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Abstract:  

 
 
The gradual discovery of functional domains in native enamel matrix proteins has enabled the design 

of smart bioinspired peptides for tooth enamel mimetics and repair. In this study, we expanded upon 

the concept of biomineralization to design smaller amelogenin-inspired peptides with conserved 

functional domains for clinical translation. The synthetic peptides displayed a characteristic 

nanostructured scaffold reminiscent of ‘nanospheres’ seen in the enamel matrix and 

effectively controlled apatite nucleation in vitro resulting in the formation of smaller crystallites. 

Following application of the peptides to sectioned human molar teeth, a robust, oriented, synthetic 
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aprismatic enamel was observed after 7 days of incubation in situ. There was a two-fold increase in 

the hardness and modulus of the regrown enamel-like apatite layers and an increase in the attachment 

of the tooth-regrown layer interface compared to control samples. Repeated peptide applications 

generated multiple enamel-like hydroxyapatite (HAP) layers of limited thickness produced by 

epitaxial growth in which c-axis oriented nanorods evolved on the surface of native enamel. We 

conclude that peptide analogues with active domains can effectively regulate the orientation of 

regenerated HAP layers to influence functional response. Moreover, this enamel biofabrication 

approach demonstrates the peptide-mediated growth of multiple microscale HAP arrays of organized 

microarchitecture with potential for enamel repair. 

 
1. INTRODUCTION 

 
Most mineralized tissues in nature are biological composites that achieve distinctive hierarchical 

structures through a complex integration of their mineral and organic phases across multiple length 

scales. Building on the principles of biomineralization, a critical understanding of material chemistry 

and life sciences may open trajectories for the fabrication of organized, biomimetic materials.(1-

3) Dental enamel, the hardest mineralized tissue in the vertebrate body, is a biological mineralized 

composite characterized by an exceptional toughness and moderate brittleness that is particularly 

difficult to replicate synthetically. Enamel constitutes the outer protective covering of the tooth and 

is composed of c-axis oriented carbonated hydroxyapatite (HAP) nanorods (∼60 nm 

wide)(4) arranged in bundles of prisms or rods (∼6 μm in width)(5) and delimited by organic sheaths 

and interprismatic crystallites. In humans, the outermost layer of surface enamel is composed of 

columns of HAP crystals disposed parallel to each other and perpendicular to the enamel periphery, 

termed “aprismatic” or “prismless” enamel (∼16–45 μm thickness).(6) Frequently abraded during 



                                                                                                                              

Please cite the article as: A. Desai, M.L. Auad, H. Shen, and S.R. Nutt, “Mechanical Behavior of Hybrid 
Composite Phenolic Foam,” J. Cellular Plastics 44 [1] (2008) 15-36. DOI: 10.1177/0021955X07078021 
 

mastication, this highly mineralized aprismatic layer is harder and less permeable than the enamel 

subsurface.(7) This preferential use of a columnar architecture demonstrates a more regular 

organization of microcrystals that is associated with functionality,(8) making it an appropriate model 

structure to emulate for surface enamel restoration. Tooth enamel is acellular in nature, scarcely 

remineralizes and does not possess the capacity to remodel or regenerate. These attributes facilitate 

the exigency to develop enamel-inspired biomaterials for superficial repair of abraded or diseased 

tooth structure. 

 

Amelogenin, the major intrinsically disordered structural protein in an enamel matrix, is believed to 

play a central role in enamel formation.(9-11) Previous studies have shown the in vitro assembly of 

amelogenin into spherical nanospheres of ∼17–18 nm diameter, which can promote crystal 

organization.(12, 13) Amelogenin may also assemble into oligomers, nanoribbons, and other 

elongated assemblies under a host of different in vitro conditions.(14-16) Prior work has documented 

that amelogenin-based supramolecular assemblies exert a strong influence over the organization and 

directionality of needlelike fluoridated HAP crystals formed on the etched enamel.(17) Our 

knowledge of the crucial role of amelogenin in monitoring mineralization has been further developed 

by studying knockout mice lacking the gene that codes for amelogenin (Amelx). Amelx-null mice 

express a characteristic disorganized (prismless), discolored, hypomineralized enamel that is only 

10–20% of normal enamel thickness and includes mixed mineral phases.(18-20) Hence, a systematic 

understanding of amelogenin protein structure, assembly, and behavior in a dynamic extracellular 

environment may lead to the design of practical peptide scaffolds for enamel mimetics. The use of 

peptides as an efficient fabrication strategy has facilitated the design of complex bioinspired 

materials and architectonics over different hierarchical length scales.(21, 22) This approach offers 
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striking benefits, such as structural programmability, biocompatibility, biodegradability, easy 

handling, and affordable cost of synthesis. 

The growing need for minimally invasive treatment strategies to combat the increasing prevalence 

of tooth decay has challenged researchers and dental clinicians to reconsider a more preventive 

management approach. Previous studies have investigated the role of fluoride,(23, 24) bioactive 

glasses,(25) charged amino acids,(26, 27) organic scaffolds,(28, 29) and dendrimers(30, 31) in 

addressing surface enamel remineralization. Ample opportunity remains to exploit the complex 

assembly, active domains, and mineral precursor stabilization properties of native amelogenin 

protein to design a synthetic counterpart for bulk enamel restoration. Biomimetic in vitro approaches 

using full-length amelogenin (rP172) and leucine-rich amelogenin peptide (LRAP) have 

demonstrated the capacity to regrow organized enamel-like apatite crystals on demineralized tooth 

enamel while achieving biointegration and improved mechanical strength postenamel repair.(32-

34) These treatment outcomes present advantages over conventional preventive fluoride treatments, 

including no risk of toxicity, offering biocompatibility, biointegration, enhanced functional 

responses, and improved permeation of mineral ions to treat deeper subsurface white spot 

lesions.(35) 

 

Here, we report the design of two synthetic amelogenin-inspired peptides of 26 and 32 amino acid 

residues (P26 and P32, respectively) that retain the vital functional domains of native amelogenin. 

