fluctuations

in the Theoretical Method for each window length.

Once window length was decreased to 78 ms (bottom

panel), the ER method frequently deviated from the

Theoretical Method, particularly during low SNR intervals,

such as pauses in the speech and occasionally during higher

SNR intervals. In windows where the Theoretical Method

was zero because only noise was present (around 0.4, 0.8, 1,

and 1.75 s), the ER method often generated non-zero results.

In some cases, the ER metric was higher during pauses than

it was during windows with higher Theoretical values (e.g.,

at 0.8 s the ER method is higher than it is during the interval

between 0.8 and 1 s).

Regression analyses were performed to compare the

short-time ER results to the Theoretical Method on a

window-by-window basis for two window lengths: 0.3 s and

78 ms. Figure 3 summarizes the regression results for the

three degradation conditions evaluated in this manner. Each

row represents a different acoustic condition. A separate

data point was plotted for the metrics computed on each win-

dowed segment. This resulted in 1364 points in the left pan-

els (0.3 s windows) and 5467 points in the right panels

(78 ms windows). Regression lines, standard deviation bars,

and the goodness-of-fit (R2) statistics are also shown for

each window length. The standard deviations were calcu-

lated after subtracting the linear regression values. The R2

statistic measures the proportion of the observed variations

around the mean that can be explained by the regression fit.

The closer R2 is to 1, the greater the degree of association

between the two metrics. If all of the variation can be

explained by the mean, then R2¼ 0.

Figure 3(a) depicts the correspondence of the ER

method to the Theoretical method for speech plus stationary

FIG. 2. (Color online) Metrics vs time for several window lengths in the

0 dB SNR stationary speech-shaped noise condition. Predictions for 2 s of

speech (�2 sentences) are shown. Different curve types represent: The long-

term STI determined by the MCPS method (dashed), Theoretical method

(dotted), and ER method (solid).
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speech-shaped noise (SSN) at 0 dB SNR. The R2 statistic of

0.99 and standard deviation of 0.02 in the left frame indi-

cates the ER metric values are highly predictive of the corre-

sponding Theoretical Method values for the 0.3 s window

segments. The slope and intercept of the best-fit line are

0.985 and 0.01, respectively, indicating the two metrics are,

on average, almost identical. The fit of the data to a straight

line is also very good for the 78 ms windowed segments

(R2¼ 0.91 and standard deviation of 0.06) whose data are

presented in the right frame. Note though, for this shorter

window, when the Theoretical Method is zero there are

many ER values greater than zero along the y axis. The

measured slope and intercept of 0.89 and 0.07, respectively,

reflect this asymmetry. The data points along the y axis cor-

respond to the intervals mentioned above in reference to

Fig. 2 where the ER values were greater than the Theoretical

method during pauses. The Theoretical Method will be zero

whenever the talker pauses. The fact that all the correspond-

ing ER values are not zero during the pauses indicates the

ER method does not track the Theoretical Method well dur-

ing the silent intervals when the window is this short.

Preliminary analysis indicates that the ER value for these

short windows tracks the noise envelope in the window

when the clean signal is very small or zero.

In order to study how well the averaged short-time met-

rics correspond to the long-term STI, the ER method and the

Theoretical Method for a given window length were aver-

aged over the entire speech corpus (107 s). The averages are

plotted in Fig. 4(a) as functions of window length. For com-

parison, the long-term STI is also plotted for this condition.

It can be seen that ER method produced the same aver-

age value as the Theoretical Method for window lengths

greater than about 0.3 s and that both agree with the long-

term STI for windows longer than 10 s. The ER averages

decreased noticeably relative to both the long-term and

Theoretical STI as the window was decreased below about

1 s. This is because voiced speech segments dominate the

metric results for longer windows. When the windows are

shortened such that some contain primarily unvoiced and/or

silent intervals, the metric results for those windows are

much closer to zero, pulling the average down. The leftmost

data points are for the 78 ms window. For that window

length, the ER average did not decrease quite as much as the

Theoretical Method average relative to the next window

length of 0.157 s.

