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Performance-Based Adaptive Schedules
Enhance Motor Learning
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ABSTRACT. Although investigators have shown that random
scheduling of several tasks enhances learning more than blocked
scheduling does, the advantages of random scheduling may be
limited because it does not take into account the nominal diffi-
culty of each task, the difference in difficulty between tasks. and
the skill level of the learner in that type of schedule. The authors
propose 2 new algorithms for adaptively determining the nominal
difficulty and the number of trials for each task on the basis of
both current and delayed performance of the learner (N = 48). The
authors tested the adaptive algorithms in a 2 x 2 factorial design.
and they show that the algorithms outperform random scheduling
when performance is measured on a delayed retention test.
Keywords: adaptive schedules, delayed retention, nominal task
difficulty, random scheduling, skill level

Leurning of multiple motor skills is ubiquitous in activi-
ties such as sports, music, professional skill develop-
ment, and rehabilitation after brain injury. Although indi-
vidual skills can be scheduled sequentially, a robust finding
in motor learning research is the contextual interference
effect: Compared with sequential, or blocked, scheduling,
random scheduling of several tasks enhances performance,
as measured in delayed retention tests (Boyce & Del Rey,
1990; Carlson, Sullivan, & Schneider, 1989:; Carlson &
Yaure, 1990; Goode & Magill, 1986: Osu, Hirai, Yoshioka,
& Kawato, 2004; Shea & Morgan, 1979; for opposing
views, see, e.g., Albaret & Thon, 1998; Brydges, Carnahan,
Backstein, & Dubrowski, 2007; Pollatou, Kioumourtzo-
glou, Agelousis, & Mavromatis, 1997). The theoretical
foundations of the effects of random schedules can be traced
to Schmidt’s (1975) schema theory. Although Schmidt’s
theoretical predictions of a positive effect of constant versus
variable practice schedules on learning have been equivocal
(Lee, Magill, & Weeks, 1985: Shapiro & Schmidt, 1982),
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when researchers randomize variable practice rather than
block it, that practice schedule is effective in improving
learning (Lee et al.).

Despite its successes, however, random task schedul-
ing suffers from at least two limitations. First, it does not
account for the two components of task difficulty (Gua-
dagnoli & Lee, 2004): (a) the difficulty of the task itself
(nominal task difficulty), which is learner-independent, and
(b) the skill level of the learner (functional task difficulty),
which improves with learning. Second, it does not account
for differences in difficulty between tasks: All tasks being
learned are treated equally for all learners at all times.

Matching task difficulty to the learner’s skill level, both
initially and as learning progresses, has the potential to
enhance the learning effectiveness of each task. On the one
hand, the tasks should not be too easy to perform because
mere repetitions do not lead to change in performance. Nor
do they seem to induce cortical reorganization, which is
produced by the mastering of challenging tasks (Kleim et
al., 2002; Nudo, Wise, SiFuentes, & Milliken, 1996; Plautz,
Milliken, & Nudo, 2000). On the other hand, when initial dif-
ficulty is too large, that 1s, when the combined high nominal
and functional task difficulties create large errors, learning
can fail to occur because of the unavailability of appropri-
ate training examples (Sanger, 2004). Task difficulty should
be adapted to the learner. Vygotsky (1978) proposed that
individuals should maintain task difficulty near the optimal
challenge pont (or the just-right challenge:; Ayres, 1972) to
enhance learning effectiveness. In artificial neural network
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studies, adaptive scheduling of task difficulty has been
shown to enhance learning of motor tasks. Sanger (1994)
showed that training a neural network to learn the dynam-
1Ics of a multijoint arm was much faster when the speed of
desired movements was slowly increased than when the
network was trained on fast movements. Ivanchenko and
Jacobs (2003) tested Bernstein’s (1967) hypothesis that
developmental progression accelerates motor learning and
showed that neural network training regimens that included
developmental progression outperformed fixed training on
motor tasks that were relatively difficult to learn.