This biofabrication approach sought to characterize the designed peptides and test their potential to 

(a) assemble into a scaffold that may potentially control the nucleation and habit of the apatite 

crystalline phase, (b) reconstruct a robust synthetic aprismatic enamel in an in situ tooth model 

system, and (c) determine whether repeated peptide applications on tooth slices immersed in 
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artificial saliva can be used to reconstitute organized multiple microscale layers. Such layers will be 

formed from nanoscale apatite crystals and will attain scalability for clinical viability. The secondary 

structure and assembly of the peptides were characterized using circular dichroism (CD) and 

transmission electron microscopy (TEM). Peptide-mediated mineralization experiments in vitro 

were observed using TEM and in situ Raman spectroscopy. The microstructure, orientation, 

elemental composition, and mechanical performance of the regenerated enamel-like HAP layers 

were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy 

(EDXS), X-ray diffraction (XRD), and nanoindentation tests. We report a bottom-up mineralization 

strategy showing that amelogenin-inspired peptides with functional domains can effectively guide 

the oriented growth of multiple HAP layers with increased adhesion to the native enamel and 

increased mechanical properties. 

 
2. RESULTS  
2.1. Rationale for Peptide Design: Developing Amelogenin-Inspired Peptides for 
Enamel Restoration 
 

In an attempt to develop an enamel restoration strategy with the necessary qualities for clinical 

adoption, we designed 26- and 32-residue amelogenin-inspired peptides (here called P26 and P32) 

as potential biomimetic mineralization agents based on a critical understanding of the apatite-binding 

and mineralization-promoting domains of the native amelogenin protein. The fundamental 

difference between the primary sequences of the two peptides is the presence of two extra 

polyproline repeat motifs (PVH/PMQ) in P32. The physicochemical properties of the peptides and 

their amino acid sequences are illustrated in Table 1 and Figure 1a, respectively. We retained the 

last 12 mers of the C-terminus containing ∼50% of the charged residues of the full-length 

amelogenin and enriched in disorder-promoting residues (E, K, and R) that may have functional 
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traits in promoting mineralization.(36) The close proximity of the hydrophilic C-terminus of 

amelogenin to the HAP surface has been directly implicated in mediating crystal nucleation and 

oriented growth processes through a highly specific protein–crystal interaction.(37-39) Owing to the 

presence of charged residues at the two end terminals of native amelogenin, both domains have 

proven to exert a dynamic role in their interaction with developing enamel crystals.(40) Hence, we 

preserved 14 amino acid residues from the inner N-terminus (residues 1–4; 16–25) with a 

phosphorylated serine (pS16). The N-terminal plays a more active role in self-assembly and in 

increasing mineralization kinetics than in HAP-binding interactions, which indicate the functional 

diversity of separate domains within a single protein.(41) It has been shown through in vitro 

mineralization studies that the role on the N-terminal (+P) is to regulate the crystal shape and 

stabilize amorphous calcium phosphate (ACP) formation, thus playing a vital role in controlling 

crystal morphology and apatite phase transition.(42) For P-32, we added two polyproline repeat 

regions (PXX/PXQ) from the middle hydrophobic core of native amelogenin to observe whether 

addition of proline repeat length to the C-terminus would modulate crystal elongation and growth as 

suggested in previous literature.(43) The aim was to translate an in-depth understanding of the 

amelogenin structure and function into the design of novel amelogenin-derived peptides for 

regenerative studies. 
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Figure 1. Structural characterization of P26 and P32 peptides: (a) amino acid sequences of peptides 

P26 and P32. CD spectra of peptides (0.2 mg/mL); P26 (b) and P32 (c) in 5 mM HEPES pH 7.4 at 

25 °C containing 3 and 10 mM Ca2+. TEM images of nanospheres formed from peptides P26 (d) 

and P32 (e) at pH 7.4 in HEPES buffer at 25 °C. The inset in (e) is a magnified image representative 

of uniformly dispersed spherical particles of peptides (white arrow) surrounded by a dense 

framework of threadlike nanostructures. (f) Average size distribution of the dispersed nanospheres 

for the two peptides calculated from the TEM images in (d,e), n = 50. 
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2.2. P26 and P32 are Intrinsically Disordered and Form Spherical Assemblies  
 

CD revealed that both peptides exhibited a disordered conformation (Figure 1b,c). The recorded CD 

spectra displayed a random-coiled structure having a sharp negative ellipticity with a minimum at 

200–205 nm. No discernible conformational changes were observed when the peptides interacted 

with calcium (3 and 10 mM). Full-length recombinant amelogenin (rP172) was used for comparison 

and displayed a random-coiled structural conformation similar to that of the peptides, consistent with 

previous literature.(44) 

 

The assembled nanostructures formed by the peptides were examined by TEM. P26 and P32 

displayed the formation of dispersed, characteristic nanospherical particles 25.7 ± 2.8 nm and 22.5 

± 2.15 nm in diameter, respectively (Figure 1d–f, n = 50). Single units (∼3 nm diameter) organized 

as tiny threadlike or chainlike nanostructures formed a dense framework in the background along 

with the dispersed spherical assemblies (Figure 1e inset). Sample buffer (5 mM HEPES) used as a 

control did not yield any evident substructures (Figure S1). 
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2.3. P26 and P32 Controlled Apatite Crystal Nucleation and Size in Solution  
 

Building on our findings regarding the peptide assemblies, we further investigated the effects of P26 

and P32 on Ca–P mineralization in vitro using TEM (after 25 min and 24 h). In the control samples 

with CaP only (no peptides), spherical ACP(45) was seen within 25 min of mineralization and 

verified with mineral phase identification using selected-area electron diffraction (SAED) (Figure 

2a). After 24 h of aging at room temperature (RT), random aggregates of large, mature, 

rhombohedral or rounded platelike crystals of different size and well-defined crystal edges were 

observed in control (length (l) = 82.3 ± 32.9 nm; maximum width of crystals was up to 800 nm, n = 

55) (Figure 2b). When peptides P26 and P32 (0.2 mg/mL) were added to CaP, several agglomerates 

(networks) of amorphous lamellalike structures were detected after 25 min of aging (Figure 2d,g). 

