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Abstract: As the importance of sound attenuation through weight-critical structures has grown 

and mass law based strategies have proven impractical, engineers have pursued alternative 

approaches for sound attenuation. Membrane-type acoustic metamaterials have demonstrated 

sound attenuation significantly higher than mass law predictions for narrow, tunable 

bandwidths. Similar phenomena can be achieved with plate-like structures. This paper presents 

an analytical model for the prediction of transmission loss through rectangular plates arbitrarily 

loaded with rigid masses, accommodating any combination of clamped and simply supported 

boundary conditions. Equations of motion are solved using a modal expansion approach, 

incorporating admissible eigenfunctions given by the natural mode shapes of single-span 

beams. The effective surface mass density is calculated and used to predict the transmission 

loss of low-frequency sound through the plate–mass structure. To validate the model, finite 

element results are compared against analytical predictions of modal behavior and shown to 

achieve agreement. The model is then used to explore the influence of various combinations of 

boundary conditions on the transmission loss properties of the structure, revealing that the 

symmetry of plate mounting conditions strongly affects transmission loss behavior and is a 

critical design parameter. [DOI: 10.1115/1.4042927] 
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1. INTRODUCTION: 

The attenuation of low-frequency sound through weight-critical structures has historically been 

a challenging task. Noise reduction approaches using traditional engineering materials 

typically rely on increasing the mass of acoustic barriers (the acoustic mass law), but this is an 

especially inefficient mechanism for attenuation of low frequency sound waves [1]. Recently 

developed membrane-type acoustic metamaterials (MAMs), however, have been shown, both 

theoretically and experimentally, to attenuate substantially more energy than mass law 

predictions for the low-frequency regime (100–1000 Hz) [2]. These structures are quasi-planar 

and comprise a membrane under tension with fixed boundaries, loaded with one or more 

masses. As with other locally resonant sonic materials, MAMs exhibit negative dynamic mass 

at acoustic excitation wavelength regimes larger than the characteristic length of the membrane 

structure itself, and this behavior manifests unique transmission minima and maxima within 

the low-frequency domain [2,3]. The frequency response of MAMs is known to be governed 

by the geometry, density, and tension of the membrane, and by the weight, location, and 

geometry of attached masses [4,5,6]. The effects of stacking multiple layers of MAMs and 

creating twodimensional arrays with multiple membrane-mass cells reportedly alter the 

bandwidth, amplitude, and the number of the transmission loss minima and maxima [7]. 

As efforts to scale up MAMs are undertaken, the need for efficient predictive tools 

increases. Finite element models of MAM vibroacoustic behavior achieve acceptable 

agreement with experimental measurements. However, the implementation of such models is 

complex and generally does not complement automated analysis and optimization. This is 

especially true when geometric parameters are to be varied, as this requires successively 

recreating the mesh on which the finite element is defined. Analytical techniques for predicting 
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transmission loss through acoustic metamaterials, in contrast, offer a more manageable 

implementation that meaningfully improves optimization efficiency. 

Analytical modeling of sound transmission through membranes was initially explored 

by Ingard [8], who described transmission through a pretensioned, uniform, circular membrane 

and recognized the potential for using such structures as weight-efficient acoustic insulation. 

Around the same time, the influence of rigidly attached masses on the eigenfrequencies of 

vibrating membranes was also being explored [9,10]. Interest in analytical modeling of sound 

transmission through mass-loaded membranes, however, was not pursued until after extensive 

experimental and finite element data had demonstrated that such structures hold promise for 

weight efficient, low-frequency sound insulation. 

Analytical modeling efforts have culminated in a model proposed by Chen et al. [11] 

that uses a point matching approach, considers the coupling of the membrane with the 

surrounding acoustic fluid, and offers accuracy at arbitrarily high frequency. The model 

accommodates both circular and rectangular membranes with an arbitrary number of masses. 