B. Zero dB SNR stationary speech-shaped noise plus
reverberation

When the noisy speech was convolved with the rever-

berant room impulse response (T60¼ 0.6 s), the ER method

generated values that varied more widely when compared to

the Theoretical Method. In Fig. 3(b), ER results are plotted

versus the Theoretical Method for the two window lengths.

As before, the 0.3 s window results are plotted in the left col-

umn and the 78 ms results in the right column and each sym-

bol corresponds to a single window result, linear regression

lines are overlaid on the data and both standard deviations

and goodness-of-fit statistics (R2) are shown.

It can be seen from Fig. 3(b) that the ER method tracks

the Theoretical Method fairly well using the 0.3 s window

for this condition. The corresponding R2 statistic is 0.79, and

FIG. 4. (Color online) Metric averages computed over entire speech corpus,

plotted as functions of analysis-window length for speech in (a) 0 dB SNR

stationary speech-shaped noise, (b) 0 dB SNR stationary speech-shaped

noise plus reverberation, and (c) 0 dB SNR restaurant babble. The dotted

line corresponds to the Theoretical Method average, the solid line to the ER

method and the dashed line to the long-term STI as calculated using the

MCPS method.

FIG. 3. (Color online) ER Metrics computed from 0.3 s windows (left col-

umn) and 78 ms windows (right column) vs Theoretical Method for (a) 0 dB

SNR stationary speech-shaped noise, (b) 0 dB SNR stationary speech-

shaped noise plus reverberation, and (c) 0 dB SNR fluctuating restaurant

babble. When the window length was 0.3 s, 1364 window frames were avail-

able for analysis. When the window length was 78 ms, there were 5467 win-

dow frames. The solid lines represent best linear fits to the data, the vertical

bars to the right in each square indicate 1 standard deviation from the best

linear fit and the R2 statistics indicate the goodness of fit.
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the standard deviation is 0.04. The ER method predicts val-

ues that are, on average, slightly lower than the Theoretical

Method across the range as indicated by the linear regression

line always lying below the main diagonal in the left frame

(slope¼ 0.80, intercept¼�0.02). It should be noted that this

condition was a more severe degradation than speech plus

noise at 0 dB SNR, as evidenced by the fact that the

Theoretical method never exceeded 0.56 for the 0.3 s win-

dows or 0.61 for the 78 ms windows whereas, in the 0 dB

SNR condition, the Theoretical Method had maxima of 0.73

and 0.85 for the 0.3 s and 78 ms windows, respectively.

For the 78 ms window analysis, the ER metric results for

noise plus reverberation demonstrate even more variability

relative to the Theoretical Method (R2¼ 0.35, standard

deviation¼ 0.09) indicating a very poor fit to the linear

regression line (slope¼ 0.42 and intercept¼ 0.07). Looking at

specific trends, when the Theoretical Method was zero, the

ER metric varied over a wide range (0 to 0.4). It also appears

that, in the reverberant condition, the ER metric values varied

more at the highest Theoretical Method values than at the

lowest, in contrast to the other conditions analyzed.

The ER metric and the Theoretical Method were also

averaged across windows. The averages are plotted vs win-

dow length in Fig. 4(b), along with the long-term STI for

comparison. The Theoretical Method asymptotes to a value

just slightly less than the long-term STI (0.394 vs 0.41) for

this condition when analysis windows are greater than 5 s.

The ER average asymptotes at 0.363, 0.031 less than the

Theoretical Method average. For windows less than 5 s, both

the Theoretical Method and ER averages decrease, similar to

what was observed in the stationary speech-shaped noise

condition. The ER method averages parallel, but are consis-

tently less than, the Theoretical Method for all window

lengths (a difference of 0.03 for the longest windows and

0.08 for 0.3 s windows).