The density of the scattered nanostructures observed on the surface of the grids was relatively higher 

than that of the control (without peptide) suggesting that peptides accelerated crystal nucleation. 

Addition of peptides resulted in the formation of smaller, thin, platelike HAP crystals of relatively 

uniform size distribution after 24 h of aging (Figure 2e,h). In general, the HAP particles formed in 

the presence of peptides were smaller than those in the control (P26 (l): 42.7 ± 13.5 nm; P32 (l): 66.2 

± 23.3 nm, n = 55, p < 0.001). The crystals formed in the presence of P26 were smaller in size than 

those formed in the presence of P32. 
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Figure 2. Ca–P mineralization in the presence of P26 and P32: TEM images, corresponding SAED 

images and in situ micro Raman spectroscopy analyses of mineral phases formed during in vitro 

mineralization experiments in the absence (a–c) and presence of (0.2 mg/mL) peptides P26 (d–f) 

and P32 (g–i). 

 

In situ Raman spectra collected continuously up to 3 h of mineralization revealed initial peaks of 

ACP for all three samples (Figure 2c,f,i). The peak center positions were fitted by Gaussian 

functions, and phase transformation (ACP to HAP) was monitored by peak shift from ∼954 ± 1 to 
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959 ± 1.(46, 47) The phase transformation start time points for the control, P26, and P32 was 

captured at 55.88, 64.88, and 58 min, respectively. After 90 min, HAP crystals appeared in all the 

samples, and the intensity for HAP peaks (∼958 cm–1) in control (Figure 2c) was stronger and more 

distinct than the mineral peaks detected in the presence of the peptides (Figure 2f,i), which in 

accordance with TEM may indicate presence of larger apatite crystals in control. Full-length 

recombinant amelogenin (rP172), used for comparison, strongly inhibited apatite formation for up 

to 18 h, as seen under Raman spectroscopy (Figure S2). The spectra for rP172 revealed strong amide 

peaks at 1255 cm–1 (amide III) and 1669 cm–1 (amide I), corroborating the presence of organic 

components in the in situ calcium phosphate solution. A weak amide I peak at ∼1645 cm–1 was 

revealed in P32 while such a peak was not detected for P26 (Figure 2i). The low concentration (200 

μg/mL) and small size of the peptides (∼3.5 kDa) make it difficult to obtain strong amide peaks in 

Raman spectroscopy when compared to the full-length recombinant amelogenin (∼25 kDa). The 

low amide I signal or lack of it may well be the result of differences in the binding affinity of P26 

with HAP. Collectively, TEM, SAED, and in situ Raman spectroscopy analyses of sample solutions 

containing the peptides were similar in nature and consistent with the formation of HAP (Figure 2). 

 
2.4. P26 and P32 Improved Preferential Orientation of Apatite Crystals Formed on 
Etched Enamel  
 

XRD was used to estimate the preferential orientation of the regenerated crystals bound to the enamel 

surface after application of different peptides. Figure 3a depicts the tooth specimens after 2 days of 

peptide treatment, showing XRD peaks at 2θ = 31.8°(211), 32.8°(300), 46.7°(222), and 39.7°(310). 

The intensity of the diffraction peaks was calculated by a peak separation process according to 

Gaussian fit. After two days of peptide treatment, clear diffraction peaks at (211) and (300) were 
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obtained that matched the peaks expected for HAP (JCPDF #09-0432). Full-length amelogenin 

revealed an indistinct broadened peak (∼32°) lacking the characteristic diffraction pattern of HAP, 

indicating that the regenerated crystals lacked long-range atomic order and were in a less ordered 

state. This could be attributed to the role of recombinant amelogenin in stabilizing transient mineral 

phases over a longer duration. The control sample treated in artificial saliva without peptides only 

showed a weak broadened (211) peak, indicating either smaller crystallite size (compared to the 

peptide-treated crystals) or poor crystallinity. 

 

 
Figure 3. XRD spectra of the regenerated layers on demineralized enamel surface after 2 (a) and 7 

days (b). Note an increase in the 002 diffraction signal after the 7 day peptide-treated incubation 

period. (c) Comparison of diffraction intensities of (002) to (211) ratios; (I002/I211) between 

different samples demonstrating an increase in c-axial orientation after 7 days of peptide-treatment. 

i—demin. enamel, ii—sound enamel, iii—control (without peptides), iv—P26, v—P32, vi—rP172. 

HAP—hydroxyapatite, E—sound enamel, C—control (without peptide), peptides—P26, P32, 

rP172—full-length recombinant amelogenin. 
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Figure 3b depicts the tooth specimens after 7 days of treatment, showing diffraction peaks at 2θ = 

25.9°(002), 31.8°(211), 32.8°(300), and 39.8°(310). A distinct (002) peak appears in P26-, P32-, and 

rP172-treated samples, indicating preferential c-axis growth, corresponding to the long axis of the 

crystals and perpendicular to the enamel surface (Figure 3b). The 002 direction is the main 

preferential orientation for HAP crystals in bulk enamel prisms, with the c-axial growth along the 

long axis of the tooth and perpendicular to the dentin–enamel junction.(48) The ratio of the 

diffraction intensities (002) at 25.9° to another direction (211) was used to determine the degree of 

orientation along the c-axis. In previous studies, the intensity ratio of (002) to (211) (I002/I211) for 

random HAP (JCPDF #09-0432) was recorded at 0.4, for enamel control at 0.37, and for 

CaP/F/rP172 coating (calcium phosphate–fluoride–amelogenin) at 1.38.(49) After 7 days of 

remineralization the intensity ratios of I002/I211 for the control, P26, P32, and rP172 groups were 

0.44, 2.38, 1.34, and 1.31, respectively (Figure 3c). This finding indicates that the preferential 

orientation of the apatite crystals in the newly formed layer was stronger in the presence of the 

amelogenin-derived peptides. 