Taking into account the difference in difficulty between
tasks has the potential to enhance learning performance
globally. The total amount of practice is the single most
important variable for skill acquisition (Schmidt & Lee,
1999). Furthermore, negatively accelerated monotonically
increasing functions, such as exponentials or power func-
tions, model performance improvement as a function of
practice trials well (Liu, Mayer-Kress, & Newell, 2003;
Schmidt & Lee). According to such models, in each new
practice trial, the gain in performance is less than the gain
in the previous trial; at the limit, the gain tends toward zero.
Moreover, depending on nominal difficulty and the skill
of the learner, the rate of performance improvement var-
les from task to task. Thus, in simple random scheduling,
cach new trial of an easy task may induce a labor in vain
effect (Nelson & Leonesio, 1988) as performance improve-
ment levels off. For a harder task, however, performance
still may be relatively poor but still improving. Because
artificial neural networks face similar issues, researchers
have devised active input selection methods to select inputs
(tasks) that potentially lead to large decrements in error
(Zhang, 1994) or are maximally informative (MacKay,
1992). Those methods, which de facto implement adaptive
scheduling in the number of trials, largely reduce the train-
ing time of the neural networks (see, e.g., Zhang).

Thus, the results of previous research have suggested that
methods that dynamically maintain performance near an
optimal challenge point at which performance gains during
learning are maximal may improve human learning of a
motor task. Furthermore, methods that dynamically allocate
learning trials differentially among tasks, with fewer trials
allocated to easy tasks and more trials allocated to hard
tasks, may improve global learning performance in multi-
task situations. In the present study, we specifically tested
whether a multitask motor-training program that included
adaptive practice schedules both in difficulty and in the
number of trials for each task could be more effective than
random scheduling in enhancing delayed performance.

Method

Participants and Design

Participants were 48 college students (18 men and 30
women, aged 26.0 + 1.3 years [M + 5D]). We conducted the
experiment over 4 consecutive days. Participants provided
informed consent, and the Human Subjects Institutional
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Review Board of the University of Southern California
approved the study protocol.

Participants had to learn four visuomotor transformations
over the course of three learning sessions, each separated by
24 hr. A learning session consisted of 120 trials. On each
trial, we instructed participants to move a cursor shown on a
computer screen from an initial position to a target within a
limited time, the allocated movement time (AMT), by using
a type of force-feedback joystick—a spaceball (HP 5000).
A color-coded target and an associated angular relationship
between spaceball movement and cursor movement defined
each visuomotor transformation. We randomly assigned the
four angles (-30°, 60°, =907, and 120°) to the four color-
coded targets for each participant. The AMT to reach the
target controlled nominal difficulty for each task.

We randomly assigned participants to one of four con-
ditions (12 participants per condition) in a 2 x 2 facto-
rial design: (a) fixed number of trials and fixed difficulty
(Fix), (b) adaptive number of trials and fixed difficulty
(AdapTr), (c¢) adaptive difficulty and fixed number of trials
(AdapDif), and (d) adaptive number of trials and adaptive
difficulty (AdapTrDif). In the Fix and AdapDif conditions,
the number of trials was constant: 30 trials per task per ses-
sion. In the AdapTr and AdapTrDif conditions, we allowed
the number of trials per task to vary between 15 and 75 in
Sessions 2 and 3. In the Fix and AdapTr conditions, the
difficulty was constant: AMT = 0.6 s. In the AdapDif and
AdapTrDif conditions, we allowed AMT to vary between
2.5 and 0.6 s n all sessions, and we set AMT at 2.5 s at the
beginning of Session | for all tasks.

Experimental Procedure

Participants sat comfortably at a table in front of a com-
puter display and held the spaceball in their right hand. We
normalized the participants’ position both across partici-
pants and across days: We measured the distance between
the spine (at the C3-C4 level) and the acromion process of
the scapula. We positioned participants so that their midline
was aligned with the middle of the computer display. We
positioned the spaceball and attached 1t on the table with
Velcro at 15 ¢m in front of the participants’ body and to the
right of the midline at the spine—scapula distance.

At the beginning of each trial, a colored target was shown
as a 3-cm-diameter disk located at 10 ¢cm above the initial
position. A white fixation cross indicated the initial posi-
tion. After 1 s, a change in the color of the fixation cross
from white to the color of the target indicated the go signal.
After a variable reaction time (RT), participants started
to move the spaceball. Participants had AMT (seconds) to
move the cursor onto the target. The cursor movement was
visible on the screen at any time t < AMT. At t = AMT, the
cursor movement stopped. The cursor and the target were
visible during the intertrial interval, which lasted a minimal
I s. We adjusted the variable intertrial interval so that the
trial duration was always 5.5 s (go signal duration + RT +
AMT + intertrial interval = 5.5 s). If the RT was larger than
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| s, we excluded the tral, and the screen displayed, “Next
time move faster,” until the next trial started.