C. Zero dB SNR with fluctuating restaurant noise

The third condition analyzed was speech degraded by

restaurant babble at 0 dB SNR. As for the prior two condi-

tions, the window-by-window metric results in Fig. 3(c) are

plotted versus the corresponding Theoretical Method and a

linear regression analysis is presented for each plot. It can be

seen from the left plot that the ER results are highly corre-

lated with the Theoretical Method for the 0.3 s window

where R2¼ 0.93 and the standard deviation is 0.04. The

slope of 0.92 and intercept of 0.05 indicate the ER is very

close in value to the Theoretical Method. For the 78 ms win-

dow, the data is more scattered, with R2¼ 0.84 and standard

deviation equal to 0.09. The regression line has a slope of

0.85 and intercept equal to 0.11. One can see that the

Theoretical Method is rarely zero for either window length

but, as was observed for the other conditions, when the

Theoretical Method produced values less than 0.1 using the

shorter analysis window, the ER values spanned a wide

range, in this case from 0 to 0.75.

Figure 4(c) demonstrates that the averaged behavior of

the metrics when speech is degraded by restaurant babble is

very similar to that when speech is degraded by stationary

speech-shaped noise. The primary difference is that the

Theoretical Method and ER method asymptote at 0.6 rather

than 0.5 as they had for the speech-shaped noise condition.

D. Different speaking styles at 21.8 dB SNR with
stationary noise

For the next investigation, nonsense sentences were ana-

lyzed that had been spoken either conversationally (Conv) or

clearly at normal rates (Clear/Norm) by a female and a dif-

ferent male talker (T4 and T5, respectively) in the presence

of stationary speech-shaped noise presented at �1.8 dB SNR

(Krause and Braida, 2002). The purpose of this analysis was

three-fold. First, it was intended to verify metric perform-

ance on additional voices. Second, it was of interest to see

how well the metrics would compare to subject performance

at the sentence and word levels since subject intelligibility

data for these sentences and keywords at this signal-to-noise

ratio were provided by J. Krause (personal communication).

This would be the first instance when an STI metric for indi-

vidual words could be compared to subject responses to

those words. Third, it was not known how the short-time

metric would perform as a function of the two speaking

styles for which significant intelligibility differences have

been demonstrated (Payton et al., 1994; Krause, 2001;

Krause and Braida, 2002).

To demonstrate the first goal, a regression analysis of the

ER method vs the Theoretical Method was performed on each

talker’s Conv and Clear/Norm keywords. The window length

was the same as the length of the corresponding word.

Virtually all the words analyzed were longer than 0.3 s which

was the window duration established in Sec. III A as sufficient

for the ER method to track the Theoretical Method for

speech-shaped noise degradation. Out of 342 words analyzed

(170 by T4 and 172 by T5), only 18 (10 by T4 and 8 by T5)

were less than 0.3 s in duration (minimum word length was

0.2 s). The results for each talker and speaking style are not

plotted because they were almost identical to the 0.3 s window

0 dB SNR results presented in Fig. 3(a). For both talkers, the

best-fit lines had slopes of 1.0. The “goodness-of-fit” statistic

(R2) was 0.98 for T4, 0.99 for T5 and there was no difference

in the quality of fit based on speaking style. The means of

both talkers’ Conv words were 0.37 for both the ER and

Theoretical methods while the Clear/Norm word means were

0.45 for each talker and metric. Individual Conv word metric

values ranged from 0.07 to 0.61 for T4 and from 0.13 to 0.63

for T5 while the Clear/Norm word metrics ranged from 0.13

to 0.74 for T4 and from 0.25 to 0.65 for T5.

Next, the ER metric was computed for each of 50 sen-

tences common to both the Conv and Clear/Norm corpuses

with the window length set to the sentence length (i.e., one

value was obtained for each sentence). These values were

compared to average subject intelligibility scores for the cor-

responding sentences’ keywords. In Fig. 5, sentence ER val-

ues are plotted on the horizontal axes (T4 on the left and T5

on the right) and average percent-correct values are plotted

on the vertical axes.

Note that the Clear/Norm averages for each talker, indi-

cated by the intersection of the dotted crosshairs, are to the
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right and above the Conv averages which are indicated by

the intersection of the solid crosshairs. This implies that the

metric is able to capture some aspects of Clear/Norm speech

that contributed to its higher intelligibility even though it

was presented at the same SNR as Conv speech. These

results are consistent with those reported by Krause and

Braida (2004) who demonstrated in their Fig. 4 that the

long-term STI for these two talkers increased slightly when

speaking style was changed. To allow a comparison, line

segments have been included in Fig. 5 to indicate their long-

term STI changes for these speech materials. The segment

for T4 is almost vertical indicating very little change in STI

for the two speaking styles. The segment for T5 demon-

strates a greater change in STI due to speaking style but still

not as large as that demonstrated by the ER metric.