This method, however, (1) results in a nonlinear eigenvalue problem, and (2) requires repeated 

numeric integration of Green’s function across the membrane surface to solve the acoustic 

wave equation. Executing each of these operations is computationally cumbersome and slow. 

To avoid these inefficient operations, Langfeldt et al. [12] presented a model in which 

membrane displacement is expanded in the eigenmodes of the unloaded membrane, creating a 

linear eigenvalue problem that is efficiently solved. Normal incidence transmission loss is 

approximated at low frequency by determining the effective surface mass density, which does 

not require numerical integration. In the low-frequency regime (wavelengths smaller than the 

characteristic dimension of the membrane), this model remains the most accurate and efficient 

method for optimizing transmission loss through MAMs. 
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As engineers continue to explore optimization of MAM structures, stiffer materials 

have been considered for use as the “membrane” component of MAMs. Several analytic 

models have been developed to describe sound transmission through single- and double-panel 

barriers [13,14]. These models accurately describe transmission through plates where all 

boundaries are clamped or all boundaries are simply supported; however, they do not 

accommodate plates with a combination of clamped and simply supported boundaries. Further, 

as presented, these models do not incorporate the influence of one or more masses bonded to 

either panel. Such a capability is desirable because the presence, size, and location of bonded 

masses give designers the ability to tune the frequencies of transmission loss maxima and 

minima. 

To accommodate the addition of a mass bonded to a stiff acoustic barrier, Chen et al. 

[15] presented an analytical model describing transmission through a rectangular, pretensioned 

Kirchhoff–Love plate. The model achieves reasonable agreement with finite element 

predictions, but suffers the same numerical inefficiencies present in their membrane model 

[11]. Namely, it requires solving a nonlinear eigenvalue problem and repeated numerical 

integration. Furthermore, the model (1) applies only to rectangular membranes clamped along 

all four edges, (2) requires doubly symmetric mass placement, and (3) captures only doubly 

symmetric plate motion. 

The work presented herein aims to overcome the numerical inefficiencies and 

limitations of the Chen plate model by adapting the numerical framework presented by 

Langfeldt et al. [12] to describe transmission through mass-loaded plates. Specifically, 

although the influence of prestress is not considered, the model presented herein avoids 

requiring the solution of a nonlinear eigenvalue problem. Instead, the model takes advantage 

of a long history of optimized standard eigenvalue solvers to find solutions to a linear 

eigenvalue problem. By avoiding the need to solve a nonlinear eigenvalue problem, the model 
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offers substantially faster computational times than the plate model presented by Chen et al. 

Further, the model presented herein avoids the repeated numerical integration of Green’s 

function required in the model presented by Chen et al., streamlining an otherwise time-

consuming operation. 

In addition to improvements in numerical efficiency, the model presented herein 

accurately captures the behavior of a wider variety of mass-loaded plates. While previous work 

has accommodated only clamped boundary conditions, the model presented in this work 

accommodates any combination of clamped and simply supported edges. This is especially 

important to designers who may not be able to achieve perfect clamping on all plate edges in 

realistic deployment situations. Indeed, we show that when a clamped edge is opposite a simply 

supported edge, plate metamaterial behavior can exhibit additional transmission loss minima 

as compared with plates with uniform fastening. An additional advantage over Chen’s plate 

model is that the symmetry requirements imposed on mass placement location are relaxed. 

Instead of requiring that masses be placed such that there is symmetry across both the plate 

midlines, the model presented here accommodates an arbitrary number of masses placed at any 

location on the plate with no symmetry requirements. Further, while the Chen model only 

predicted modal behavior that was symmetric across both plate midplanes, the model presented 

herein can accurately predict asymmetric modal behavior, which is critical for an accurate 

prediction of transmission loss for plates that do not have identical boundary conditions on all 

edges and for plates with eccentric mass placement. 

