ConcBugAssist: Constraint Solving for Diagnosis and
Repair of Concurrency Bugs

Sepideh Khoshnood
ECE Dept., Virginia Tech
Blacksburg, VA, USA

sepidehk@vt.edu
Abstract

Programmers often have to spend a significant amount of time i
specting the software code and execution traces to idehéfgause

of a bug. For a multithreaded program, debugging is even more :

challenging due to the subtle interactions between thraadghe
often astronomical number of interleavings. In this worle pro-
pose a logical constraint based symbolic analysis methaaldto

in the diagnosis of concurrency bugs and to recommend sepair
Both diagnosis and repair are formulated as constrainirgpprob-
lems. Our method, by leveraging the power of satisfiabiBAT)
solvers and a bounded model checker, performs a semantic ana
sis of the sequential computation as well as thread inferest The
constraint based analysis is designed for handling crisicfiware
with small to medium code size, but complex concurrency robnt
such as device drivers, implementations of synchroniagtimto-
cols, and concurrent data structures. We have implementateo
method in a software tool and demonstrated its effectiveiedi-
agnosing bugs in multithreaded C programs.

1. Introduction

Multithreaded programs are notoriously difficult to desaymd
analyze due to the subtle interaction between concurreatds
and the astronomical number of possible interleavings. aBse
of its complexity, it is often challenging for programmensrea-
son about the behavior of their code. Testing is also diffibet
cause the program execution is inherently non-deterngnigtur-
thermore, even after a bug is detected the programmer etiti®ito
sift through the relevant code and the failing executiorotalize
the root cause. Finally, coming up with a correct repair i9a-n
trivial task. For example, a race condition may be elimidagigher
by introducing a critical section or by imposing a certaie@xtion
order via signal—-wait primitives. However, it may be difflicio de-
cide which approach is better or if a certain fix is bug freer &b
these reasons, having an automated software tool to hatgifide
the potential root cause and suggest possible repairs chertsfi-
cial to programmers.

Our work is inspired by recent developments in logical caaist
based methods for diagnosing bugs in sequential softvegxelb,
45]. Arepresentative of these methods is a tool called BugsAf29],
which uses a bounded model checker to systematically séarch
failing executions, and then a partial maximum satisfigbfiblver
to localize the root cause. The main advantage of this methed
well as similar techniques based on error invariahf} §nd inter-

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

ISSTA'15July 12-15, 2015, Baltimore, MD, USA.

Copyright 2015 ACM X-XXXXX-XX-X/XX/XX ... $15.00.

Markus Kusano
ECE Dept., Virginia Tech
Blacksburg, VA, USA

mukusano@vt.edu

Chao Wang
ECE Dept., Virginia Tech
Blacksburg, VA, USA

chaowang@vt.edu

Program . New ProgramP’

P l lAssertlonp T
errneoys . :
Scheaul : potential

:| Bounded »| Parital ‘| compute | SOMUONS | Transtorm |

‘| Model | MAX- [+7* Binate Program

.| Checking bfocking SAT Cover Code

: clause :
Diagnosis Root Causes Repair

Figure 1: The overalliagnose-and-repaiflow of ConcBugAssist.

polants §5], is the rigorous semantic analysis of the program built
upon various constraint solvers. As such, it guaranteds tima
der realistic assumptions, it can systematically expldrpassible
failing executions up to a bounded execution depth, theprby
viding a comprehensive analysis of the root cause. Howévese
existing methods only work for sequential programs. It isino
mediately clear how the underlying techniques can be ertttal
handle multithreaded programs.

In this paper, we introduc€oncBugAssista logical constraint
based symbolic analysis method for diagnosing and regaoam-
currency bugs in multithreaded programs. In contrast tcettist-
ing methods 29, 15, 45], which focus solely on bugs in sequen-
tial programs, our new method focuses solely on concurrbogsg.
We assume the sequential program logic is implementedattyre
a sequentialized execution of the program would have tleaded
behavior. Rather, the concurrency control of the prograbuggy:
under rare thread schedules, the interleaved executiomeobro-
gram would exhibit erroneous behaviors. Given such a buggy p
gram, our goal is to identify the root causes of the failingax
tions automatically, and then compute possible ways ofirega
the source code of the program to eliminate the bug.

Figure 1 shows the overall flow of our new method. We start
with a multithreaded progran® where the concurrency bug is a
violation of an assertion. First, we apply bounded modekkhe
ing to compute a failing execution. The failing executiofsoa
called the counterexample, consists of the program inputedls
as the erroneous thread schedule. The thread scheduleespos
a total order overll the executed instructions. Second, we run
a partial maximum satisfiability (MAX-SAT) solver to compgua
minimumsubsebf the inter-thread ordering constraints that are re-
sponsible for the assertion failure. Next, we want to checlahy
other thread schedules which result in an error. To do so,leakb
the previously discovered erroneous thread schedule. otk ibhe
schedule, we negate the minimum subset of inter-threadiogle
constraints and add them back to the bounded model checker as
blocking clausdthus preventing the model checker from selecting
this schedule again). After blocking the erroneous scleedug try
to generate a new failing execution. We repeat these stdppsian
new failing execution can be generated. At this moment, we ha

computed a set (union) of minimal inter-thread orderingst@ints
that characterize the root causes of all failing executions

There are two ways of using the diagnosis result. First, we ca
help programmers understand the root cause of failure lrtiag
the diagnosis result. We will show in our experiments thame
pared to the full information contained in the failing exgons,
the set of inter-thread ordering constraints containedimdéagno-
sis result represent on average a tiny fraction of the angezon-
straints in the failing execution. As such, they are muctieeds
comprehend. Another way to use the diagnosis result is ag inp
to a follow-up procedure for computing the potential repaiBy
potential repair we mean modifications to the source coddef t
original program that are sufficient to eliminate the obsdrviola-
tions. As shown on the right-hand side of Figurewve formulate
the computation of potential repairs as an instance of anatbn-
straint solving problem, i.e., the binate covering prohlem

It is important to note that, since it is impossible in gehense
do not attempt to fully automate the repair process by takirg
grammers out of the loop. Instead, we aim at leveraging praogr
analysis techniques as a debugging aid to provide meanhisgf4
gestions. There are three reasons for us to make this cHeiist,
although we can infer with high certainty the programmantemt
regarding concurrency control, e.g., by analyzing theipgsand
failing executions using constraint solvers, there is nargntee
that our inference is always correct. In the absence of a mp
formal specification, it is generally not possible to auttiozly
repair programs. Second, verifying programs written irlisée
programming languages is undecidable in general, andpfurue-
rent programs, even the context-sensitive synchronizaémsitive
analysis of a highly abstracted Boolean program can be ithdec
able B4]. Third, in practice, developers are generally skeptical
about tools that modify software code without going throdigé
standard process of code review and certification.

0 pthread_t t1; 7 int min () {

1 int x =1; 8 pthread_create(&t1,0,f,0);
2 9 if (x '=0)

3 wvoid f () { 10 assert(x !'=0);

4 X = 0; 11 return O;

5 1} 12}

6 13

Figure 2: Motivating example.

ble program executions as logical formulas and then solthieg
using constraint solvers. For directly analyzing softwarée, tools
such as CBMC 32] typically focus on checking safety properties
specified using assertions. An assertion violation indg#te pres-
ence of a bug. To ensure the verification problem remainsideci
able, bounded model checkers either require the prograra terb
minating, or ensure the program is terminating by boundihga
ecutions up to a certain depth. Under this assumption, thdemo
checker guarantees that all erroneous executions up toetbih d
bound are detected. However, if an erroneous executioryisnie
the bound, it will be missed by the model checker. As such, the
primary goal of bounded model checking is not to verify the-co
rectness of a program but to quickly find bugs.

Since our work uses bounded model checking largely as a-black
box, we review only the technical details relevant for ustimding
our new method. At a high level, bounded model checkingselie
a static traversal of the program to encode all possibleutiaets
as a set of constraints in logics supported by the underkyaheers.
For programs with loops, the conversion from program codiegio
cal constraints involves unrolling the loops up to the bathdepth.
The input of the program, to capture all possible valuesgjsa-
sented by symbolic variables. In the context of multitheshgro-
grams, additional constraints, as defined by the semartitseo
program, are constructed to precisely restrict the execut the
set of valid thread schedules. For a comprehensive revieomf

We have implemented our method in a software tool based on the straint based bounded model checking, refer to Alglave. §1jpbr

use of the bounded model checker CBMBZ][and a partial MAX-
SAT solver called MSUnCorelp]. We have evaluated it on a large
set of multithreaded C programs. Our experimental reshitsvs
that the new method is effective both in localizing the raanige of
a concurrency bug and in computing potential repairs. $ipaty,

in all benchmark programs, the repairs suggested by ourisool

the CBMC technical reporBp].