We defined performance error as the distance between
cursor position and target position at AMT. If the cursor
was on target for 100 ms before the end of the trial, then
performance error was zero, and we terminated the trial and
played a bird-chirping sound. The maximum performance
error was 16 ¢cm. Because we manipulated task difficulty
to keep performance relatively constant in the adaptive
difficulty conditions (see AdapDif and AdapTrDif), partici-
pants would have found it difficult to perceive any progress
in performance directly from the task. Thus, to indicate
progress in performance, we provided a display above the
target that showed the score of each task at all times and in
all conditions. The score was given in the same color as the
task. We computed performance feedback by scaling AMT
(see Equation 4) between 0 and 100 (we computed AMT in
all schedules but used 1t for feedback only n the Fix and
AdapTr schedules).

Each session began with a pretest and ended with a post-
test. There were four pseudorandomly distributed trials per
task in each test. A fourth test was given 24 hr after the last
session. Note that pretests on Days 2 and 3 and the test on
Day 4 can be considered 24-hr delayed retention perfor-
mance tests.

Fix condition. The Fix schedule was the control condi-
tion. We scheduled tasks pseudorandomly so that each task
occurred once in a block of four trials. Thus, there were 30
trials per task per session, and we kept the difficulty con-
stant at AMT = 0.6 s.

AdapTr condition. In this condition, we adjusted the
number of trials per task in Sessions 2 and 3 by distributing
the total number of trials among the tasks:

NoOfTrial(Task) = totalNoOfTrials x PerfE,, ... Task), (1)

where rotalNoOfTrials is the total number of trials in one
learning session and PerfE,,,,(Task) is the normalized per-
formance error for the task.

To obtain an estimate of performance for each task, we
measured performance error directly with a test before each
training session. However, because we gave this test at fixed
(high) difficulty level, it had to be short (or the purpose of
adaptive difficulty schedules would be defeated). Thus,
because we estimated performance in a few trials, it was
somewhat variable. Therefore, we also used past perfor-
mance error to obtain a more accurate estimate of perfor-
mance. Although performance during practice is often not a
good indicator of long-term retention (Cahill, McGaugh, &
Weinberger, 2001 Winstein, 1991), it reflects a measure of
task difficulty. We computed normalized performance error
by combining those two (imperfect) measures in the follow-
ing parameter-free equation:

PerfEc(task) x PerfEp(task)
2 [PerfEc(1)  PerfEp(task)]

]

(]

PerfE  (task) = (2)

FlrFT
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where PerfEc(task) is the performance error obtained at
the pretest preceding practice in the current session, which
can be considered a 24-hr delayed retention performance
test: PerfEp(task) 1s the performance error in the test
immediately following the previous practice session, and
the denominator 1s a normalizing factor with the sum over
all tasks.' Because tasks compete for the number of trials,
we provided a range of number ot trials to avoid the pos-
sibility that one task would take all the available trials in a
sesston (maximum = 75 trials, minimum = 15 tnals). Once
we determined the number of trials (after the pretest in Ses-
sions 2 and 3), we scheduled the trials pseudorandomly to
minimize consecutive trials of the same task: Consecutive
trials could occur only if one task was allocated more than
60 trials.

AdapDif condition. In the adaptive schedules, we
attempted to maintain an optimal challenge for each task by
manipulating the allocated movement time AMT{(r) at each
trial, as follows: If the current performance error was above
a reference error, then task difficulty was too high, and we
increased AMT. If, on the contrary, current performance
error was below the reference error, then difficulty was too
low, and we decreased AMT. To accomplish this, we used an
error-reduction learning rule, in which we based the change
in difficulty on the squared difference between performance
error and the reference performance error; E(7) = (PerfE[1]
— PerfE,;)°, where 1 is the trial index, PerfE(1) is the perfor-
mance error on trial 7, which is small when performance 1s
good, and PerfE . is the reference performance error.