The value of this work lies in three primary achievements. First, the model presented 

herein is the only analytical model to describe low-frequency sound transmission loss through 

plate-like acoustic metamaterials where mass placement is not limited by symmetry 

requirements. Second, the model accommodates various boundary conditions and 

combinations of boundary conditions that have hitherto been absent from the literature, 
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significantly widening the scope of acoustic transmission problems that can be addressed using 

analytic techniques. Finally, new insights into the influence of boundary conditions on the 

transmission loss through plate-like acoustic metamaterials are presented. Although the 

relationship between boundary conditions and frequency response of vibrating plates is well 

known, this work presents the first explicit demonstration of how boundary conditions 

influence transmission loss performance of mass-loaded plates, and reveals the critical 

importance of mounting conditions in determining plate-like metamaterial performance. 

In the section below, we present the analytical theory describing vibration of the 

coupled plate–mass system and the corresponding equations of motion, the eigenfunctions used 

for each set of boundary conditions, the method for solving the resulting linear homogeneous 

eigenvalue problem, and the method for transmission loss calculation. In the Results and 

Discussion section, we validate the model by comparison with results obtained using 

established analytical and finite element techniques, and use the model to investigate the 

influence of boundary conditions on the transmission loss profile of plate–mass structures. We 

demonstrate that asymmetric mounting gives rise to additional transmission loss maxima and 

minima when compared with symmetric boundary conditions. 

Theory: 

Consider a homogeneous isotropic plate of dimensions Lx and Ly, surface mass density m′, and 

bending stiffness T. Bonded to the plate is a rigid inertial inclusion of mass M of arbitrary 

shape, the center of mass of which is located according to [xM, yM] in the {   x  , y  , z } 

coordinate frame. As shown in Figure 1, the origin is located at one corner of the plate, the 

positive x- and y-axes along the plate edges. The out-of-plane displacement of the plate is a 

function of position and time given by w(x, y, t), and the vibration of the plate is described 

according to the Kirchhoff–Love plate theory written as 
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m’ !
!

!"!
w(x, y, t) + 	T∇#∇#w(x, y, t) = P(x, y, t) 	+ f′(x, y, t)      (1) 

where ∇2 = ∂2/∂x2 + ∂2/∂y2 is the Laplace operator in Cartesian coordinates, P(x, y, t) is the 

acoustic pressure acting on the plate, and f ′(x, y, t) is the coupling force resulting from inertial 

inclusions mounted to the plate. Assuming harmonic time dependence and normally incident 

acoustic excitation, we can write 

w(x, y, t) = w0(x, y)eiωt           (2) 

P(x, y, t) = P1(x, y)eiωt            (3) 

f ′(x, y, t) = f2′(x, y)eiωt           (4) 

 

Figure 1. Definition of geometric and mathematical variables for modeling plate behavior 
 
For the sake of brevity, the time dependence of these terms will be omitted from the 

mathematical expressions below. We can also introduce the dimensionless parameters given 

by 

ξ = x/Lx   η = y/Ly   ζ = z/Lx   u = w0 /Lx 

Λ = Lx/Ly   β = P1Lx/T   k2 = m′ω2L$# /T   γ =  f2′/(TLx)   (5) 

to simplify Eq. (1) into the following form: 

−k#u +	!
"%
!&"

+ 2 ∧# !"%
!&! !'!

+	∧( 	!
"%
!'"

= 	β + 	γ       (6) 
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We next approximate the influence of the inertial inclusions. To do so, we employ a 

point matching approach where the coupling force that is applied over a continuous domain is 

approximated as a set of I forces that act at discrete points within and on the boundary of the 

domain of the inclusion. With this in mind, the coupling force can be expressed as 

𝛾 = 	∑ 𝛾)𝛿	(𝜉 −	𝜉))	𝛿	(*
)+, 𝜂 −	𝜂))        (7) 

where γi is the dimensionless coupling force contributed by the ith collocation point, and δ is 

the Dirac delta function. We choose to solve the resulting equation of motion using a modal 

expansion approach, approximating the response of the system as a finite linear combination 

of N eigenfunctions Φi (ξ, η), i={1, 2, …, N}, which are determined by the boundary conditions 

and Cartesian geometry of the system. 