 

2.5. P26 and P32 Promoted the Formation of Multilayered Aprismatic Crystals with 
Improved Mechanical Properties 
 

After incubating the peptide-treated tooth specimens in physiologically relevant artificial saliva 

solution for different time periods (2 and 7 days), the morphology and the composition of the 

regrown apatite-containing layer was observed using SEM and EDXS. After 2 h of demineralization 

at pH 4.6 and at 37 °C, the enamel rods (∼5 μm diameter) and remnants of the interrod material were 

clearly visible on the smoothened enamel surface (Figure 4a). The interprismatic enamel was 
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demineralized, making the outlines of the prisms appear more distinct. In control enamel slices (no 

peptides) bathed in artificial saliva for 2 days, the crystals appeared irregular, porous, and randomly 

distributed, and had a low packing crystal density (Figure 4b). There was a notable difference in the 

uniformity of the crystal distribution and orientation between the control and peptide-treated 

samples. 

 
Figure 4. SEM images of (a) demineralized enamel surface showing clear outlines of enamel 

prisms/rods with remnants of interprismatic enamel (white arrow). (b–e) HAP crystals grown on 

demineralized enamel after 2 days of incubation in artificial saliva in pH 7.0 at 37 °C. Demineralized 

enamel treated in artificial saliva only (control) (b) in the presence of P26 (c), in P32, (d) and in 

rP172 (e). The insets are magnified images (scale = 500 nm). White arrows in (c) represent bundles 

of needlelike crystallites, whereas the arrows in (d,e) show crystallites aligned parallel to the 

underlying native enamel. 
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To evaluate the orientation of the initial crystal layer grown in peptide solutions, we looked at areas 

of relatively low crystal density. Figure 4c shows a P26-treated sample after incubation in artificial 

saliva for 2 days. We observed rapid crystal overgrowth (ca. ≤100 nm width), characterized by 

bundles of needlelike crystals emerging perpendicular to the enamel surface and covering the entire 

surface of the demineralized enamel. Apatite crystals formed in the P32-treated samples for 2 days 

(ca. ≤100 nm width) grew parallel to the underlying prismatic enamel (Figure 4d). Here, we observed 

the patterning of incipient crystals along the prismatic enamel via epitaxial crystal growth. We used 

full-length recombinant amelogenin (rP172) for comparison in our in situ experiments (Figure 4e). 

The crystals regulated by the full-length protein were the longest (ca. ≥2 μm length; ca. ≤100 nm in 

width) and grew in a manner similar to the crystals grown with P32, that is, preferentially parallel to 

the long axis of the native enamel crystals. The initial distribution of the first layer of regrown 

crystals observed after 2 days was more heterogeneous, with some areas appearing denser than 

others. However, as mineralization progressed, a dense crystal layer coated the entire treated enamel 

surface. 

 

To determine whether repeated peptide applications could increase the thickness of the mineralized 

layer, we reapplied the peptides to the tooth specimens on day 3 and observed the outcome at the 

end of day 7 of the remineralization cycle (n = 5 per group). Samples treated with artificial saliva 

only (no peptides) showed a single layer (∼10 μm thickness) of randomly organized crystals that 

chipped easily and displayed a rough, irregular surface in the cross-sectional view. At the interface, 

there was no attachment to the underlying native enamel and several areas depicted 

porosity/irregularities in mineral formation (Figure 5a,b). The alignment of apatite crystals was poor, 
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showing varying lengths and dimensions. rP172-treated samples demonstrated a dense coating with 

long, needlelike crystallites (up to 15 μm thickness) bound firmly to the underlying enamel prisms 

(Figure 5c,d). There was uniformity in the thickness of the deposited crystals and, unlike the control 

without peptides, a smooth mineral surface was observed. 

 
 
Figure 5. SEM images of the regenerated HAP layers formed on control and on rP172-treated 

samples after 7 days of incubation in artificial saliva in pH 7.0 at 37 °C. (a) Cross-sectional view of 

the control sample (without peptide) shows an irregular, roughened surface with a complete 

detachment at the regenerated layer–enamel interface. (b) Magnified image of the square in panel 
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(a) displays porosities in mineral formation (white circles) with a complete loss of attachment (white 

arrows). (c) Cross-sectional views of samples treated in rP172 demonstrate a uniform dense, smooth 

coating with a seamless interface. (d) Magnified image of the square in panel (c) displays long, 

needlelike crystallites bound firmly to the underlying enamel prisms (white arrows). 

Remarkably, enamel surfaces treated with multiple applications of peptides showed a dense, 

continuous coating, forming multiple (2–4) columnlike apatite layers of ∼6 μm each (n = 5 samples 

per group). The total maximum thickness of the multilayered apatite was approximately 30 μm and 

grew preferentially along the apatite crystal c-axis (Figure 6a,b). Polishing and etching the tooth 

samples for 10 s with 37% phosphoric acid revealed multiple smaller layers of homogeneous 

dimensions (∼6 μm thick each), forming seamless interfaces with each other and showing few signs 

of delamination from the underlying enamel structure (Figure 6c,d). We observed similar growth of 

multilayered, columnlike, oriented mineral with an improved interface attachment on samples 

treated with P32. A rigorous 10 min sonication in a water bath ensured that only the crystals that 

were tightly bound to the enamel surface were retained and characterized. The results of EDXS 

analysis of three points per sample (n = 3) on the samples treated for 7 days indicated an elemental 

composition similar to that of healthy enamel (Figure 6e,f). The Ca/P (weight %) molar ratios of 