For the sake of discussing our own work, it suffices to assume
that the entire program is statically converted to a logioahula,
denotedp, which symbolically captures all valid executions up to
a given depth. To detect violations of a reachability propes.g.,

a local assertion, we simply negate the assertion conditiand

consistent with the correct bug fixes as confirmed by our manua conjoin it with ¢. If the combined formulg¢ A —p) is satisfiable,

code inspection.
To summarize, this paper makes the following contributions

then there exists a valid execution of the program where gbera
tion does not hold. Upon detecting this buggy executionstieer

e We propose a new symbolic analysis method for diagnosing returns a satisfying assignment mapping each variabl¢ ia a

concurrency bugs by localizing the inter-thread orderioig-c
straints responsible for the manifested failure.

concrete value. Implicitly, the satisfying assignmentesgnts the
combination of a concrete program input, a concrete threhdds

e We propose a new method for computing potential repairs, yle, and the sequence of instructions in the failing exeauti

by iteratively adding inter-thread ordering constraimtdte
program to eliminate erroneous schedules.
e We implement the newliagnose-and-repaiframework in a

software tool and demonstrate its effectiveness on a set of

multithreaded C programs.

The remainder of this paper is organized as follows. Firgt, w
establish notation and review the basics of model checkomgur-
rent programs in SectioB. Then, we present our new diagnosis
method in Sectior8. We present our new method for computing
potential repairs in Sectioh We present the results of our experi-
mental evaluation in Sectidh We review related work in Sectidh
and finally give our conclusions in Secti@n

2. Preliminaries
2.1 Bounded Model Checking (BMC)

2.2 Modeling Concurrent Programs

For ease of comprehension, we use the program in Figja®
an example of bounded model checking for concurrent program
The program consists of two threads with entry functibnand
mai n. Themai n thread creates the child thread on Line 8, after

which the two threads run concurrently. The two threadsesttee

global variablex, whose value is checked imai n to be non-zero.
Theassert statement on Line 10 indicates that the programmer
expectsx to be a non-zero integer. However, this property may be

violated by the program under certain thread schedules.

During bounded model checking, we statically constructabje
cal formulagA(x == 0), where(z == 0) represents the violation
of the assertion on Line 10. Furthermoge the symbolic represen-
tation of the program, can be decomposed ifif6, A T'F> A Ord,

whereT'F;, i € { 1,2 }, is atrace formularepresenting the sequen-

Bounded model checking is a method for checking temporal tial execution semantics of theth thread. Each instruction in the

logic properties in a state transition system by encodiegpibssi-

thread is associated withclock variable representing the logical

time when the instruction is executed (i.e., the clock \@&am-
poses a total order over all statements executed by alldye&i-
nally, to compose the two threads together, we need to cetteg
values of the clock variables to ensure only valid threagradtions
are allowed (e.g., since a thread cannot execute beforerieéed,
the clock variable of Line 8 must be less than the clock végialb
Line 4). These logical constraints are in thed formula.

Every satisfying assignment to the above formula corredpom
a possible execution of the program that violates the dgeerin
general the satisfying assignment consists of two typesfofina-
tion: a set of concrete values for the program (data) inpriakbtes,
and a set of concrete values for tbleck variables, representing
the erroneous thread schedule. In the running example uré&y
since there is no data input, the solver returns only thethsehed-
ule, which is a total order of all instructions visited by tlading
execution.

Let 1 — . denote that the instruction at Lirle is executed
before the instruction at Link. For the example in Figurg, one
erroneous thread schedule is as follows— 7 — 8 — 9 — 3
— 4 — 5 — 10. If the program goes through these instructions
in order,x would have the valu® at Line 10 which violates the
assertion.

2.3 Partial Maximum Satisfiability

The logical formulas constructed during bounded model ichec
ing are often represented in conjunctive normal form (CMHgre
each formula is a conjunction of many clauses, each clause is
disjunction of many literals, and each literal is either aoBan
variable/predicate or its negation. For example, the CNfida
(z1V —x2) A(z2 V 23) has two clausefr; V —z2) and(z2 V x3),
three variables 1, z2, 3, and four literalsry, —x2, T2, andzs. In
the satisfiability (SAT) problem, we ask whether there exéssat-
isfying assignment, i.e., a valuation for all variables;tsthat the
entire formula evaluates to true. For the above formula tiafga
ing assignment i§ 1 = true, x2 = true, x3 = true }. If no such
valuation exists, we say the formula is unsatisfiable.

The maximum satisfiability (MAX-SAT) problem is a general-
ization of SAT, with the goal of finding a valuation of all vakles
that maximizes the number of clauses evaluated to trueelfdh
mula is satisfiable, a solution to the MAX-SAT problem is atso
solution to the SAT problem. But, if the formula is unsatibfg a
solution to the MAX-SAT problem corresponds to the largest-s
set of clauses that can be satisfied. The partial MAX-SAT lerab
is a further extension that separates the clauseshiautth clauses

and thesoft clauses, where the hard clauses must be satisfied and

the soft clauses do not have to be satisfied. In the partial Ne®X
problem, we ask for an assignment that satisfies (1) all Hauses
and (2) as many soft clauses as possible.

There is a duality between the maximally satisfiable subfdam
returned by a MAX-SAT solver and teinimally unsatisfiable sub-
formula(MUS) [35]. The MUS is defined as a subset of the origi-
nal formula that, by itself, is unsatisfiable, but removimy alause
from it would make it satisfiable. In other words, the MUS is an
irreducible cause of the infeasibility of the original logl formula.
Liffiton et al. [35] show that MUS can be computed by leveraging
existing SAT and MAX-SAT solvers44, 34, 42]. They also show
that there may be multiple reasons why a logical formula &atn
isfiable, in which case the removal of any one MUS may not be
sufficient to make it satisfiable. When a formula containstipiel
MUSs, it will remain infeasible as long as any of the MUSs are
present.

3. Diagnosing Concurrency Bugs

As shown in Figurel, our method consists of a diagnosis phase
and a repair phase. In the diagnosis phase, given a progtam

Algorithm 1 Diagnosing the concurrency failure.

Input: ProgramP, depthd, and the failed assertign
Output: Constrainipa to block all failed executions
. ¢A —
: ¢ <+ ENCODEVALID EXECUTIONS P, d)
: while (¢ A —p) is satisfiabledo
(¢in, Psch) < GENERATEBADEXECUTION(¢ A —p)
@ core GENERATEUNSATCORE® A din A P, Psch)
(,b — ¢ N “Qﬁco're
¢A «— ¢A U {¢co7‘e}
end while
return ¢a

CcoNoORWONE

and a propertyassert (p), our goal is to compute the seta,

of minimal inter-thread ordering constraints causing tfedation.
The setpa may be reported directly to the programmers, or used
as input to compute potential bug fixes (Sect#yn

3.1 Generating the Failing Executions

The first step of the diagnosis phase, whose pseudocodens sho
in Algorithm 1, leverages the bounded model checker to generate
failing executions. The input includes the programthe assertion
conditionp, and the maximum execution depthThe programP
can be represented as a deterministic multithreaded progteose
behavior is uniquely decided by the p&irn, sch) containing the
data input ¢n) and thread scheduledh). So, a failing execution is
represented by a paftin, sch) under which the program satisfies
the condition—p (i.e., the property is violated). Bounded model
checkers such as CBM@Z] are ideally suited for systematically
generating such failing executions.

Specifically, Algorithml constructs a logical formulas, to cap-
ture all valid executions of the prograf up to the given depth
d (Line 2). Then, the conjunctiofy» A —p) is able to capture all
the failing executions symbolically. If this combined fauta is sat-
isfiable (Line 3), then there exists a data input and threhddide
((¢in, dscn), Line 4) such that when provided as inputfidhe con-
dition p is violated. The subroutine E&NERATEBAD EXECUTION
extracts the constraints over the data input and threadistthfrom
the satisfiable formula A —p.

At this point, it is worth noting that our focus is on diagnusi
concurrency bugs as opposed to logical defects in the séglen
computation of the program. That is, the assertion shoutdao
violated under any sequentialized execution, or underyefessi-
ble thread schedule. Instead, bugs in the concurrencyatdogyic
manifest themselves only under some thread interleavitigfor
example, a program has an assertion violation under allifgess
thread schedules, it is not concurrency bug but a logicatadeh
the program, and therefore is out of the scope of this work. To
qualify as a concurrency bug, the program must have bothrass
executions and failing executions under any valid datatifpt).

Under this assumption, our goal is to analyze the errondwaad
schedulegs.n, returned by the bounded model checker, and local-
ize the subset of inter-thread ordering constraints tratesponsi-
ble for the failure. In practice, the number of ordering domigts
in ¢scn, May be very large since it represents a total order of all
instructions visited by the failing execution. To make thatter
worse, there may be many failing executions as well. Repprti
the entire total order, one per failing execution, to thegpammmers
is not only complex, but it is often unnecessary. Our focumis
minimize the set of ordering constraints so as to retain timbge
necessary for explaining the failure.

3.2 Localizing the Ordering Constraints

Next, we continue analyzing the remainder of AlgorithmOur
procedure for localizing the inter-thread ordering caaists re-

sponsible for the failure is shown on Line 5. It takes two sdts
constraints: théard constraints ¢ A p A ¢:,), and thesoft con-
straints ¢s.r), as input and returns a minimal subsgt.) of the
ordering constraints igs.;, causing the assertion violation as out-
put. We will explain shortly why these constraints are cdesed
as hard and soft.