The R2 statistics for the data in Fig. 5 are much lower

than for the regressions of the ER metric against the

Theoretical Method for word-length windows. For these

sentences, R2¼ 0.34 for talker T4 and 0.45 for talker

T5. The R2 statistic indicates the extent to which the regres-

sion line is a better fit to the data than just the mean value.

The regression line is not very meaningful if the data are

spread vertically about the mean. This is the situation for

much of the sentence data since each sentence was pre-

sented at �1.8 dB SNR and the resulting intelligibility met-

rics varied over a range of only 0.28 for T4 and 0.14 for

T5. The only difference in the metric values appears to be a

shift of the mean due to speaking style from an average of

0.39 for T4 and 0.38 for T5 on Conv sentences to 0.46 for

T4 and 0.45 for T6 on Clear/Norm sentences. On the other

hand, subject intelligibility averages varied from about 20%

correct to nearly 100% correct on the sentences. A word-

level regression analysis is not shown because subject intel-

ligibility scores were highly quantized (8 subjects, each

either getting the word correct or not) resulting in even

lower correlations.

Since the Conv and Clear/Norm experiments included a

sentence list in common to the two speaking styles, it was

possible to compare the intelligibility differences due to

speaking style on specific keywords with the corresponding

changes in metric value. The change in intelligibility

between Clear/Norm and Conv sentence pairs vs the change

in ER value for the same pair are presented in Fig. 6. A posi-

tive change corresponds to a higher score for the Clear/

Norm speech than the Conv speech.

Symbols in the first and third quadrant correspond to

subject performance trends accurately predicted by the met-

ric, i.e., Clear/Norm sentences which are more intelligible

than their Conv counterparts with corresponding positive

metric changes or Clear/Norm sentences less intelligible

with negative metric changes. Most sentence pairs and the

means for both talkers fell in the first quadrant. A couple

sentence pairs fell in the third quadrant for T4. The fourth

quadrant, with the second largest cluster of sentence pairs

(mostly spoken by T4), corresponds to Clear/Norm sentences

less intelligible than their Conv counterparts but with higher

metric values. These are sentences for which the subjects

had decreased intelligibility for Clear/Norm sentences over

the corresponding Conv sentences but the metric still pre-

dicted improved intelligibility. They were analyzed further

and it was determined that the metric predominately tracked

voiced sounds such as vowels and, despite strong vowels,

some Clear/Norm key words had low probability of correct

identification.

Next, the metric was evaluated on its ability to predict

intelligibility changes due to speaking style for keywords

based on their position in the sentence. The hypothesis was

that talkers tend to speak more softly toward the ends of sen-

tences when speaking conversationally, reducing the effec-

tive SNR for those words. Some of the Clear/Norm

intelligibility advantage could be due to talkers maintaining

a more constant SNR throughout the sentence, improving

the SNR for sentence-ending words when compared to the

SNR for these words in Conv sentences. Therefore, as shown

in Fig. 7, changes in intelligibility and ER values of first key-

words were compared to changes in intelligibility and ER

values of final keywords.

As was the case in Fig. 6, positive changes indicate

higher intelligibility and/or ER value for Clear/norm

FIG. 5. (Color online) Regression analyses for ER metric vs percent correct

on sentences using windows equal to sentence lengths. (left) Talker T4;

(right) talker T5. Circles correspond to Conv sentences and diamonds corre-

spond to Clear/Norm sentences. The solid crosshairs indicate the means for

conversational sentences and the dotted crosshairs indicate the means for

clear sentences. The thick lines indicate the best linear fit to the combined

data. The line segments between the percent-correct lines indicate the

change in long-term STI for the two data sets [from Krause and Braida

(2004)].