healthy enamel and demineralized enamel were 1.84 ± 0.16 and 1.88 ± 0.33, respectively. The 

analysis of the repaired enamel sample layers showed Ca/P (weight %) of 1.77 ± 0.88, 1.85 ± 0.86, 

and 1.74 ± 0.05 for P26-, P32-, and rP172-treated samples, respectively (Figure 6g). 
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Figure 6. SEM images of the regenerated HAP layers treated in P26 after 7 days of incubation in 

artificial saliva in pH 7.0 at 37 °C. The artificial saliva was replenished daily, and the peptide applied 

on enamel slices (30 μL) on days 1 and 3. (a) Cross-sectional view of regenerated HAP layers before 

etching. (b) Magnified image of panel (a) (yellow square) depicts the newly formed perpendicularly 

stacked crystals with a seamless attachment interface with underlying enamel rods. (c) Cross-
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sectional view of regenerated HAP layers after etching (30% phosphoric acid, 10 s). A dense, 

continuous HAP coating with multiple columnar-like layers of smaller thickness dimensions is 

observed. (d) Magnified image of panel (c) (yellow square) depicts the presence of a continuous 

interface even after the etching cycle. EDXS analysis of sound enamel (e) and 7 day peptide-treated 

enamel surface (f) exhibited elemental peaks for Ca, P, C, Na, and O. Peptide-treated samples 

incubated in artificial saliva also exhibited peaks for Mg and F. (g) Ca/P content (wt %) for the 

various samples after the 7 day incubation cycle was found to be comparable to that of healthy 

enamel. 

 

Figure 7 shows the hardness (7a) and elastic modulus (7b) of the regenerated layers of HAP 

determined using nanoindentation equipment, measured parallel to the c-axis of the new crystals. 

Demineralizing enamel slices for 2 h resulted in significant erosion and reduction in mechanical 

strength. After a 7 day mineralization cycle, there was no improvement in the mechanical properties 

of samples treated with artificial saliva only (control). However, regenerated crystals grown in P26 

exhibited a 1.7-fold increase in elastic modulus (Figure 7b) and a 1.8-fold increase in hardness 

(Figure 7a) compared to demineralized enamel. For tooth samples treated in P32, a 1.8-fold increase 

in elastic modulus and a 1.9-fold increase in hardness were observed compared to demineralized 

enamel. The increase in mechanical property values in peptide-treated demineralized enamel slices 

was statistically significant (p ≪ 0.05). The modulus and hardness of the regenerated enamel-like 

layers were measured at a depth of 2 μm and were comparable to the modulus (51 ± 4.92 GPa) and 

hardness (2.79 ± 0.38 GPa) of sound tooth enamel (Figure 7). Both peptides exhibited improvement 

in mechanical properties compared to the control (without peptides) (p < 0.001). However, 
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differences in modulus and hardness between the P26- and P32-treated layers were not statistically 

significant (p > 0.05). 

 
Figure 7. Nanoindentation tests showing hardness (a) and modulus (b) for sound enamel, 

demineralized enamel, and samples treated in control (without peptides), P26 and P32 for 7 days in 

artificial saliva. The error bars represent standard deviation (n = 5 per group). Demin: 

demineralization (2 h). Student’s t-test was applied to identify differences in the hardness and elastic 

modulus between etched and repaired enamel (p ≤ 0.05). 

 

3. DISCUSSION  
 

The importance of developing alternative strategies for tooth enamel repair has been highlighted in 

dental research and clinical dentistry.(50) On the basis of in vitro investigations and animal models 

of enamel biomineralization, we have a better understanding of the structure, function, and assembly 

of enamel extracellular matrix components such as amelogenin. Our present study uses the 
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application of rationally designed, amelogenin-inspired peptides with retained functional domains 

to promote regeneration of an apatitic mineralized layer on etched human tooth enamel. We 

demonstrate that repeated peptide applications can promote oriented nucleation of layers of apatite 

crystals on sectioned human molars, forming a seamless interface with the underlying native enamel. 

The hardness and elastic modulus of the multilayered aprismatic crystals were greater than the 

demineralized enamel and the layers that grew in the absence of peptides. 

In developing dental enamel, the bulk of the hydrophobic macromolecular compartment in the 

extracellular matrix consists of amelogenin and relies on acidic hydrophilic proteins (enamelin) to 

initiate nucleation. In our study, the synthetic peptides demonstrated the potential to spontaneously 

agglomerate into stable nanospherical assemblies that formed a dense framework of threadlike 

structures through functional motifs in the peptide primary structure. The charged hydrophilic 

peptides used in the in vitro mineralization experiments were effective in controlling the formation 

of smaller HAP crystallites. 

 

Three-dimensional organic scaffolds have been previously tested to target surface remineralization 

of HAP in enamel(28) and in bone tissues.(51) We used amelogenin-derived biomimetic peptide 

scaffolds to control and guide nucleation events on demineralized enamel surfaces in artificial saliva, 

while exercising control over the size and orientation of the developing HAP crystals by adsorbing 

on specific crystal surfaces. The hydrophilic inner N-terminus and C-terminus present in P26 and 

P32 constitute the active apatite-binding domains of amelogenin. Through binding to the surface of 

enamel, these functional domains generated the high degree of local supersaturation required for 

mineral nucleation via ionic interactions with calcium (pI < pH).(52) Fluoride, incorporated into the 

artificial saliva solution, likely acted in conjunction with the amelogenin peptides, resulting in the 
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oriented growth of needlelike apatite crystals, as was observed previously with full-length 

amelogenin.(49) We observed areas where the new crystallites grew along the ends of the enamel 

prisms, constituting a “transition zone” to a more perpendicularly stacked crystal overgrowth. Over 

time, these subsequent crystalline layers exhibited an accelerated growth transition toward the c-axis 