The subsetp.... is computed inside the subroutineE@ERA-
TEUNSATCORE by first constructing an intentionally unsatisfiable
formula, ¢ A p A ¢in A @dsen, @nd then computing its minimal un-
satisfiable subformula (MUS).

First, the formula is guaranteed to be unsatisfiable bectngse
conjunctiond A p A ¢in A dscn, is @ contradiction: the subformula
G N din A dsen restricts the programpj) to the data input and thread
schedule ¢, A ¢scn) Which were just determined to cause the
program to violate the assertionyf holds). Thus, the conjunction
of this formula withp is an unsatisfiable contradiction (it is “asking”
the solver if the program can be executed under the buggy amali
thread schedule such that the propertyolds). Specifically, there
is a contradiction because, for a deterministic prograngmitoth
the data input and the thread schedule are fixed, the prodrantds
either pass or fail the assertion.

Second, the subformutan ¢, Ap is guaranteed to be satisfiable
because it represents the set of passing executions. Baste o
assumption mentioned earlier, there must be at least orgnpas
execution, because otherwise, this is not a concurrencysinog
the program would fail undep;,, regardless of the thread schedule.
Therefore, we know that the root cause of the failure resiése
erroneous schedulé,.,, which is a total order of all instructions
visited by the failing execution.

Given both subformulag A p A ¢4, @andes.p, Which contradict
each other, we would like to compute a minimal subgei,., of
¢scn such that the conjunctiofy A ¢in Ap) A deore Femains unsat-
isfiable. Thereforep... is the minimally unsatisfiable subformula
(MUS) wheneg A p A ¢ir, is @ hard constraint angl.,, is a soft con-
straint. It represents thainimal set of inter-thread ordering con-
straints that are responsible for the infeasibility anddfae is the
root cause of the concurrency failure. (Recall that the Mig$he
minimal subset of the soft constraints such that when cabfich
with the hard constraints the resulting formula is unsatisé).

To eliminate the entire set of erroneous thread schedufes-re
sented by .. (i-e., all the thread schedules containing..), we
add the negation af.... back tog on Line 6. This is equivalent to
enforcing the constrainte... in the original program. Because
of this, during subsequent iterations, the model checkémever
generate a failing execution containing,.. Furthermore, due to
the finite number of bounded program executions, Algorithia
guaranteed to terminate. Finally, during any iteratioe, $btpa
contains the diagnosis information of all erroneous threetted-
ules, one (non-negated).... per schedule, seen so far. In the end,
¢ contains the diagnosis information across all buggy sdieedu

3.3 Diagnosing the Running Example

Consider the running example in Figutewhere the first failing
execution returned by the model checker corresponds toiribe |
numbers:l -7 -8 -9 — 3 — 4 — 5— 10. As previously
stated, the order in which statements are executed is expisgsby
a clock variable assigned to each instruction. For easeesepr
tation, let us assume that, wherei € {1,2,... }, is theclock
variable associated with the instruction at lineLete; — e; de-
note that the instruction at Linehappens-before the instruction at
Line j (i.e., the clock variable for line is smaller than the clock
variable for linej). Under these assumptions, the failing execution
can be represented by, which is a total order of all the visited
instructions:

¢5ch = (61 —>67)/\ (67 — 68) VAN

However, many of these ordering constraints are not retéoghe
root cause of the error. To localize the root cause, we coctsan
intentionally unsatisfiable formula as follows:

TF1 /\TF2 /\OTd A ¢inA¢5c}L A (‘T 750)

valid executions (¢) failing trace assertion

The formula is unsatisfiable becauge ¢, A ¢scn, represents the
failing execution, and yefr # 0) requires the assertion condition
to hold (a contradiction). Since the program does not hayelata
input, ¢;,, = true. By declaring¢s., assoft constraints and the
rest ashard constraints, we are able to localize the suliset. of
constraints responsible for the failure.

Peore = (€9 — €4) A —(e10 — €4)

When viewed graphically, the root cause clearly shows tble ¢é
atomicity between lines 9 and line 10:

Y
[Line 10:e1p:]

assert(x!=0)

After adding—¢..r. back tog, we are able to block all the other
erroneous executions. In other words,. implicitly captures
a large set of erroneous schedules, all of which share the sam
core constraints ig..r.. Although this particular example requires
only one iteration in Algorithnil, in general, our diagnosis proce-
dure needs multiple iterations to eliminate all erroneowstions.
Within each iteration, we conjoifip ... With ¢. At the same time,
we recordp..r. in ¢ for latter use. When the model checker can
no longer find failing executiong contains the set of constraints
sufficient for explaining all failing executions.

4. Computing Potential Repairs

In this section, we present our method for computing rephat
can be presented to programmers for review and confirmafioa.
pseudocode of the procedure is shown in Algorithrvhich takes
the programP and the sepa computed in the diagnosis phase as
input, and returns a sét of new programs as output.

The procedure consists of the following steps: For each-erro
neous thread schedulg.,, (and more specificallyor.), we con-
struct akill-set, defined as the set of inter-thread ordering constraints
such that if any were enforced in the program, the erronduead
schedule would be infeasible.

Based on théill-sets we formulate the repair computation as a
binate covering problem (BCP), where each repairdseer, con-
taining at least one constraint from eddlhset Furthermore, these
chosen constraints must not contradict with each other,itbrthve
hard constraints that model the program logic. Since in ggne
there may be multiple solutions to the BCP, we explore thet&m
space to find the most efficient repairs, either in terms ofthe of
the code changes in the repair or its permissiveness.

Finally, we realize the chosen repairs, as a modificatiornéo t
source code of the original program, by enforcing the itieead
ordering constraints using synchronization primitiveshsas locks,
signal/wait, or theatomic keyword in transactional memory sys-
tems.

4.1 Constructing the Kill-Sets

First, we construct thkill-setfor each erroneous thread schedule
as represented by an item in the ggt. The kill-set is a set of all

Algorithm 2 Computing the potential repairs. (Cesix =) eror X =1
Input: ProgramP, and the seba

Output: SetP of repaired programs (er0:x=1) ((esix=0)
1. P+~ o
2: Syiu < CONSTRUCTKILL SETS(P, ¢a) (eiiy=1) (esiy=0)
3. Srepair < COMPUTEBINATE COVERSY P, Skin)
4: for a“/ repair € Srepair dO _ .y =0 el y =
5: P’ + TRANSFORMPROGRAM(P, repair)
6: P+ PU{P}
7: end for
8: return P Figure 4: Graphical representation of the two buggy intesilegs
of Figure3. Each interleaving results in an assertion violation.
1 int x =0; 14
2 inty =0; 15 elp: X =1
3 16 int main() {
4 voi d fl(v0| d) { 17 pthread_t t1, t2; [N
5 = 18 thread_create(ti,f1); N Tllewoix=1) (et x=0)T
6 y = 0; 19 thread_create(t2,f2); N7 Soo
7} 20 AN 0
8 21 thread_join(tl); ,’/,,v{eniy:l) (e y=0)«\
9 void f2(v0| d) { 22 thread_join(t2; P N
10 X = 23 assert(x == y); ‘ S
11 y=1 24 return 0; ety =0 enty=1
12 } 25 }
13 26 (@) (b)

Figure 3: Buggy program: there are atomicity violationsasn

the two threads. Figure 5: Potential happens-before edges which will bibekttvo

buggy interleavings in Figurg The solid edges are the ordering of

)))] the erroneous interleaving while the dashed edges are figehs-
inter-thread ordering constraints such that each constraihen before edges which block the erroneous interleaving.

added to the original program, would be sufficient to elingrthe
erroneous schedule.

An example kill-set can be shown using the program in Figure
the two threadg, 1 andt 2, share variables andy. The assertion
condition(x == y) indicates that the intended behavior is for the
assignment statements in both threads to run atomicaligpwi in-
terference from the other thread. However, this atomicigpprty
is not enforced properly in either threatdll can interleave in be-
tweent 2's updates and vice versa. As a result, there are two sets
of erroneous schedules: one where= 0 is immediately followed
byy = 1 and another wheme = 1 is immediately followed by
y = 0.

Algorithm 1, presented in the previous section, would be able to
return the localized constraints for both sefs..(., and¢ ore,) of
all erroneous schedules:

1. (,bcorcl: €10 — €5 A €6 — €11,

2. Pcoreqt €5 — €10 N €11 — €6.
Here, when a constraint such@s— e; appears icore, it means
the happens-before edge is necessary for explaining whysther-
tion is violated.

To compute the kill-sets fopcore, and ¢core, as required by
Algorithm 2, we construct a graphical representation of each erro-
neous schedule, consisting of not only the constraintsenlN-
SAT core, but also the related program-order constraintachE
program-order constraint, denoted— ¢, represents the sequen-
tial execution order of instructions from the same threadufe 4
shows the graphical representations of these two errortboead
schedules side by side. Specifically, Figdeshowst 1 writing
to x (es) followed byt 2 writing to X (e10). Next,t 2 writes toy

schedule, such as in Figude, the kill-set can be constructed by
adding new happens-before edges to create cycles in thk.grap

Intuitively, inserting such a cycle creates a contraditgéasuring
that the interleaving cannot occur. For example, in thereoas in-
terleaving in Figurela there is an edges — e10. Thus, we can
create a cycle by inserting a new happens-before edge-s es.
This creates a proof by contradiction ensuring that theledging
does not happen. The reason is that in order for the errorineus
terleaving to occurgs must occur before;, but, at the same time,
e10 must always occur beforg, leading to a contradiction.