We derived our difficulty update algorithm from the
assumption that the performance curve of motor learning
1s relatively well modeled with exponential functions. This
model allowed us to compute the derivative of the squared
difference between participants’ performance and the
reference performance error. By using this mathematical
minimization technique, we derived a flat performance
curve near the reference performance error. At each trial,
we adjusted task difficulty AMT(t) by subtracting a frac-
tion of the derivative of the difference between the partic-
ipant’s performance and the reference performance error
with respect to the number of trials. Thus, the allocated
movement time AMT(r) at trial ¢ 1s given by

dE(1)
dr

(3)

AMT (1) = AMT(1—-1)—n

where [ is a small positive constant. By assuming that per-
formance is well modeled by an exponential function of the
number of trials 7, with the task difficulty controlling the
learning rate, PerfE(1) = Aexp(-AMT11] - 1), we obtained the
following update rule:

AMT(t) = AMT(t — 1) x {1 + a[PerfE(r) — PerfE.(]},  (4)
where o > 0 is a learning rate. Because the optimal challenge

point is an unknown parameter, we set the reference per-
formance error PerfE,; at 4 cm after pilot testing. Adaptive
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difficulty for each task started at the onset of Session | and
continued in Sessions 2 and 3. We allowed AMT to vary
between 2.5 and 0.6 s, and we initially set it at 2.5 s at the
beginning of Session 1 for all tasks. We scheduled tasks pseu-
dorandomly as in the Fix condition, with 30 trials per task.

AdapTrDif condition. In this condition, the difficulty is
adapted as in the AdapDif condition, and the number of tri-
als is the same as in the AdapTr condition.

Statistical Analysis

For statistical tests on performance error, we first comput-
ed the median of the test for each participant and then com-
puted the mean of the median for the group of participants.
For all comparisons of means, we first checked the data for
normality with the Shapiro-Wilk test and for equal variance
with the Levene test. When the data was normally distributed
and the vanances equal, we used one-way analysis of vari-
ance (ANOVA) to analyze the effect of condition on posttest
performance. Unless otherwise noted, we used Bonferroni
corrections in multiple comparisons. When variances were
not equal, we used the robust Brown—Forsythe test for equal-
ity of means because this test does not require the assumption
of equal variance. In repeated ANOVAs, we used Mauchly's
test to determine sphericity. We computed effect sizes as
differences in group means divided by the pooled common
standard deviations. Effect sizes between (.5 and 0.8 are con-
sidered moderate, and effect sizes above 0.9 are considered
large (Cohen, 1977). We report results as means + standard
errors. Our significance level was p < .05.

Results

We report results for the performance error for the aver-
age of the four tasks first and then for individual tasks.
There was no significant difference between conditions in
pretest of Day 1, one-way ANOVA, F(3.44)=5.21,p=.22.
In the delayed retention test on Day 4, there was an effect
of condition on performance error; Brown-Forsythe test,
F(3,22.9)=4.11, p = .018. Participants performed better in
the AdapTrDif condition than in the control, Fix, condition;
performance errors were 2.31 = 0.42 cm and 5.58 + 1.18
cm, respectively, p = .016 (see Figure 1A). Effect size ES =
1.11, which is considered a large effect size. Similarly, par-
ticipants performed better in the AdapTr condition (2.63- +
0.42-cm performance error) than in the Fix condition, p =
038 (see Figure 1A). ES = 0.96, which is also a large effect
size. Although results did not reach significance, we found
a trend when we compared performance error in the adap-
tive difficulty condition (3.45 + 0.60 cm) with performance
error 1n the control condition, p = .045, uncorrected for
multiple comparisons, ES = (0.64 (see Figure 1A). There
was no significant difference for the other comparisons (p =
I). Note that in the fixed schedule, some learners could not
learn the harder tasks, and they exhibited failure of learning
(see Figure 1B, top panel).

One can consider performance error in the Fix schedule
on Day 2 as an index of task difficulty (there may have
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FIGURE 1. (A) Average performance and standard error on
the four tasks on the delayed retention test on Day 4 for each
condition. The asterisks indicate significantly smaller errors
in the adaptive number of trials condition (AdapTr) and in
the adaptive number of trials and adaptive difficulty condi-
tion (AdapTrDif) than in the Fix (control) condition, p <
05 (Bonferroni corrected for multiple comparisons). (B)
Histogram showing performance error on each trial in the
Session 4 test for each condition. Note the relatively large
number of trials with poor performance in the fixed sched-
ule condition (Fix), including a number of trials in which
performance error was maximum (16 ¢m), which indicated
failure of learning. In the AdapDif condition, the number of
trials was fixed, but the level of difficulty differed.

been floor effects in Days 3 and 4, and performance was
very variable in Day | because participants were using the
joystick for the first time). The task difficulty increased with
the rotation angles: Mean performance errors in Day 2 for
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Tasks 1 (-30°), 2 (60°), 3 (-90°), and 4 (120%) were 7.90
cm, 8.18 cm, 10.30 cm, and 10.35 cm, respectively.