FIG. 6. (Color online) Change in ER metric vs change in percent correct for

sentences due to change in speaking style from Conv to Clear/Norm.

Diamonds represent sentences spoken by T4. Circles represent sentences

spoken by T5. The larger filled symbols represent talker averages. The solid

horizontal lines denote zero change in percent correct and solid vertical lines

indicate zero change in ER value.
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pronunciation of the words. While there is some tendency

for the ER value to shift to the right for both initial and final

keywords, the average change in intelligibility for the initial

keywords is nearly zero for both talkers. Nineteen of T4s

and 11 of T5s 50 initial keywords were less intelligible when

spoken in the Clear/Norm style. The final keyword changes

are more varied but tend to be farther from the zero-change

axes and in the first quadrant. Only six of T4s and four of

T5s final keywords were less intelligible when spoken in the

Clear/Norm style than in the Conv style and only one final

keyword (spoken by T5) had a lower ER value. On average,

sentence-final keywords have a greater increase in both met-

ric values and percent correct going from Conv to Clear/

Norm than sentence-initial keywords for both talkers

although the result is more noticeable for talker T5. The hy-

pothesis therefore appears to be supported by the data: The

short-term metrics decrease from beginnings to ends of con-

versational sentences but maintain a more stable level during

clear speech, even clear speech produced at normal speaking

rates.

IV. DISCUSSION

Previous efforts to use speech as a probe stimulus in STI

calculations, rather than modulated noise, as specified by the

IEC standard, required very long speech segments to gener-

ate an accurate metric (e.g., Payton et al., 2002). This was

due primarily to the fact that they were derived from modu-

lation spectra and needed signals of sufficient duration to

provide the necessary spectral resolution. Goldsworthy and

Greenberg (2004) demonstrated that the time-domain ER

and other STI-based methods, computed using speech as a

probe stimulus, were highly correlated with the long-term

STI. They used speech durations comparable to the spectral

methods to validate the metrics. The current work has dem-

onstrated that the ER metric tracks the Theoretical Method

using analysis windows as short as 0.3 s in a variety of

acoustic degradation conditions. In addition, the algorithm to

compute the ER metric is computationally efficient and can

be implemented in a real-time system. The results presented

indicate that the averaged ER method equals the averaged

Theoretical Method when the analysis window is as short as

1 s and also the long-term STI when the analysis window is

as short as 8–10 s for the two noise conditions.

For the noise plus reverberation condition, there is evi-

dence in the literature that the long-term STI over-predicts

intelligibility for noise plus reverberation. The intelligibility

scores reported by Payton et al. (1994) were lower for speech

degraded by noise plus reverberation than the STI would have

predicted. For example, in two conditions that differed only in

whether reverberation was part of the acoustic degradation,

the authors reported a difference of only 0.05 in STI while

their subjects’ intelligibility scores dropped substantially due

to the added reverberation. The average intelligibility scores

dropped 18 percentage points, from 79% to 61% correct, for

the Clear talker and 24 percentage points, from 51% to 27%

correct, for the Conv talker. If a 0.3 s window ER metric were

used and averaged, the noise-plus-reverberation STIs would

be reduced by 0.17. This would move the STI predictions for

that condition from being outliers to close to the third-order

curve fits reported by Payton et al.
Some points should be made about the Theoretical

Method as computed in this study. First, while it has been

demonstrated to match the long-term STI over a wide range

of analysis window lengths, it requires access to knowledge

of both the signal power and noise power in each octave

band and is therefore not a reasonable choice for applications

in which the SNR is not known. Second, when the condition

is noise plus reverberation, the theoretical Modulation

Transfer Function for speech plus noise is adjusted by a mul-

tiplicative term derived from the room impulse response in-

tensity envelope spectrum [Eq. (6)] to obtain the modulation

index. In practice, the room impulse response is usually not

known. Third, even if the impulse response were known, the

reverberation adjustment in Eq. (6) is not likely to be valid

for analysis windows shorter than the reverberation time (the

reverberation adjustment is not a function of analysis win-

dow length). This issue should be investigated further; it

may explain why the scatterplot comparing the ER method

to the Theoretical Method for the noise plus reverberation

condition was so much worse than those for the stationary

speech-shaped and the fluctuating restaurant babble condi-

tions (Fig. 3). Both the 0.3 s and the 78 ms analysis windows

are shorter than the 0.6 s reverberation time. George et al.
(2008) took a hybrid approach to model speech intelligibility