Figure5 shows all the possible new happens-before edges (dashed
edges) that, individually, can block the erroneous schedilhe
solid edges, in contrast, are the ordering of the erronechedsile.

It is interesting to note that some of the dashed edges aatiopg
of the solid edges, such as —s e11 andeip —s es. However,
there are also dashed edges, suahsas s e;p andei1 — 5 es, that
cannot be constructed directly from the negations of thie solges:
they can only be constructed using our graph based algarithm

Also, although any edge from a kill-set of a schedule is suffi-
cient for eliminating the schedule, sometimes, edges chirsen
different kill-sets contradict each other. For example,délroneous
schedule in FigurBacan be eliminated with the insertion@f — s
e11 While the one in Figur&b can be eliminated with the insertion
of e11 —s es. However, these two happens-before edges cannot si-
multaneously be enforced in the program. In the remaindénisf
section, we formulate the repair computation as a binateraay
problem, which ensures that the solution is free of suchradit-

(e11) beforet 1 (eg). This results in a final state where == tons.
andy == 0. Figure4b shows a similar schedule where the final . .
state results ix == 0 andy == 1. 4.2 Computing the Binate Cover

Next, we compute a set of new happens-before constraints suc The repair computation, in general, can be formulated asatdi
that enforcing any of them in the original program is suffitieo covering problem (BCPH9]. BCP has been studied extensively in
prevent the erroneous interleaving (the kill-set). We agefimew logic synthesis and combinatorial optimization. Here,goal is to
happens-before relatior«s) wheree; — ¢; indicates that in all find a valid set of happens-before edges, at least one fromiéac

schedules of the program occurs before ;. Given an erroneous set (all kill-sets are covered) without introducing any tadiction.

Let the set of happens-before constraints in the union dil&ll
sets be represented I8 = {s1,...,s.} and the cost of select-
ing each happens-before constrasntis k;, wherek; > 0. We
associate a Boolean variahteto s;, which has a value 1 #; is se-
lected and O otherwise. The binate covering problem can firede
as finding a subset C S (or cover) that minimizeX;_, k;x; sub-
ject to a Boolean constraiot(z1, z2, . . .,z), WhereA precisely
specifies the set of valid solutions.

In our application, the constraint functiofiis a conjunction of
two parts. The first part ig\!" K'S;, where eachk'S; represents
that at least one constraint from the kill-set of schedulaust
be chosen. The second part, which we refer tavass a con-
straint that specifies the compatibility of all the chosenstmints
based on their definitions as well as the semantics of theuconc
rent program e.g., the chosen happens-before edge caotaie\a
happens-before edge already existing in the program.

For example, if we use; to denote the selection of the edge
e10 —s e5 and usexs to denote the selection of the edge —
e10, We need to add the Boolean constrgint:; VV —x2) tow since,
by definition, these two variables cannot be set to 1 simetiasly.

If we usezxs to denote the selection of the edge— s e10, we also
need to add the Boolean constrainte; V —x3) tow, because these
two edges would from a cycle with the program-order constrai
es — eg (Which is always true).

To make the example complete, we now show the two Kkill-sets
for the program in Figuré&. The first kill-set is defined as follows:

KS = (610 —s 65) V (611 —s 65)

Enforcing any of these new happens-before edges in the grogr
would be sufficient for blocking the erroneous thread scleedsim-
ilarly, the second kill-set is defined as follows:

KS> = (e5s —s e10) V(eg —s €10)V(e11 —s e5)V(e11 —s es)

Finally, a valid repair (for blocking all erroneous intealéngs) is a
satisfiable assignment to the formula= KS1 A KS2 A w.

When the constraint formuld is given in a product-of-sums
form, it is possible to represent the BCP using a table, whaoh

No. Cover Set Valid Simplified Result

1 (e10 — e5) A (es — e1g) cycle

2 (610 — 85) A (611 — 65) YES (611 — 65)

3 (e10 — es) A (es — e10) cycle

4 (610 — 65) A (611 — 66) YES (610 — 65) A (611 — 66)
5 (e11 — es5) A (es — e10) cycle

6 ((:’11 — 85) A ((:’11 — 65) YES ((:’11 — 65)

7 (e11 — e5) A (es — e10) cycle

8 (611 — 65) AN (611 — 66) YES (611 — 65)

9 (es — e10) A (es — e10) YES (es — e1o)

10 (65 — em) A (611 — 65) cycle

11 (65 — 610) A (65 — 610) YES (6(3 — 610)

12 (es —> e10) A (e11 — es) cycle

13 (65 — 611) A (65 — 610) YES (6(5 — 611) A (65 — 610)
14 (es — e11) A(en1 —e5) cycle

15 (65 — 611) A (66 — 610) YES (66 — 610)

16 (66 — 611) A (611 — 66) cycle

Figure 6: Binate Covering: The set of all valid repairs.

, \ ‘ ‘
(@) (b) (c) (d)
Figure 7: Happens-before constraints added by the foutisnku

solution and ultimately decide if a repair should be appl\af@ do
not attempt to fully automate this process, since in the radesef

a complete formal specification of the intended program eha
the debugging process cannot be completely automated.rtNeve
less, we shall show in the experiments section that the nepag-
gested by our tool are often the correct repairs and in masgsca
are optimal in terms of the size of code changes and/or thaiper
siveness.

4.3 Realizing the Solution
Just like the four solutions computed above, in generaldval

variable inA (a happens-before edge) is a column and each clausesolutions to the BCP form a hierarchy. For a closer look at the

(sum) is a row, and the problem can be interpreted as one af§nd
a subseC of the columns of minimum cost, such that for every row
is covered. The binate covering problem is known to be NRkhar
but in practice, can also be solved by efficient branch-asuhtd
algorithms p9].
As shown in Figures, for our example from Figur8, there are
a total of sixteen possible solutions, among which therefaue
valid (unique) solutions:
e Solution (A):es —5 €10
e Solution (B):e11 —s es5
e Solution (C)Z@s —s e10/\eg —>s €11
e Solution (D):e10 —s €5 Ae1r —s €6
All the other solutions are either invalid, meaning thatthead to
cycles in the graph, or are equivalent to one of these fourtisols.
Due to the use of compatibility constraints &nd A) in BCP, our
method guarantees that the repair will not introduce aetigie of
deadlocks, i.e., the ones caused by incompatibility of pedded
happens-before edges and the original thread program oadfer
straints. However, it is possible for a repair to introdutieeo type
of deadlocks, e.g., from reversed lock orderings betweesatls.
Since our method uses bounded model checking as the umdgrlyi
verification procedure, in principle, we cannot guaranites the re-
pair is always correct. A possible remedy for the deadlodbigm
is to verify the suggested repairs using a static deadloekysis
and then filter out the erroneous repairs.
In general, repairs computed in this section are meant tséé u
as suggestions to the programmer, who is expected to retiew t

different thread ordering enforced by these solutions,tkeesce-
narios illustrated in Figurg. Here, the dashed edges are newly
added happens-before constraints to the program whiledlie s
edges are those enforced by the program order. It is clebatiya
of these four solutions would be sufficient for repairing fire-
gram. However, they also have different cost in terms of leatbe

of implementation and performance overhead.

One way to rank these solutions is to look at the implemen-
tation cost. For example, to enforce the happens-befoetionl
e11 —s es in the program, &ond-waitcan be inserted beforg
and acond-signalinserted aftee;;. If we define the implementa-
tion cost as the number of signal-wait pairs added to therpmg
code, Solution (A) and Solution (B) would be better than Solu
(C) and Solution (D).

Another way to rank these solutions is to look at thpermissive-
ness in terms of the number of interleavings allowed. In thisesas
Solution (A) and Solution (B) would be worse than Solution (C
and Solution (D). We say Solution (A) is less permissive tBafu-
tion (C) because it guarantees to eliminate all interlegsvthat can
be eliminated by Solution (C), and more. If the goal is towlthe
program more freedom to “choose” thread schedules (in tipe ho
that it leads to better performance), Solution (C) and smiu(D)
are better choices.