Boundary Conditions and Eigenfunctions. The eigenfunction Φn (ξ, η) can be separated into 

the product of two dimensionally independent functions: Φn (ξ,η) = 𝜙-# (ξ) 𝜙-$ (η). The index 

n then runs from 1 to N = Nx Ny, where Nx and Ny are the number of eigenfunction expansion 

terms used in each of the   x   and   y   dimensions. The indices nx and ny are determined such 

that n = Ny(nx−1) + ny. The functions 𝜙-# and 𝜙-$ are determined by the boundary conditions 

in each corresponding dimension (e.g., 𝜙-# is determined by the boundary conditions at x = 0 

and x = Lx). Equation (8) gives these expressions, where SS and CC indicate opposing 

boundaries that are both simply supported and clamped, respectively, and CS indicates one 

boundary is clamped and the other is simply supported. 

𝜙.(𝜉) = 	 A
sin(𝑎.𝜉) ,

	cosh(𝑎.𝜉) −	cos(𝑎.𝜉) −	𝑏.	(sinh(𝑎.𝜉) − sin(𝑎.𝜉))	
 SS    (8) 

         CC or CS 

The coefficients ak are the nontrival solutions to the characteristic equation associated with 

each set of boundary conditions given by Eq. (9) [16] 

sin (ak) =0 for SS 
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cos (ak) cosh (ak)=1 for CC 

tan (ak) =tanh(ak) for CS          (9) 

The corresponding coefficients bk are found by solving Equation (10) to ensure CC and CS 

eigenfunctions satisfy the appropriate boundary conditions: 

𝜙.(𝜉)|0+1,, =	
34%(0)
30

|0+1,, = 0  for CC 

𝜙.(𝜉)|0+1,, =	
34%(0)
30

|0+1 = 0  for CS                 (10) 

Using the Rayleigh–Ritz method, we can approximate the unitless modal displacement as a 

linear combination of appropriately chosen eigenfunctions according to Equation (11) 

𝑢	 ≈ 	∑ ∑ 𝑞-𝜙-#(𝜉)𝜙-$(𝜂)
7$
-$+,

7#
-#+,                   (11) 

Note that the set of eigenfunctions in the  x  direction, ϕ(ξ), does not have to be identical to the 

set of eigenfunctions in the  y  direction, ϕ(η): that is, any combination of clamped and simply 

supported boundaries can be studied. 

Eigenvalue Problem. After substituting Eqs. (7) and (11) into Equation (6), we rearrange the 

summations into matrix operations of the following form: 

(C − k2M)q = βb + Lγ                    (12) 

where the dimensionless coupling-force vector γ contains entries [γ1, γ2, …, γN]T, and the 

stiffness matrix C = (cmn) ϵ ℝN×N and the mass matrix M = (mmn) ϵ ℝN×N have entries given by 

cmn = A𝑓8,9
( + 2P𝑔8,9RP∧# 𝑔:,9R +	∧( 𝑓:,9( 			𝑓𝑜𝑟	𝑚 = 𝑛

0				𝑒𝑙𝑠𝑒
               (13) 

𝑚9- =	 A
ℎ8,9			𝑓𝑜𝑟	𝑚 = 𝑛	

0		𝑒𝑙𝑠𝑒
                    (14) 

and the coupling matrix L=(lmn) ε ℝN×I and forcing vector b = (bn) ϵ ℝN have entries given by 

𝑙9- =	𝜙-#(𝜉-)	𝜙-$(𝜂-)                   (15) 

𝑏- =	𝑑-#𝑑-$                     (16) 
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The values of the coefficients fn, gn, hn, and dn are listed in Table 1 as functions of the boundary 

conditions imposed on the plate. 