in the presence of non-stationary background noise plus

reverberation. They computed the Modulation Transfer

Function to account for the reverberation and combined it

with the extended SII (ESII), proposed by Rhebergen and

Versfeld (2005), which was computed using analysis frames

that varied from 35 ms down to 9.4 ms depending on the fil-

ter band. In the future, it may make more sense to compute

the Theoretical Method value by treating the portion of the

reverberant speech due to reflections as a masking speech

interferer like the fluctuating noise condition.

As indicated above, further work must be done to thor-

oughly investigate the limitations of this short-time speech-

based STI method. Using the current computational technique,

analysis windows shorter than 0.3 s result in ER metric values

that deviate from the Theoretical Method. Doubbelboer and

FIG. 7. (Color online) Change in percent correct vs change in metric for first

and last keywords due to change in speaking style for each talker. Squares

correspond to first word pairs. Triangles correspond to last word pairs. The

large filled symbols indicate averages. Solid horizontal and vertical lines

mark zero change in percent correct and ER values, respectively.
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Houtgast (2007) point out that, in addition to the “systematic

lift” of degraded speech envelopes due to the mean noise in-

tensity, there are stochastic envelope fluctuations that are not

captured by the Theoretical Method or by the long-term STI.

Those stochastic envelope fluctuations are what cause the ER

metric to deviate from the Theoretical Method.

Another question to be answered is: What is the right

length analysis window to use? Following the example of

Rhebergen and Versfeld, analysis windows as short as

9.4 ms might be needed to accurately predict speech intelli-

gibility in fluctuating backgrounds. On the other hand, the

envelope signal extracted by an analysis window this short

would always be a constant since only frequencies greater

than 106 Hz (period equal to 9.4 ms) would appear as time-

varying fluctuations within the window but the envelopes are

lowpass filtered at 50 Hz. Also, Gallun and Souza (2008)

demonstrated that consonant confusions by listeners were

highly correlated with modulation spectra spanning modula-

tion frequencies from 1 to 32 Hz. Even a 0.3 s window only

“sees” frequencies greater than 3.3 Hz which is already near

the syllable rate of speech (�4 Hz). Clearly more work needs

to be done to clarify this issue.

Even with its limitations, the short-time ER metric rep-

resents a promising new way to objectively predict speech

intelligibility in a variety of acoustic environments. In partic-

ular, it might be possible to predict differences in intelligibil-

ity between stationary and modulated noise attributed to

masking release if the metric can be computed using appro-

priate window lengths. The current work has shown that, in

the presence of a fluctuating background (restaurant babble),

the short-term Theoretical Method and ER method both gen-

erated slightly higher values than they did for stationary

noise (0.6 rather than 0.5).

One reason an STI metric that uses speech as its probe

stimulus is important is it opens up the range of environments

under which the STI can be measured. Using the ER method,

speech intelligibility can be predicted during a lecture or other

live performance in a populated auditorium or classroom. The

existing tools for measuring the STI require the presentation

of intensity-modulated noises that most audiences might find

rather annoying to listen to. A speech-based metric might also

be applied to a time-varying situation such as that resulting

from an amplitude-compression hearing aid. This would also

be a situation where short-term windows might be more

appropriate than a long-term analysis so that distortions dur-

ing gain transitions do not necessarily skew predicted intelli-

gibility during steady-state intervals.

V. CONCLUSIONS

The work reported herein has demonstrated two impor-

tant results. First, a short-time, speech-based, metric is able

to track the short-term fluctuations in STI accurately down

to window lengths of 0.3 s for two different noise environ-

ments and a noise plus reverberation environment. Second,

this short-time metric has successfully predicted intelligibil-

ity differences due to speaking style at both the sentence and

word level. It tracked differences in acoustic features such as

SNR word by word through a sentence.
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