(002), forming a columnlike layered architecture (schematically represented in Figure 8). Geometric 

selection phenomenon may contribute to the growth of columnar, layered structures promoted by 

the addition of peptides, where for each crystal unit that favors the HAP crystal to grow along their 

fastest growth direction (crystallographic c-axis).(53, 54) Note that other nongeometric factors, such 

as direct access to fresh salivary nutrients in advance of the growing crystal interface, may also 

dictate texture or orientation. As the in situ remineralization cycle advanced, the crystals grew 

rapidly in the presence of the peptides and mutually encroached to compete for spaces and nutrients 

in the artificial saliva chamber. Clearly, the crystal size, morphology, and orientation within the 

remineralized layers were guided by the organic constituents (peptides), forming multiple smaller 

sublayers of limited thickness. The influence of peptides in controlling crystal dimensions was 

further corroborated by the in vitro experiments, where we observed smaller HAP crystal distribution 

in contrast to the predominantly large, heterogeneous, platelike crystals seen in the control (without 
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peptides) 

 

Figure 8. Schematic illustration depicting peptide-mediated regrowth of aprismatic enamel-like HAP 

layers on an in situ tooth model system. 

 

Repeated peptide application on tooth slices (on days 1 and 3 of the 7 day remineralization cycle) 

immersed in fresh salivary solution induced the epitaxial growth of HAP on the previously grown 

layers and improved the degree of orientation of the regenerated synthetic enamel. The intensity of 

002 signals of HAP grown with peptides increased over the 7 day remineralization cycle. This 

growth mechanism led to the formation of oriented enamel-like HAP layers on the surface of the 

peptide-treated demineralized enamel (Figure 8). An example of competitive crystal growth in 

nature is the biomineralization of mollusk shells composed of aragonite or calcite crystals.(55) This 

type of growth pattern occurs as aragonite crystal constructs a varying microarchitecture of 

superimposed layers embedded in an organic framework with excellent mechanical strength and 
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fracture toughness. A fluoride ion and d-aspartic acid formulation was used to produce 

multilayered c-axis-oriented fluorapatite nanorods on polymer sheets through geometric selection, 

resulting in controlled crystal dimensions via selective adsorption of aspartic acid on the a faces.(56) 

The regenerated apatite formed by the end of the remineralization cycle in our study had a 

composition (i.e., Ca/P ratio) comparable to those of native enamel. The parallel arrangement of the 

newly formed crystallites reflected a strong resemblance to the “bandlike” or “steplike” prismless 

shapes seen in the outer aprismatic enamel (16–45 μm in thickness) of the permanent 

dentition.(6) This unique arrangement of dense crystallites oriented in parallel arrays (Figure 9) has 

a functional role in vivo in providing fortification against acid permeability because of the absence 

of interprismatic spaces. Whether such protective function can be fulfilled by enamel regrown with 

P32 or P26 remains to be validated in future studies and will require further characterization of the 

regenerated layers after subjecting them to acid challenges. Even if P26 resulted in smaller crystals 

than those grown in the presence of P32 in vitro, HAP layers grown with P32 and P26 in situ shared 

structural and organizational similarities. It is possible that greater proline repeats are required to 

cause significant changes in crystal dimensions within the newly formed layers in situ.(43) To 

promote prolonged adsorption of the peptides on active dental lesions and achieve greater 

reproducibility, we have contemplated the feasibility of repeated applications of an antimicrobial, 

muco-adhesive, peptide–chitosan hydrogel in customized trays (in preparation). This prototype has 

been tested in previous mineralization studies using full-length amelogenin (rP172)(32) and 

LRAP,(33) demonstrating promise for treating incipient carious lesions. 
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Figure 9. (a) SEM images of sound human enamel forming an outer aprismatic layer showing 

perpendicularly stacked HAP crystals with an orientation different from the underlying enamel rods. 

(b) Newly formed synthetic aprismatic enamel-like HAP layers grown in the presence of 

amelogenin-inspired peptide in our experiments for 7 days in situ. 

 

To improve the robustness of next-generation biomimetic materials, the driving factors that 

influence the biomechanical strength of intricate tissues such as dental enamel must be understood. 

After subjecting healthy enamel slices to a harsh 2 h-long acid-treatment cycle (pH 4.6) and treating 

them with peptides, there was ∼2-fold increase in the mechanical properties (hardness and elastic 

modulus) of peptide-treated samples when compared to that of demineralized enamel. We assert that 

peptide-regulated oriented growth of crystals on demineralized enamel (seen in XRD) and control 

of crystal size may lead to increases in hardness and modulus of the newly grown mineralized layers. 

 

The preferred orientation values at selected tooth locations (molar cusp tips and incisor edges) are 

dictated by nature to impart strength required to meet the mechanical needs of the teeth. That is to 
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say, the areas of the tooth enamel that bear the highest loads are conferred with the most favorable 

orientation of crystals linked along their c-axes (aprismatic).(57) Previous studies have indicated 

that tooth enamel hardness may also be influenced by controlling the size of the apatite crystals 

grown along the c-axis.(58) In aging permanent teeth, we observe larger carbonated apatite (CAP) 

enamel crystals(59) that seem softer and less wear-resistant than smaller CAP enamel 

crystals.(60) Materials with smaller crystallite size impede propagation of dislocations and require 

greater stress to move dislocations across a grain boundary. This imparts superior yield strength and 

modulus to the material. Both our in vitro and in situ studies indicated the tendency of the peptides 

to form smaller crystallites. The role of the inverse correlation between crystal size and hardness 

warrants further research, as it may shed light on how peptides such as P26 and P32 regulate crystal 

formation, crystallinity and refine the mechanical behavior of the regenerated mineralized layers. 

Such efforts could potentially provide inspiration for the development of enhanced biomaterials in 

restorative dentistry. 