To further constrain the system of equations (unknown term γ remains in Equation 

(12)), we write a separate set of equations describing the motion of the attached rigid mass in 

the coordinate frame {  x′,   y′,   z’  }, centered at the center of mass of the inertial inclusion 

Table 1. Coefficients of entries in C and M matrices 

Coefficients for various boundary conditions 

 fn hn gn dn 

Clamped- Clamped 

Clamped- Pinned 

 

Pinned- Pinned 

an 

an 

 

𝑎!
√2

 

1 

1 

 

1
2

 

bnan(2- bnan) 

bnan(1- bnan) 

 

𝑎!"

4
 

2bn𝑎!#$(1 − (−1)#!  

𝑎!#$[(−1)!%$*𝑏!" + 1 −	*𝑏!" − 1 + 2𝑏! 

1
𝑎!
[1 − (−1)!] 

 

 

(Figure 1). As shown in Equation (17), the displacement anywhere within the domain of the 

inclusion can be described using the position of the center of mass, uA, CM, and two terms, αξ′ 

and αη′, describing rotation about the  x′  and  y′  axes, respectively, 

𝑢;(𝜉<, 𝜂<) = 	𝑢;,=; −	𝛼>𝜉< +	
,
∧
𝛼0𝜂<	                 (17) 

Equation (17) is rearranged by expressing uM,CM as a function of the dimensionless frequency 

parameter k, the dimensionless mass parameter μ = M/(m′𝐿8# ), and the point-force coupling 

terms γi according to 

𝑢;,=; =	 ,
@.!

∑ γ)*
)+,                     (18) 

where M is the total mass of the inertial inclusion mounted on the plate. We can similarly 

express the rotational terms αξ and αη as shown below, where dimensionless rotational inertia 
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parameters are normalized according to ϑξ = Jx′/(M𝐿8# ) and ϑη = Jy/(M𝐿8# ), and Jx′ and Jy′ are 

moments of inertia about the  x′  and  y′  axes. 

𝛼& =	
,

@.!∧A'
∑ ξ′)γ)*
)+,                    (19) 

𝛼' =	
,

@.!A'
∑ η′)γ)*
)+,                     (20) 

Using these relations, we can rewrite Equation (17) as 

𝑢B(𝜉<, 𝜂<) =
,
@.!

∑ (1 + 0&0'
&

A'
+ '&''

&

∧!A(∗
)γ)*

)+,                  (21) 

Because the inertial inclusion is perfectly bonded to the plate, we have mathematically identical 

motion in the plate and inclusion at each of the collocation points, implying 

𝑢BP𝜉<9η
<
9R = 𝑢(𝜉9η9) for 1 ≤ m ≤ I                 (22) 

which can be written in the matrix form according to 

−𝐋C𝐪 + ,
D!
𝐆𝛄 = 0                    (23)	

where the matrix G = (gmn) ϵ ℝI×I has entries given by 

gmn= ,
@
(1 + 0&0'

&

A'
+ '&''

&

∧!A(
)                   (24)	

We can now combine Equations (12) and (23) into a single block matrix system of the 

following form: 

f
𝑪 − 𝑘#𝑴 −𝑳
−𝑳E 𝑮

𝑘#l m n
𝒒
𝛄p = 𝛽 n𝒃0p                  (25) 

the homogeneous form for which can be expressed as the generalized eigenvalue problem given 

by 

Ax = k2Bx                     (26) 

where 

A = n𝑪 −𝑳
0 𝑮 p, B = n𝑴 0

𝑳E 0p, and x = s
𝒙F
𝒙Gu                 (27) 
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This equation can now be solved using standard solvers to identify the first K eigenvalues 