Interestingly, there areompositesolutions, a combination of
multiple elementary solutions, that get us the best of batHds.
One such composite solution is enforcing either SolutionaiASo-
lution (B) at runtime. This composite approach can be redlizy

(esix=0) o ew0:x=1)

(eG:y:O)’ tell:yzl)

Figure 8: Graphical representation of thether-or edges—
Solutions (a) and (b)—for fixing the bug in Figuge Blue edges
are happens-before relations returned by the bug repaieguoe.
Black edges are intra-thread program-order relations.

inserting a mutex lock—unlock pair to surround lines 56 lames
10-11, to make them mutually exclusive. While the prevides e
mentary solutions (in Figuré) requiret 1 to always happen before
t 2 (or vice versa), this composite solution, however, alloarglie
program have either behavior. Such a composite solutiofilis s
bug free and allows greater concurrency. However, it restaime
shown if such composite solutions can be identified autaralyi

In our method, we first systematically search for the eleargnt
solutions while minimizing the implementation cost, andrthry
to combine them together to increase the permissivenesgardo
this end, we examine the set of all happen-before edgesaimasf
a valid repair. As an example, we consider the combinatiosoef
lutions (A) and (B):e11 —s es5, OFr es —>s e10. Note that there is
an implicit happens-before edge, or program-order coinstrae-
tween the two assignments within a thread. Thatdis;~ es and
similarly e;o — e11 (since they are within the same thread) is
fixe
ther(elo — 611) —s (65 — 66), or (65 — 66) —rs (610 — 611).
This is represented graphically in Figue

For repairs with more than two possible solutions, we idgnti
this situation by building a graph such as in Fig@avith intra-
thread happens-before edges for pairs of possible sotusanh
that they do not contradict each other. Then, we group seaiesn
from the same threaa{, andei1, andes andes in this example)
together. If the result is graph with two threads connectetin

either-oredges to from a cycle, then we can insert a mutex lock/un-

lock pair before/after the intra-thread statements. Qitser, we
select one of the satisfying happens-before edges andcerifdry
inserting a condition variable signal/wait pair.

The critical sections computed above for the compositetispiu
do not have to be enforced by adding lock-unlock pairs. Asoth
way to implement such repair is to use th®mic keyword in a
transactional memory system.

5. Experiments

. As a result, the two happens-before edges specify that ei-

Name LOC Threads Bug Type Origin
boop 98 3 atomicity violation q5]
testc 19 2 order violation 561
fibbench 47 3 order violation 5B
fibbenchlonger 45 3 order violation 55
reorder 105 5 order violation 50
account 58 4 order violation 50
readwrite 140 5 order violation g5
barrier 85 4 order violation 55]
lazy01 55 4 data race 58]
VectPrime02 183 3 data race 6][
lineEq2t01 58 3 data race 6]l
linux-tg3 115 3 order violation q
linux-iio 87 3 atomicity violation 6]
mysql-169 27 3 atomicity violation 6, 48]
mysql-12848 142 2 atomicity violation 65, 47]
mysql-3596 83 3 order violation a0
mysql-644 165 3 order violation a0
apache-21287 79 3 atomicity violation 2]
apache-25520 192 3 data race 3 [
freebsd-aa 104 4 order violation 63
cherokee-0.9.2 188 3 atomicity violation 65
llvm-8441 244 3 order violation ke
gcc-25330 86 3 atomicity violation 1P
gcc-3584 104 3 data race 2q
gcc-21334 94 3 data race 19
gcc-40518 114 3 data race 2]
transmission-1.42 78 3 order violation 69
glib-512624 98 3 atomicity violation pic|
jetty-1187 74 3 order violation 2N
mozilla-61369 68 3 order violation a0
hashtable 156 3 atomicity violation]
list_seq 122 3 atomicity violation 24
counterseq 41 3 data race 2§
gqueueseq 97 3 data race 2§

Table 1: Characteristics of the benchmark programs.

and the type of the concurrency bug. The last column also show
the origin of the program. Our benchmarks can be classifieed in
four groups.

The first group consists of the POSIX threads related buggy pr
grams from the 2015 Software Verification Competiti&®][(SV-
COMP). Although these programs are small in terms of thesline
of code, they implement tricky concurrency protocols anacsyo-
nization algorithms such as read-write locks.

The second group consists of four buggy programs used byrBloe
et al. [6], where the first two are synthetic benchmarks, whitex-
iio andlinux-tg3 are real bugs found recently in the industrial /O
subsystem (110) of the linux kerrfeland Broadcom Tigon3 (TG3)
Ethernet drivet, respectively.

We have implemented our diagnosis and repair methods in a The third group consists of bug patterns extracted from-vari

software tool calledConcBugAssisbased on the latest version of
the CBMC B2] model checker, which supports the verification of
multithreaded programd]. We used the MSUnCoretp] partial
MAX-SAT solver during the diagnosis and repair computation

ous versions of open source applications. They are repanted
MySQL [46], the Apache Web Served], the FreeBSD Operating
System 16|, the Cherokee Web Serve8][the LLVM Compiler
Framework B8], the GNU Compiler Collection7], the Linux

We have evaluated our methods on 34 benchmark programs. OurKernel [36], the Transmission BitTorrent cliens§], the GNOME

experimental evaluation was designed to answer the faligwe-
search questions:

Library [22], the Jetty HTTP Serveff], and Mozilla’s XPCOM li-
brary [62]. These programs are used to evaluate the effectiveness of

e Can our diagnosis method accurately localize the root cause our method in handling the diverse set of bugs from the realdvo

of a concurrency bug?

The fourth group consists of implementations of concurdaa

e Can our repair method compute meaningful code modifica- structures as described in the Art of Multiprocessor Pnogning

tions to eliminate the bug?

book [24]. Some of these programs are stripped off the synchro-

To answer these questions, we first describe the benchmark pr nization operations intentionally to see if our method camexctly

grams used in the evaluation and then presents the detagalls.

5.1 Benchmarks

Table 1 shows the statistics of the 34 benchmark programs, in-

cluding the name, the number of lines of code, the numbereétts,

LWe assume that the programs are sequentially consistent.

repair them back to normal.

5.2 Diagnosis Results

2http://git.io/JjCEXg
Shttp://git.io/ 7TWWrKw

First, we evaluate the effectiveness of our diagnosis #hgor
Table2 summarizes the results. Columns 1 and 2 show the program
name and the diagnosis time, respectively. The experinveeits
run on a machine with a 2.60 GHz Intel Core i5-3230M CPU and
8 GB of RAM running a 64-bit Linux OS.

Column 3 shows the number of iterations required to complete
the diagnosis, i.e., the number of erroneous schedules also
the same as the number of blocking constrairts,(.) computed
by our method as part of the diagnosis result. Column 4 shows,
average, the number of inter-thread ordering constraigsemt in
an erroneous schedulé(); they are the number of constraints
that programmers have to inspect manually if they do not wuse o
diagnosis method.

Columns 5-6 show the average size of the root cause returned
by our method, in terms of the number of inter-thread ordgrin
constraints to block an erroneous schedudle,.¢), as well as the
the total number of such unique constraints for blockingealb-
neous schedules. Finally, Column 7 shows the reductioao, riagi.,
the number of constraints in the root cause divided by theagee
number of constraints in a bad schedule.

Overall, our method can quickly identify the root cause: tuds
the programs took only a few seconds to complete, with the-max
mum run time of just over two minutes. Furthermore, the rédnc
ratio in Column 7 indicates that our method is effective icaliz-
ing the root cause of a concurrency failure. On average,iheer
of inter-thread ordering constraints reported in the reaise is sig-
nificantly smaller than the total number of raw constraimtghe
error traces returned by CBMC.

The reason why the number of unique constraintglitr512624
jetty-1187 list-seq andqueue-se@ppears to be lower than expect
is because some happens-before edges are mapped to thexssme |
of code for their source and target nodes. In such cases, wgeme
these happens-before edges into one for ease of comprehensi

We also confirmed manually that all the diagnosis results-com
puted by our tool correctly could explain bugs in the benafkma
programs. Furthermore, the root causes were always dti@igh
ward to understand. In addition, we will show later in thistmn
that the diagnosis results are specific enough that theye&veér-
aged to automatically compute the repair.

5.3 Repair Results

Next, we evaluate the effectiveness of the repair algoritfiax
ble 3 summarizes the results, where Columns 1 and 2 show the pro-
gram name and the repair time, respectively. Column 3 shbe/s t
number of valid repairs returned by our method. Columns &eis
the types of these repairs. Specifically, if the bug can belfixe
adding critical sections, either through the insertionoaklunlock
pairs or using th@tomickeyword, we put & in Column 4. Sim-
ilarly, if the bug can be fixed by adding signal-wait pairs, pug a
v'in Column 5.

Since the benchmarks used in our evaluation span a wide range
of concurrency bugs, the results shown in Tablare particularly
promising. In general, our repair algorithm can quicklyratmul-
tiple repairs. Some of these repairs rely on the inserticatafic
blocks, some rely on the insertion of signal-wait pairs, anthe
may be fixed using both approaches.

Currently, our tool ranks the repairs before presentingnthe
the user. For elementary solutions, the ranking is basedeonum-
ber of happens-before constraints used in the solutionge(fées
better). In addition, we always search for composite sohgtithat
combine multiple elementary solutions to allow for grea@ncur-
rency, and rank them higher. We leave the design and analf/sis
more complex ranking systems as future work.