Figure 2 shows the mean performance across participants
for each task and each condition on Day 4. As 1s apparent in
the figure, participants’ performance in Tasks 2, 3, and 4 in
the Fix schedule tended to worsen in comparison with that
in Task 1. As is also apparent in each of the figure panels,
the differences in performance between tasks were reduced
in the adaptive schedule conditions. Considering all the

tasks and schedules on Day 4, there was no main effect of

task on performance—repeated ANOVA, F(3, 132) = 1.85,
p = .14]1—but there was a significant Task x Condition
interaction effect, F(9, 132) = 0.26, p = .026. Furthermore,
there was no effect of condition for Task 1 (30°), Brown-
Forsythe test p = .10, or Task 4 (120°), Brown-Forsythe test
p =.259. However, there were significant effects of condi-
tion for Task 2 (60°), Brown-Forsythe test p = .037, and
Task 3 (-90%), Brown-Forsythe test, p = .002.

The AdapTr schedules produced different numbers of

trials for each task. and allocated more trials to harder tasks

Adaptive Schedules in Motor Learning

than to easier tasks, as prescribed. Figure 3 shows an exam-
ple of a task schedule in the AdapTr condition. On Day 2,
the mean percentage change in number of trials was 47.7%
between Tasks | and 2, 87.5% between Tasks | and 3, and
67.3% between Tasks 1 and 4. In Day 3, the mean differ-
ence in number of trials was 63.5% between Tasks | and 2,
67.8% between Tasks 1 and 3, and 69.9% between Tasks |
and 4. In the AdapTr condition, the number of trials for Task
| was significantly fewer than 30, which was the number of
trials for each task in the Fix condition (7 test Day 2, p =
003: rtest Day 3, p =.0045). We then compared the number
of trials between tasks in the AdapTr condition. A one-way
ANOVA showed a main effect of task, p = .0064. There
were significantly fewer trials in Task 1 than in all the other
tasks on Day 2 and significantly fewer trials in Task 1 than
in Task 3 on Day 3, both ps < .05.
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FIGURE 2. Mean performance in the five trials of the
delayed retention test given on Day 4 for each task and
each schedule. The performance of the fixed schedule (Fix)
group is repeated on each panel for comparison with those
of the other three adaptive groups. The adaptive groups
showed better mean performance (smaller errors) for almost
all trials and tasks. The increase in performance was more
marked in the two tasks of intermediate difficulty (Tasks
2 and 3) than on the easier task (Task 1) or the more dif-
ficult task (Task 4). AdapDif = adaptive difficulty and fixed
number of trials, AdapTrDif = adaptive number of trials and
adaptive diffculty. In the Fix and AdapDif conditions, the
number of trials was constant: 30 trials/task/session. In the
AdapTr and AdapTrDif conditions, the number of trials per
task varied between 15 and 75 in Sessions 2 and 3. In the
Fix and AdapTr conditions, the difficulty was constant; in
the AdapDif and AdapTrDif conditions, difficulty varied.
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FIGURE 3. Examples of the adaptive number of trials
schedule in the AdapTr condition (variable number of tri-
als. constant difficulty) for the four tasks. The arrows on
the left indicate the angles of the visuomotor transformation
for each task (=30, 60, =90, and 1207). The dots show the
performance for each trial for the three practice sessions
(from left to right) for Tasks 1-4. Performance error during
training has been fitted with exponentials for comparison
of the four tasks. Filled circles show median performance
in the tests before training. Plus signs indicate median
performance in the tests immediately following training.
The numbers of trials for each task are shown to the left
of performance for each session. For Task 3, performance
was relatively poor in the posttest in the pretest in Session
2; thus, a larger number of trials (37) were scheduled for
this task in Session 2. On the contrary, this learner’s per-
formance was good in Task 2 before Session 2: hence a
relatively small number of trials of this task were performed
in this session. The total number of trials/session was kept
constant at 120 trials.