 
 

 
4. CONCLUSIONS 
 

Our work highlights opportunities to design bioinspired peptides for tissue engineering and repair, 

made possible by the discovery of functional domains within native proteins. We elucidate how 

amelogenin-inspired peptides with conserved domains can mediate the organized growth of 

aprismatic enamel-like layers in situ while providing the means to improve the mechanical response 

of the new layers. P32 (with two extra polyproline repeats) differed from P26 in the structural 

dimensions of peptide assemblies and crystal size in vitro, although in situ the two peptides produced 

HAP layers with similar crystal morphology and mechanical performance. Building on these 
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findings, exploring other functional domains capable of controlling peptide assembly, crystal size, 

and orientation can help refine biomaterial design. Further challenges remain in attaining the level 

of scalability (microns to millimeters), structural hierarchy, and durability of native enamel to 

augment next-generation bulk materials for clinical applications. 

Ultimately, a systematic understanding of enamel matrix biology with its multifaceted cooperative 

interactions between assembling matrix proteins, enzymes, and mineral ions can provide a valuable 

foundation for the development of enamel-like biomaterials associated with functionality. 

 
5. EXPERIMENTAL SECTION  
5.1. Preparation of Synthetic Peptides and Full-Length Amelogenin rP172  
 
 
The rationally designed peptides, P26 and P32, were synthesized commercially at ∼95.13% purity 
by CHEMPEPTIDE Limited (Shanghai, China). The peptides were phosphorylated at serine-16. 
High-performance liquid chromatography and mass spectrometry were used for peptide purification 
and mass determination by the company prior to shipment (Table 1). Recombinant full-length 
porcine amelogenin (rP172) lacking the N-terminal methionine and the phosphate group on serine-
16 was used for comparison. rP172 was expressed in Escherichia coli and purified as previously 
described.(17) The peptide and protein samples were weighed and dissolved in filtered distilled 
water (DDW, Optima, Fisher Scientific) to yield stock solutions of 2 mg/mL and centrifuged (8000 
rpm, 2 min). The stock solutions were placed in a slow shaker for 4 h and divided into aliquots of 
100 μL/tube. The aliquots were lyophilized for 12 h at −80 °C, and the final concentrations of the 
synthetic peptides and rP172 were 0.2 mg/tube. 
 
5.2. Characterization of Secondary Structures by CD  
 

Samples of P26 and P32 (0.2 mg/mL) were dissolved in 5 mM HEPES buffer at pH 7.4 for 5 min at 

RT. CD spectra were collected in high-transparency quartz cuvettes with a path length of 1 mm and 

band width of 2 nm at 25 °C in the far UV spectral range (190–250 nm) using a JASCO J-815 

circular dichroic spectrometer. The experiments were conducted using the peptides in the absence 
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and presence of calcium ions (3 and 10 mM CaCl2). Conformational changes in the secondary 

structure of the peptides in the presence of bivalent calcium ions were investigated at pH 7.4. 

 
5.3. Characterization of Spherical Assemblies by TEM 
 

The peptides (0.2 mg) were dissolved in 5 mM HEPES buffer (1 mL) for 40 min, and the final pH 

value was adjusted to 7.4 using 1 M NaOH at RT. Peptide samples (4 μL) were applied to the surface 

of the grid (400 mesh carbon-coated, Ted Pella Inc, USA) for 30 s, blotted with filter paper, and 

rinsed with water, followed by a 20 s immersion in 2% uranyl acetate solution and air-drying. Three 

sets of sample grids (control with no peptides, P26, and P32) were examined using TEM (JEOL 

1400) operated at 100 kV. The morphology and diameter of the assembled nanospheres were 

analyzed with software (Gatan Microscopy Suite). 

 

5.4. Apatite Mineralization Experiments in the Presence of Peptides  
 

For TEM, stock solutions of 30 mM calcium and 110 mM phosphate were prepared using reagents 

CaCl2·2H2O (ChemPure Brand) and KH2PO4 (EM Science). Mineralization experiments were 

repeated three times. The pH of the phosphate solution was adjusted to ∼7.4 at RT. All solutions 

were filtered three times (Millex-GV, 0.22 μm filter unit) prior to use. The samples (100 μL) of P26 

and P32 were prepared at 0.2 mg/mL concentration. Aliquots of phosphate and calcium were 

sequentially added to the solutions to adjust the final concentrations to 3 mM Ca and 11 mM P. The 

high concentration of phosphate also acted as a buffer, and the initial pH values recorded for all the 

solutions were ∼7.24–7.34. After mixing all the components in Eppendorf tubes, the solutions were 

vortexed and then centrifuged for 5 min at 10 000 rpm to remove any impurities. The mineralization 
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experiments were stopped at 25 min and 24 h. Four microliters of the crystal suspension was placed 

on the surface of TEM grids after mixing and dried with filter paper from the side. Samples were 

imaged within 1 to 2 h as described above when operated at 200 kV. In the mineralization 

experiments, the majority of the apatite crystals formed an “edge-on” or “face-on” orientation on the 

TEM grid surface. Three sets of sample grids (control with no peptides, P26, and P32) were prepared 

in duplicates. Images were obtained in bright field and SAED modes using TEM (JEOL-2100) 

operated at 200 kV.(61) The dimension of the apatite crystals was analyzed based on an 

accumulative reading of 55 measurements from each set using software (Gatan Microscopy Suite, 

digital micrograph coupled with TEM CCD camera). 

 
5.5. In Situ Raman Spectroscopy  
 

Raman spectroscopy was used to investigate the mineral phase transformation during HAP 

crystallization in samples with and without the peptides. The concentrations of the peptides were 0.2 

mg/mL at pH 7.4. The concentrations of calcium and phosphate were 1.5 and 9.5 mM, respectively. 

The Raman spectra were collected continuously up to 3 h, from 100 to 4000 cm–1 under 

backscattering geometry using a Raman microscope (HORIBA Scientific, Japan, equipped with 

LabRAM ARAMIS) operated at a resolution of 1 cm–1 with an excitation wavelength of 532 nm 

and laser power of 2.5 mW. A 60× objective with numerical aperture of 0.75 was used to focus the 

sample and to collect the spectra for 20 s. 