Our repair procedure returns a surprisingly large numbaeof
pairs for certain programs. We believe it is due to the maatjirdit

Size of Root Cause

Name Time Iter. Constr/ Constr/ Unique Red.
(s) (@scn) (¢core) Constr. Ratio
boop 1.2 1 34 2.0 2 5.9%
testc 0.7 1 4 2.0 2 50.0%
fibbench 36.0 2 93 7.5 15 16.1%
fibbenchlonger 106.6 2 123 9.0 18 14.6%
reorder 19.9 15 30 4.0 9 30.0%
account 6.4 3 95 1.3 3 3.2%
readwrite 121.0 28 76 8.2 27 35.5%
barrier 55 9 48 1.6 6 12.5%
lazyO1l 11.9 2 186 2.0 4 2.2%
VectPrime02 2.39 2 31 3.0 3 9.7%
lineEq2t01 4.83 2 30 4.0 7 23.3%
linux-tg3 5.6 1 98 2.0 2 2.0%
linux-iio 2.5 5 31 4.4 8 25.8%
mysql-169 11 2 10 2.0 2 20.0%
mysql-12848 25 4 10 4.0 4 40.0%
mysql-3596 1.1 1 13 1.0 1 7.7%
mysql-644 1.0 1 7 2.0 2 28.6%
apache-21287 1.7 2 23 15 3 13.0%
apache-25520 7.9 16 23 4.0 4 17.4%
freebsd-aa 22.4 49 27 3.0 12 44.4%
cherokee-0.9.2 6.9 11 34 3.1 4 11.8%
livm-8441 174 21 46 3.3 10 21.7%
gce-25330 1.2 2 21 1.0 2 9.5%
gce-3584 1.8 4 19 3.0 3 15.8%
gce-21334 6.4 1 244 2.0 2 0.8%
gcc-40518 1.4 2 27 2.0 4 14.8%
transmission-1.42 1.2 2 8 1.5 2 25.0%
glib-512624 8.7 17 32 1.3 4 12.5%
jetty-1187 18 2 33 1.0 1 3.0%
mozilla-61369 0.8 1 5 1.0 1 20.0%
hashtable 112.0 44 94 1.4 4 4.3%
list_seq 136 18 60 1.2 4 6.7%
counterseq 1.2 2 13 3.0 3 23.1%
queueseq 7.6 2 135 1.0 1 0.7%
Average 16.01 8.15 51.85 2.77 5.26 16.81%

Table 2: Summary of the error diagnosis results.

Type of Fix

Name Time (s) No. of Repairs Atomic Signal-Wait
boop 0.1 5 O 0
testc 0.1 2 O O
fibbench 2.7 97 O O
fibbenchlonger 4.2 97 O O
reorder 0.6 34 O O
account 0.3 73 O O
readwrite 4.8 68 O O
barrier 0.1 33 0 0
lazy01 0.2 54 O O
VectPrime02 0.1 7 O O
lineEq2t01 1.2 10 O 0
linux-tg3 0.1 2 0 0
linux-iio 0.5 93 O O
mysql-169 0.1 13 O O
mysql-12848 0.1 27 O 0
mysql-3596 0.1 1 O O
mysql-644 0.1 2 O O
apache-21287 0.1 7 O O
apache-25520 0.2 10 O O
freebsd-aa 11 90 O O
cherokee-0.9.2 0.2 10 O O
livm-8441 21 95 0 0
gce-25330 0.1 12 O O
gcc-3584 0.2 39 O O
gcc-21334 0.2 5 O O
gce-40518 0.1 35 O 0
transmission-1.42 0.1 2 O O
glib-512624 0.1 27 O 0
jetty-1187 0.1 2 0 0
mozilla-61369 0.1 1 O O
hashtable 0.6 27 O O
list_seq 0.4 15 O O
counterseq 0.1 7 O 0
queueseq 0.1 3 O O

Table 3: Summary of the repair computation results.

Repairs Kill-Set Size
Name Elementary Composite Avg. Size Avg. Total
boop 4 1 1 4 4
testc 2 0 1 2 2
fibbench 97 0 2 35 70
fibbenchlonger 97 0 2 48 96
reorder 34 0 5 6 87
account 73 0 3 12 36
readwrite 68 0 3 76 2149
barrier 33 0 6 6 57
lazy01 53 1 2 8 16
VectPrime02 6 1 2 3 6
lineEq2t01 94 6 2 22 44
linux-tg3 2 0 1 2 2
linux-iio 87 6 3 5 25
mysql-169 12 1 2 4 8
mysql-12848 26 1 3 4 16
mysql-3596 1 0 1 1 1
mysql-644 2 0 1 2 2
apache-21287 6 1 2 3 6
apache-25520 9 1 3 7 112
freebsd-aa 90 0 5 21 1025
cherokee-0.9.2 9 1 3 5 52
livm-8441 95 0 3 29 612
gcc-25330 11 1 2 4 8
gcc-3584 38 1 3 6 22
gcc-21334 4 1 1 4 4
gcc-40518 31 4 2 7 14
transmission-1.42 2 0 2 2 3
glib-512624 26 1 3 7 116
jetty-1187 2 0 1 2 4
mozilla-61369 1 0 1 1 1
hashtable 26 1 3 9 400
list_seq 14 1 3 5 95
counterseq 6 1 2 3 6
queueseq 2 1 2 2 4

Table 4: Detailed statistics of the repair computation.

but semantically equivalent repairs in these programs. ekam-
ple, in the buggy list implementation in Figudeexecuting Line 11
before Line 19 is a different solution than running Line 12doe
Line 19. However, the semantics of both fixes are equivalEnis
can lead to a large number of potential combinations, eafhgci
for those programs which require multiple happens-befaiges
to be fixed (e.g.11 — 19 can be substituted with2 — 19 and
vice versa). However, our repair procedure automaticalhks so-
lutions based on size so the user can find a suitable repioutit
having to examine all repairs.

Detailed statistics of the binate cover computation arersam
rized in Table4. Here, we break down the set of repairs iete-
mentaryandcompositeepairs, and show their numbers in Columns

1 struct list {

2 int arr[MAX_SI ZE] ;

3 si ze_t open;

4} gl

5

6 void list_add(list_t *s, int i) {
7 s->arr[s->open] =i;

8 s->open += 1;

9 1}

10 void t1_main() {

11 int val;

12 val = 1;

13 list_add(&gl, val);, =———
14 return;

15 }

16 void t2_main() { 52 51
17 int val;

18 val = 2;

19 list_add(&gl, val), ———— |
20 return;

21 }

22 int main() {

23 thread_t t1, t2;

24 thread_create(& 1, t1_main);

25 thread_create(& 2, t2_main);

26 thread_join(tl);
27 thread_join(t2);
28 assert(list_contains(&gl, 1)

29 && |ist_contains(&l, 2));
30 return O;

31 }

32

Figure 9: Buggylist_seqwith two potential repairssfq ands:).

list_seg: This is a sequential array based list implementation (i.e.,
it has no enforced synchronization) used concurrently bitipte
threads. A shortened version of its source code can be sdgg-in
ure9. Thread 1 inserts the itefninto the list while thread 2 inserts
the item2. Themai n thread checks that the list contains bdth
and?2 after both threads finish.

The bug is the lack of atomicity in thiei st _add() function:
the insertion of an item (Line 7) is not atomic with the update
the lists size (Line 8). Our diagnosis procedure returrs aisi an
explanation: the bug occurs if thread 1 executes Line 7 i@
by thread 2 executing Line 8, and thread one executing Lirfee¥ a
thread 2 executes Line 8 (and vice versa). In this case, $irece
value ofopen has not been updated, thread 2 (resp. 1) overwrites
the value inserted into the list by thread 1 (resp. 2). Theresdlt is
a list without the valud. (resp.2) so the assertion on Lines 28-29
will fail.

Figure9 also shows two of the potential repairs: andss. The
edges are a happens-before constraint which, when addé= to t
program, will prevent the bug from happening. Repairstates

2 and 3. We also show in Column 4 the average size of a repair, in that thread one should add first followed by thread two; Repai

terms of the number of happens-before ordering constraiots-
tains. Columns 5 and 6 shows the average size of the killrgkt a
the total number of happens-before constraints in alldelis (Sec-
tion4.1).

Overall, the repair computation has little overhead comgdo
the diagnosis procedure. This is likely due to the small efzhe
kill-sets compared to the size of the model checking forméia
though the binate covering problem has exponential contplax
the worst case, the relatively small size of the kill-set&esdit fast.
We expect the run time of BCP solving to increase signifigaasl
the kill-sets get larger. In such cases, approximate dlgos can
be used to quickly compute a suboptimal solution in ordercédes
up the algorithm.

5.4 Case Studies

Finally, we present two case studies to illustrate the usauof
tool in diagnosing and repairing concurrency bugs.

is the reverse fix. Together, these two solutions createitier-

or solution: either thread 1 can go first or thread 2 can go first.
The highest ranked solution in our repair procedure is toreef
this either-or edges: the calls tbi st _add are surrounded with
calls tormut ex_l ock andnut ex_unl ock to enforce atomicity

of the operation. Interestingly, the final result is that diagnosis-
n-repair procedure automatically synthesized a concurrent ligh fro

a sequential one.

Transmission-1.42: This is a BitTorrent client that contained a data
race. The relevant portion of the source code can be seeryin Fi
ure 10. Two threads share a variabb@ndwi dt h. The bug is
caused by an incorrect assumption that, when thread 2 ascess
bandwi dt h, thread 1 will have already initialized it. The root
cause of the bug identified by the diagnosis algorithm is 15ne
executing before Line 2.