Trials
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Although we designed our AdapTr algorithm to mini-
mize the number of consecutive trials, consecutive trials are
inevitable if more than half the total number of trials per
session (i.e., more than 60 out of 120 trials) are allocated
to a single task. The different number of trials for each
task between the Fix group and the AdapTr and AdapTrDif
groups was potentially confounded with the number of
consecutive trials (i.e., if there are more trials for a task,
consecutive trials for that task are more likely). Consecu-
tive trials were unlikely to occur in the present experiment,
however, because only 2 of the 48 schedules that generated
adaptive numbers of trials—12 (participants) x 2 (adaptive-
number-of-trials conditions: AdapTr, AdapTrDif) x 2 (Day
2. Day 3)—had consecutive trials: one schedule on Day 2 in
AdapTr (with 15, 15,75, and 15 trials per task, respectively)
and the other on Day 3 in AdapTrDif (with 17, 20, 15, and
68 trials per task, respectively).

In the adaptive difficulty schedules, participants main-
tained performance error near the reference performance
error, as desired. Figure 4 shows an example of a perfor-
mance and adaptive difficulty in the AdapDit condition. In
the Fix condition, average performances across participants
and all 30 trials in Sessions 1 and 2 were 10.44 = 0.13 cm
and 6.75 = 0.14 cm. respectively. In the AdapDif condition,
average performances in Sessions | and 2 were 6.73 £ (.16
cm and 3.84 £ 0.11 cm, respectively. Performance during
practice was better in the AdapDif condition than in the

Fix condition in both sessions. two-tailed unbalanced Sat-
terthwaite test, both ps < .001. In addition, performance was
closer to the reference performance error in the AdapDif
condition, p = .15, than in the Fix condition, p < .001 (one-
sample  test with 4 cm as the test value).

In our study, we manipulated task difficulty by allocat-
ing movement durations. Thus, adapting the task difficulty
was potentially confounded with changing the overall time
of practice: The improvement in performance could have
simply been caused by an increase in total practice time. To
study that possibility, we computed the actual total practice
time for the participants in the AdapDif group and correlat-
ed it with performance on Day 4. We found no correlation
between total practice time and performance in this group.
both when we considered all tasks, r = -.033, p = .80, and
when we considered individual tasks: Task 1, r = .13, p =
67, Task 2, r = 46, p = .13; Task 3, r =-36, p = .24: and
Task 4; r=-20, p = .53.

Discussion

The results of the present experiment demonstrate that
adaptive scheduling can improve individuals™ performance
in a multisession, multitask learning program. Adapting
the number of trials as a function of performance largely
improved retention in comparison with maintaining fixed
random scheduling. Varying difficulty also improved learn-
ing, although to a lesser extent. Furthermore, although

A o Tkl
S I5 ¢
=10 | i g
g 5 - ot T "l 94 +
W op Ll et Vgt v 0
= Task 2
2 15| o
5 10 ‘ ' \
t '5 F- .+ .“.: » i : i g
- 0 -...__.;._ﬂmi B~y
o ask 3
= Task
o g O SAe

. 5 10 ' \ - .
]: s . & . = :_.: ﬂ » - - [ ~ - . .
T | S, 2 . . ]
- Task 4
2 15
= 10
E 5 : -
B8 )] LR S . - Y e
Trials
seen in the corresponding graphs in A.

B Task |
i
. t I Ir ...................... ‘:.'.:?i-l.-—.--.....-.--—_ -------
. < | — - - SR
Task 2
%, 2] s
x / ‘: I :'-.....,'--.-11-.-.-----‘-.‘-.'!"!‘“ -------- e — s s s a s s
= 0 —
Task 3
1—-—2 2T ) & s
: I : _______________________ L ;;;;;;;; e & @ 5 & & & & &
A
0! — =2 . =._— e e
Task 4