 

5.6. In Situ Raman Spectroscopy  
 
Healthy human molars (extracted using standard procedures at the Herman Ostrow School of 

Dentistry of the University of Southern California and handled with the approval of the Institutional 
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Review Board) were collected. Excess soft tissue deposits and calculus were removed by cleaning 

with a tweezer and scaling. The teeth were rinsed in 70% ethanol, placed in DDW for a 20 min 

sonication, and stored in diluted phosphate-buffered saline (pH 7.4) with 0.002% sodium azide 

(microbial inhibitor) at 4 °C for further use. Prior to running the experiments, the teeth were cut 

longitudinally into 2 mm thick slices with a water-cooled diamond wheel saw (MTI Corporation, 

SYJ 150-A, USA). The slices were sequentially polished with a series of 400–4000 grit silicon 

carbide papers and nylon adhesive back discs with 0.50 μm colloidal silica suspension. The polished 

enamel slices were thoroughly rinsed with DDW, sonicated in a water bath for 5 min, and stored in 

DDW at 4 °C for further use. 

 
5.7. In Situ Raman Spectroscopy  
 

A 3 × 2 mm window was prepared on each enamel slice by coating the remaining surfaces with acid-

resistant nail varnish. The dried tooth samples were exposed to a demineralization buffer (2 mM 

CaCl2·2H2O, 2 mM KH2PO4, 50 mM sodium acetate, and 0.879 mL acetic acid) at pH 4.6 for 2 h 

at 37 °C, then rinsed, and ultrasonically cleaned for 5 min to remove any remnants of a smear layer. 

One milliliter of calcium phosphate solution (960 μL of DW, 25 μL of 0.1 M CalCl2, and 15 μL of 

0.1 M Na2HPO4) was added to the peptide sample (0.2 mg), and the pH was adjusted to a final value 

of 7.2. The demineralized enamel windows were then coated with 20 μL of peptide solutions (P26, 

P32, and rP172) followed by drying in the desiccator for 10 min at RT. Peptide-coated tooth slices 

were immersed in 5 mL of artificial saliva (1.2 mM CaCl2·2H2O, 50 mM HEPES buffer, 0.72 mM 

KH2PO4, 16 mM KCl, 4.5 mM NH4Cl, 0.2 mM MgCl2·6H20, and 1 ppm F) at pH 7.0 at 37 °C for 

up to 7 days. Repeated peptide applications were performed on days 1 and 3 of this 7 day 

remineralization period. The artificial saliva was replenished every 24 h. After incubation, the tooth 
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slices were sonicated in a water bath for 10 min, rinsed with deionized water, and air-dried before 

examination under XRD, SEM, EDXS, and nanoindentation. In total, there were 4 groups of five 

samples each: control (no peptide) and those treated with P26, P32, and rP172 (for comparison). 

 
5.8. Analysis and Imaging of the in Situ Regrown Crystals on Tooth Enamel  
5.8.1 X-ray Diffraction  
 

XRD (Rigaku diffractometer, Rigaku Corporation, Tokyo, Japan) with Cu Kα radiation (λ = 1.542 

Å) operating at 70 kV and 50 mA with a sampling step of 0.08 and 2θ of range 5–65° was used to 

analyze the enamel windows (3 × 2 mm) for crystal orientation and mineral phase of the newly 

formed crystals. 

 

5.8.2 Scanning Electron Microscopy  
 

Field emission SEM (JEOL JSM-7001F, JEOL Ltd., Tokyo, Japan) imaging was used to observe 

the regrown crystals for structural analysis after the in situ remineralization cycle. Specimens were 

mounted on aluminum stubs with a carbon tape. The tooth surfaces were sputtered with Au and 

observed under an accelerating voltage of 10 kV. Both top–down and side views of the sectioned 

tooth samples were observed using SEM. Element analysis and mineral content was measured after 

the 7 day remineralization cycle using an energy-dispersive X-ray microanalysis detector coupled to 

the SEM (JEOL 7001SEM-EDX). In each sample, three measuring points were selected at 3000× 

magnification, with a measuring time of 200 s at 10 kV (n = 3). 

To observe the cross section of the newly formed layers, the tooth slices were embedded in resin. 

The mold space was filled with a thin layer of self-curing polymer resin and moistened with a drop 

of the monomer. Each tooth section was placed parallel to the mold space to guarantee the precision 
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of the section, and the resin was poured into the remaining space using the salt and pepper method. 

The resin was cured for up to 2 h at RT. The blocks were extracted from the plastic mold and a 

longitudinal cut was made through the window (using a diamond saw advancing at low speed). The 

cross sections were again sequentially polished with wet grid papers using gentle force, rinsed in 

ethanol, sonicated in water, and rinsed thoroughly. The samples were then prepared for SEM 

analysis, as described above. 

 
5.8.3 Mechanical Properties  
 
The hardness and elastic modulus of the peptide-mediated mineralized layers were evaluated by 

nanoindentation tests. A Berkovich diamond indentation tip (with a curvature less than 100 nm) was 

used to make indentations on the sample surface. A continuous stiffness measurement (CSM) was 

used to measure the hardness (strength) and the elastic modulus (stiffness) of the regrown apatite 

layers. The following parameters were used in CSM mode: target constant strain rate of 0.05 s–1, 

measuring depth up to 2 μm, and the distance between the indentations maintained at 100 μm to 

prevent interference. Four different groups (healthy enamel, demineralized enamel, P26-, and P32-

treated enamel) were measured (n = 5 per group). Twenty-five indentations were recorded for each 

sample. Student’s t-test was applied to identify differences in the hardness and elastic modulus 

between etched and repaired enamel (p ≤ 0.05). All the statistical analyses were carried out using 

software (Origin 8.0, Origin Lab, Northampton, MA and Microsoft Office Excel 2007). 
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