The highest ranked solution found by our repair algorithm is
shown as the arrow from Line 2 to Line 5 in the figure. That is,

void t1_main() {
bandwi dth = nalloc(...)

void t2_main() {
assert(bandwi dth !'= NULL); +———
*bandwi dth = ...

int main() {
thread_t t1,
thread_create(&t1,
thread_create(&2,
thread_exit();

©CO~NOUAWNE

t2;
10 t1_main);
t2_nmin);
12
13 }
14

Figure 10: Relevant portion of the codetransmission-1.42

the bug can be prevented by enforcing that Line 2 is always exe
cuted before Line 5. Our repair algorithm also return anosioéu-
tion, which has two happens-before edges and thereforéeisdn
to the first solution. Furthermore, our repair algorithmwshahat
there are no composite solution that can combine the element
solutions together. Therefore, the repair shown in Figoreill be
reported to the user.

We have manually confirmed that this is a correct repair. ¢h fa
this is the actual solution used by developers in the Trassion
source to fix the bug.

6. Related Work

Our work was inspired by the set of recent works on using con-
straint solvers for diagnosing software bug$,[15, 45, 51]. How-
ever, these methods were designed solely for diagnosirigalog
bugs in sequential software. Furthermore, the type of regaim-
puted by some of these methods were fairly limited. For examp
BugAssist 9] focuses on repairs that are minor mutations of exist-
ing expressions in the program, e.g., repladifigc > 0) with
i f(c >= 0) asintheoff-by-onebug pattern. None of these meth-
ods handle concurrency bugs in multithreaded programs.otr ¢
trast, our work focuses primarily on diagnosing concuryelmegs
and suggesting repairs.

Our work is related to methods for synthesizing synchrdiona
among concurrent threads based on a specificafigrof by mak-
ing interleaved executions conform to sequential exenasti].
For example, the method proposed by Bloem etGhluged a model
checker to guide the insertion of atomic regions to forcerdaér-
leaved executions to behave the same as the sequentiatierecu
They also targeted a certain class of programs where cotignga
in the data flow are largely independent of the concurrencyro
where uninterpreted functions could be used to soundlyradist
away the data path. In contrast, our method focuses on diagmo
faulty concurrent programs with existing, but potentidliyggy, im-
plementations of the concurrency control.

The work by Wang et al.g0, 61] on dynamic deadlock avoid-
ance via discrete control is also related. Their approaliadren
building a whole-program Petri-Net model, based on whiaky th
applied the theory of discrete control to find ways of heatiegd-
locks dynamically. However, the method did not handle concu
rency bugs other than deadlocks. Liu and Zha3ig xtended the
approach to include more bug patterns, e.g., certain typatom-
icity violations, but not general concurrency bugs tarddig our
new method, which include any non-deadlock concurrencytiaiy
can be modeled as violation of an assertion.

Krena et al. 81, 33, 30] and Jin et al. 28] proposed methods
for matching known concurrency bug patterns and fixing them b

locks. In contrast, our method relies on a more general aisaly
framework, which has wider application and at the same tieae r
quires neither predefined bug patterns nor prescribedrrepate-
gies from the user. There is also a large body of work on digagno
ing concurrency failures through dynamic analysis and/aciime
learning P, 66, 25, 49, 64], but cannot systematically detect and di-
agnose failing executions. Furthermore, they tend to foooie on
helping the user diagnose bugs manually as opposed to comgput
repairs.

Another difference between our method and the most of threafo
mentioned static and dynamic analysis techniques is thiahethod
relies on bounded model checking, which is a more precisk ana
ysis technique. In general, light-weight static analysisdieally
suited for handling programs with large code size, but opfent
and relatively simple thread interactions, whereas moldetking
is more suitable for handling programs with a smaller code, diut
more complex thread interactions. Examples for the laasedn-
clude low-level systems code, device drivers, and impldat&Ems
of concurrent data structures.

Our work is also related, at the high level, to the theoréticak
on program synthesid B, 41, 50, 12] and controller synthesiSp,
53], where the focus is on automated construction of systeams fr
their specifications. For concurrent software, there ase aleth-
ods for automated lock insertion and refinemeént43, 57, 14, 7],
which assume the critical sections are provided as inputtlaeid
goal is adding locks to transparently ensure such progerfieese
methods differ from our approach in that they assume théadibi
ity and correctness of a complete specification or goldenetod
which we do not have.

Our method relies on CBMC as the underlying verification pro-
cedure, which can limit its ability of handling large progra. The
scalability problem may be addressed in two ways. FirstBtimean
SAT solvers used in the diagnosis phase may be replaced by SMT
solvers [L1], which tend to work on higher levels of abstractions
and therefore are potentially more scalable than Boolednsivers.
Second, our diagnosis and repair methods may be applied to a
Boolean abstraction of the program, created using wellxknored-
icate abstraction tools such as SATABR]], as opposed to the
concrete program—it may result in some precision loss dukeo
use of predicate abstraction, but at the same time will Sagmitly
boost the runtime performance. We leave the exploratioruchi s
optimizations for future work.

7. Conclusions

We have presented a constraint based method for diagnosing
concurrency bugs in multithreaded programs by localizisgnall
set of happens-before constraints sufficient for explaitire root
causes. We have also presented a constraint based mettondrfor
puting potential program repairs by iteratively adding itiddal
happens-before constraints to block the erroneous thoedisles.
These new methods have been implemented in a software tdol an
evaluated on a set of multithreaded C programs. Our expatgne
show that the proposed methods are effective in explainingur-
rency bugs and suggesting meaningful repairs.

Acknowledgments

This work was primarily supported by the NSF under grants CCF
1149454, CCF-1405697, and CCF-1500024. Partial suppat wa
provided by the ONR under grant N0O0014-13-1-0527. Any opin-
ions, findings, and conclusions expressed in this matenéattese

inserting locks based on predefined rules. They focus on- data of the authors and do not necessarily reflect the views ofithe-f

races or one-variable, three-access, atomicity violatibat do not
handle general concurrency bugs (e.g., assertion vialgtisince
there are concurrency bugs that cannot be fixed solely bytinge

ing agencies.

References

[1] Jade Alglave, Daniel Kroening, and Michael Tautschifigr-
tial orders for efficient bounded model checking of concuirre
software. Ininternational Conference on Computer Aided
Verification pages 141-157, 2013.

[2] Apache bug 21287 URL:
http://issues.apache.org/bugzilla/shbug.cgi? id=21287.

[3] Apache bug 25520 URL:
https://issues.apache.org/bugzilla/shioug .cgi? id=25520.

[4] Apache http server project URL: http://httpd.apachg.o

[5] Paul C. Attie. Synthesis of large concurrent progranaspair-

wise composition. Ininternational Conference on Concur-

rency Theorypages 130-145, 1999.

Roderick Bloem, Georg Hofferek, Bettina Konighofer,

Robert Konighofer, Simon Ausserlechner, and RaphaelSpor

Synthesis of synchronization using uninterpreted fumstidn

International Conference on Formal Methods in Computer-

Aided Designpages 35-42, 2014.

Sigmund Cherem, Trishul M. Chilimbi, and Sumit Gulwani.

Inferring locks for atomic sections. kkCM SIGPLAN Confer-

ence on Programming Language Design and Implementation

pages 304-315, 2008.

[8] The cherokee web server URL.: http://cherokee-projecty.

[9] Jong-Deok Choi and Andreas Zeller. Isolating failure-

inducing thread schedules. International Symposium on

Software Testing and Analysfsages 210-220, 2002.

Edmund Clarke, Daniel Kroening, Natasha Sharyginal an

Karen Yorav. SATABS: SAT-based predicate abstraction for

ANSI-C. In Tools and Algorithms for the Construction and

Analysis of Systemsolume 3440 of_ecture Notes in Com-

puter Sciencegpages 570-574. Springer Verlag, 2005.

Leonardo Mendonga de Moura and Nikolaj Bjgrner. Z3: An

efficient SMT solver. Ininternational Conference on Tools

and Algorithms for Construction and Analysis of Systems

pages 337-340, 2008.

Jyotirmoy V. Deshmukh, G. Ramalingam, Venkatesh Rtasa

Ranganath, and Kapil Vaswani. Logical concurrency control

from sequential proofs. IRuropean Symposium on Program-

ming pages 226-245, 2010.

E. A. Emerson and E. M. Clarke. Using branching time tem-

poral logic to synthesize synchronization skeletdBsience

of Computer Programming:241-266, 1982.

Michael Emmi, Jeffrey S. Fischer, Ranjit Jhala, and &up

Majumdar. Lock allocation. IANCM SIGACT-SIGPLAN Sym-

posium on Principles of Programming Languageages 291—

296, 2007.

Evren Ermis, Martin Schaf, and Thomas Wies. Error iva

ants. Ininternational Symposium on Formal Methouslume

7436, pages 187-201. 2012.

[16] The freebsd project URL: http://www.freebsd.org.

[17] The GNU compiler collection URL: https://gcc.gnu.brg

[18] GCC bug 21334 URL: http://gcc.gnu.org/bugzilla/shbug

[6]

[7]

[10]

[11]

[12]

[13]

[14]

[15]

.CQi? id=21334.

[19] GCC bug 25530 URL: http://gcc.gnu.org/bugzilla/shbug
.cgi? id=25330.