B i’
: = :
R T e -\_ ........ e

FIGURE 4. Example of the adaptive difficulty schedule for the four tasks, The arrows on the left indicate the angles of the visuo-
motor transformation for each task (=30, 60, =90, and 120°). Performance error as a function of trials (cm) is shown in (A). For
Tasks 1-4, the average performance error was quickly brought near the challenge point (4 cm). Change in the difficulty parameter,
allocated movement time (AMT, in seconds), in each trial is plotted in (B). As performance improved, task difficulty, controlled
by AMT, decreased. Note that because Tasks 1 and 2 (upper and upper middle panels) were relatively easy for this participant in
Session |, AMT decreased rapidly in the first session so that he maintained performance around the optimal challenge, as can be
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performance in the AdapTrDif condition was not signifi-
cantly different from performance in the AdapTr condition,
probably because of a floor effect, it was superior to that in
the Fix condition. In all adaptive conditions, performance
on all tasks improved. In the Fix schedule, however, some
learners could not learn the harder tasks and exhibited fail-
ure of learning (Figure 1B). Nominal task difficulty was
important in determining positive effects of the adaptive
schedules. however: The effects of adaptive schedules were
large in tasks of intermediate difficulty, but the schedules
had less or no effect on the easiest task. possibly because
of a floor effect, and on the most difficult task. possibly
because of a slow rate of learning in the adaptive difficulty
conditions or a limitation in the allocated number of trials
in the adaptive number of trials conditions.

Because of the practical importance of enhancing effective-
ness and efficiency in motor learning in a number of domains.
such as sports, professional skill development, and rehabilita-
tion, it 1s surprising that only a few behavioral researchers have
examined whether adaptive practice schedules enhance learn-
ing. Researchers have designed two types of adaptive sched-
uling methods, which can be divided into learner-controlled
and computer-controlled (as in the present study) methods. In
learner-controlled methods, the learner determines the practice
schedules. Titzer, Shea, and Romack (1993) showed that a
learner-determined schedule had the same beneficial effect
as a blocked schedule during acquisition and was equivalent
to random practice in retention, thus facilitating both perfor-
mance and learning. Wu, Magill, and Foto (2005) showed that
the performance of a learner-determined-schedule group was
superior to that of a yoked control group. A possible limitation
of those methods, however, is that the chosen schedules were
based on imperfect metacognitive judgments: Because learners
suffer from illusions of competence during practice (Simon
& Bjork, 2001), those schedules may not optimally enhance
long-term retention. Other than our study, we are aware of
only one motor learning scheduling study that did not rely on
metacognitive judgments but in which the schedule was com-
puter controlled and based on measured performance: the win-
shifi/lose-stay method (Simon, Cullen, & Lee, 2002). In this
method, switching to another task occurs only after the learner
- has achieved a criterion level of success. Although beneficial to
learning. a potential limitation of this algorithm is that it can-
not distinguish between learning and performance (Cahill et
al., 2001; Winstein, 1991) because it uses performance during
practice to tailor the schedule. In the method that we propose
here, the researcher adapts the number of trials on the basis of
immediate and delayed retention performance.

The concept of optimal challenge has been studied in
motivation research and has notably been linked to intrin-
sic motivation. Intrinsic motivation reflects the individu-
al’s propensity to engage in a task for its own sake and, in
so doing, to seek out and master optimal challenges (i.e.,
challenges in accordance with the individual's capability:
Deci & Ryan, 1985; Hebb, 1955; White, 1959). Intrinsic
motivation has been shown to be sustained if the optimal
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challenge is itself sustained and if reception of informed
feedback shows the individual his or her progress toward
the goal (Csikszentmihalyi, 1979). Thus, in future work.
researchers should dissect the effects of optimal chal-
lenge on enhancing learning (as we have shown here)
and on enhancing intrinsic motivation. In further work.
researchers should also aim at determining the optimal
challenge point meta-parameter. In the present study, we
empirically determined and took a reference performance
error as an approximate challenge point. Investigators
should develop new methods to automatically adjust this
parameter, perhaps on the basis of both user preference
and performance.

Because different practice schedules yielded large dif-
ferences in delayed performance error, at least for tasks
of intermediate difficulty, we believe that our findings are
robust and that they warrant the development of similar
methods outside the laboratory. Thanks to the recent avail-
ability of relatively cheap and simple motion-capture sys-
tems, adaptive task scheduling as described in the present
article could be used in real applications, such as sports, or
in rehabilitation of hand function after brain injury.

NOTE

I. Our choice of formula for computing normalized perfor-
mance error was motivated by the predicr and correct steps in the
Kalman filter (Welch & Bishop, 2004), in which the Bayesian rule
Is used: One obtains the posterior estimation of the performance
error value by multiplying the previous estimation, PerfEp(rask).
by the likelihood, PerfEc(task), obtained by current measurements
(Thrun, 2000) divided by a normalization term.
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