[20] GCC bug 3584 URL: http://gcc.gnu.org/bugzilla/showg
.cgi? id=3584.

[21] GCC bug 40518 URL: http://gcc.gnu.org/bugzilla/shbug
.CQi? id=40518.

[22] The GLib reference manual URL:

https://bugzilla.gnome.org/shabug .cgi? id=512624.

[23] glib bug 512624 URL: https://bugzilla.gnome.org/ghbug
.cgi? id=512624.

[24] Maurice Herlihy and Nir ShavitThe Art of Multiprocessor
Programming Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 2008.

[25] Nicholas Jalbert and Koushik Sen. A trace simplificatiech-
nique for effective debugging of concurrent programs. In
ACM SIGSOFT Symposium on Foundations of Software En-
gineering pages 57—66, New York, NY, USA, 2010. ACM.

[26] Jetty servlet engine and HTTP server URL:
http://lwww.eclipse.org/jetty/.

[27] Jetty bug 1187 URL: http://jira.codehaus.org/brold&a TY-
1187.

[28] Guoliang Jin, Linhai Song, Wei Zhang, Shan Lu, and Ben Li

blit. Automated atomicity-violation fixing. IACM SIGPLAN

Conference on Programming Language Design and Imple-

mentation pages 389—-400, 2011.

Manu Jose and Rupak Majumdar. Cause clue clauses: error

localization using maximum satisfiability. KCM SIGPLAN

Conference on Programming Language Design and Imple-

mentation pages 437-446, 2011.

Bohuslav Krena, Zdenek Letko, Yarden Nir-Buchbinder,

Rachel Tzoref-Brill, Shmuel Ur, and Tomas Vojnar. A corcur

rency testing tool and its plug-ins for dynamic analysis and

runtime healing. Iinternational Conference on Runtime Ver-

ification, pages 101-114, 2009.

Bohuslav Krena, Zdenek Letko, Rachel Tzoref, Shmuel Ur

and Tomas Vojnar. Healing data races on-the-fli\Msrkshop

on Parallel and Distributed Systems: Testing, Analysig an

Debugging pages 54-64. ACM, 2007.

Daniel Kroening and Michael Tautschnig. CBMC—C

bounded model checker. International Conference on Tools

and Algorithms for Construction and Analysis of Systerak

ume 8413 ofLecture Notes in Computer Sciengages 389—

391, 2014.

Zdenek Letko, Tomas Vojnar, and Bohuslav Krena. Atom-

Race: data race and atomicity violation detector and hdaler

Workshop on Parallel and Distributed Systems: TestingAna

ysis, and Debuggingage 7. ACM, 2008.

Chu-Min Li, Zhiwen Fang, and Ke Xu. Combining MaxSAT

reasoning and incremental upper bound for the maximum

cliqgue problem. InlEEE 25th International Conference on

Tools with Artificial Intelligencepages 939-946, Nov 2013.

Mark H. Liffiton, Zaher S. Andraus, and Karem A. Sakallah

From Max-SAT to Min-UNSAT: Insights and applications.

Technical Report CSE-TR-506-05, University of Michigan,

2005.

The Linux kernel archives URL.: http://kernel.org.

Peng Liu and Charles Zhang. Axis: Automatically fixing

atomicity violations through solving control constrairtsin-

ternational Conference on Software Engineeripgges 299—

309, 2012.

The LLVM compiler infrastructure URL.: http://livm.gy.

LLVM bug 8441 URL: http://llvm.org/bugs/shawug.cgi?

id=8441.

Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou.

Learning from mistakes: A comprehensive study on real

world concurrency bug characteristics. Anchitectural Sup-

port for Programming Languages and Operating Systems

pages 329-339, 2008.

Zohar Manna and Pierre Wolper. Synthesis of communicat

ing processes from temporal logic specificatioh6M Trans.

Program. Lang. Syst6(1):68—93, 1984.

[29]

[30

—_

[31]

[32]

[33]

[34]

[35]

[36]
[37]

[38]
[39]

[40]

[41]

[42]
[43]

[44]
[45]

[46]

[47]
[48]
[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]
[57]

Joao Marques-Silva. The MSUnCore MAXSAT Solver.

Bill McCloskey, Feng Zhou, David Gay, and Eric A. Brewer
Autolocker: synchronization inference for atomic secsion
In ACM SIGACT-SIGPLAN Symposium on Principles of Pro-
gramming Languagegages 346-358, 2006.

Minisat URL: http://minisat.se/.

Vijayaraghavan Murali, Nishant Sinha, Emina Torlakda
Satish Chandra. What gives? A hybrid algorithm for error
trace explanation. Innternational Conference on Verified
Software: Theories, Tools and Experimergages 270286,
2014.

Mysql the world’s most popular open source database URL
http://www.mysqgl.com/.

Mysql bug 12848 URL: http://bugs.mysql.com/bug.pics22848.

Mysql bug 169 URL.: http://bugs.mysql.com/bug.phpZié9.
Sangmin Park, Richard W. Vuduc, and Mary Jean Harrold.
Falcon: fault localization in concurrent programs.Ititerna-
tional Conference on Software Engineerimmges 245-254,
2010.

Amir Pnueli and Roni Rosner. On the synthesis of a reacti
module. INACM SIGACT-SIGPLAN Symposium on Princi-
ples of Programming Languaggsages 179-190, 1989.

Dawei Qi, Abhik Roychoudhury, Zhenkai Liang, and Kapil
Vaswani. DARWIN: an approach to debugging evolving pro-
grams. ACM Trans. Softw. Eng. Methodo21(3):19, 2012.

R. J. Ramadge and W. M. Wonham. Supervisory control of a
class of discrete event process85AM J. Control and Opti-
mization 25(1):206—230, 1987.

R. J. Ramadge and W. M. Wonham. The control of discrete
event systems2roc. of the IEEEpages 81-98, 1989.

G. Ramalingam. Context-sensitive synchronizatiensitive
analysis is undecidabl®ACM Trans. Program. Lang. Syst.
22(2):416-430, 2000.

SV-COMP. 2015 software verification competition. URL:
http://sv-comp.sosy-lab.org/2015/, 2015.

Tranmission URL: https://www.transmissionbt.com/.
Mandana Vaziri, Frank Tip, and Julian Dolby. Assoaiati
synchronization constraints with data in an object-ogdnt

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

language. IPACM SIGACT-SIGPLAN Symposium on Princi-
ples of Programming Languaggsages 334-345, 2006.

Martin T. Vechev, Eran Yahav, and Greta Yorsh. Absimact
guided synthesis of synchronization. IACM SIGACT-
SIGPLAN Symposium on Principles of Programming Lan-
guagespages 327-338, 2010.

T. Villa, T. Kam, R.K. Brayton, and A.L. Sangiovanni-
Vincenteili. Explicit and implicit algorithms for binateoger-

ing problemsComputer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions @6(7):677—691, Jul 1997.
Yin Wang, Terence Kelly, Manjunath Kudlur, Stépharegfdr-
tune, and Scott A. Mahlke. Gadara: Dynamic deadlock avoid-
ance for multithreaded programs. USENIX Symposium on
Operating Systems Design and Implementatjpeiges 281—
294, 2008.

Yin Wang, Stéphane Lafortune, Terence Kelly, Manjhna
Kudlur, and Scott A. Mahlke. The theory of deadlock avoid-
ance via discrete control. WCM SIGACT-SIGPLAN Sympo-
sium on Principles of Programming Languagemges 252—
263, 2009.

Mozilla. XPCOM URL: https://developer.mozilla.orgle
US/docs/Mozilla/Tech/XPCOM.

Zuoning Yin, Ding Yuan, Yuanyuan Zhou, Shankar Pasupa-
thy, and Lakshmi Bairavasundaram. How do fixes become
bugs? INACM SIGSOFT Symposium on Foundations of Soft-
ware Engineeringpages 26—-36, New York, NY, USA, 2011.
ACM.

Elad Yom-Tov, Rachel Tzoref, Shmuel Ur, and Shlomo Hoor
Automatic debugging of concurrent programs through ac-
tive sampling of low dimensional random projections. In
IEEE/ACM International Conference On Automated Software
Engineering pages 307-316, 2008.

Jie Yu and Satish Narayanasamy. A case for an intergavi
constrained shared-memory multi-processotnternational
Symposium on Computer Architectupages 325-336, 2009.
Ding Yuan, Haohui Mai, Weiwei Xiong, Lin Tan, Yuanyuan
Zhou, and Shankar Pasupathy. SherLog: error diagnosis by
connecting clues from run-time logSIGPLAN Not.45:143—
154, March 2010.

	Introduction
	Preliminaries
	Bounded Model Checking (BMC)
	Modeling Concurrent Programs
	Partial Maximum Satisfiability

	Diagnosing Concurrency Bugs
	Generating the Failing Executions
	Localizing the Ordering Constraints
	Diagnosing the Running Example

	Computing Potential Repairs
	Constructing the Kill-Sets
	Computing the Binate Cover
	Realizing the Solution

	Experiments
	Benchmarks
	Diagnosis Results
	Repair Results
	Case Studies

	Related Work
	Conclusions