(indicating modal frequencies) and eigenvectors (indicating coupling forces at collocation 

points and modal coefficients for eigenfunction weighting coefficients). If we assume that the 

deformation of the membrane under steady-state vibration can be approximated by a linear 

combination of the first K eigenmodes, we can write [	𝒒E𝜸E 	]E≈ Xc(k), arranging eigenvectors 

into a matrix X ϵ ℝ(N+I)×K, where the ith column of the matrix is the ith eigenvector of Equation 

(26), and c = [c1, c2, . . . , cK]T is a vector containing the modal contribution factors. We can 

solve these modal contribution factors with inhomogeneous equation (25), using the identities 

in Equation (27) and pre-multiplying by the matrix XT 

XTBXc – k2XTBXc = βXTn𝐛0p                   (28) 

Using the identity AX = BXΛ, where Λ is a diagonal matrix with entries corresponding to the 

first K dimensionless eigen frequencies extracted from Equation (26), we can calculate the 

coefficients c as a function of dimensionless frequency k according to 

c(k) = β(∧ −𝑘#𝑰)H,(𝑿E𝑩𝑿)H,𝑿E n𝐛0p                 (29) 

Transmission Loss. We calculate transmission through the plate under the assumption that 

sound radiation behavior is governed primarily by the surface-averaged vibration amplitude. 

This assumption is appropriate for frequencies where the acoustic wavelength λ is greater than 

the characteristic length of the plate}𝐿8# + 𝐿:#  [17]. Because we are interested primarily in low-

frequency performance, this assumption is not particularly restrictive and will be discussed 

more thoroughly in the next section. From [12], the effective mass density of the plate can be 

calculated as a function of excitation frequency according to 

𝑚~ < = − 9<
.![𝒃*	1]𝑿𝒄

                    (30) 
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The effectivemass density 𝑚~ ′ is used in accordance with the acoustic mass law to finally 

calculate the transmission coefficient t according to 

,
N
= 1 + )O9P &

#Q+R+
                     (31) 

where ρ0 and c0 are the density and speed of sound of the acoustic fluid through which sound 

is being transmitted. Using the transmission coefficient, transmission loss in dB can be 

calculated per TL0 = −20 log10|t|. 

2. RESULTS AND DISCUSSION 

To facilitate the discussion of various boundary conditions, the following convention will 

be adopted for the remainder of this paper. Each edge is assigned C or S to indicate whether it 

is clamped or simply supported. Each plate is named according to the four letters corresponding 

to the conditions at each boundary. The first letter in the series corresponds to the edge at x=0, 

and each subsequent letter describes the adjacent edge in a counter-clockwise direction. For 

example, a plate with boundary conditions CCSC would be clamped at the three edges defined 

by x = 0, y = Ly, and y = 0 and simply supported along the edge x = Lx. 

Validation. To validate the efficacy of the analytic model developed above, we compare it 

against two established and generally accepted approaches. In the first approach, the 

eigenfrequencies of plates without inertial inclusions (M=I =0) were compared with analytical 

results collected by Belvins [18]. All combinations of clamped and simply supported boundary 

conditions were considered, as were both square and rectangular plates (Λ=0.5). For N = 3600, 

analytical model predictions of dimensionless eigenfrequencies achieved agreement with 

published values, having less than 0.7% difference in all cases. 

To confirm that the influence of inertial inclusions is appropriately captured, a finite 

element model was implemented. The plate was modeled as a thin shell comprising parabolic 

triangular elements. The inertial inclusion was modeled as a solid body with parabolic 
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tetrahedral elements. An element size of 0.001 m with a 5e-5 m tolerance was specified, 

resulting in approximately 113,000 nodes and 58,000 elements. High mesh quality was verified 

by examining element aspect ratios and Jacobian. The average element aspect ratio was 1.73 

with a maximum aspect ratio of 3.08 and 98.3% of elements characterized by aspect ratios of 

less than 2. The average Jacobian was 1.0000 with a minimum of 1.0000 and a maximum of 

1.0002. Boundary conditions were implemented assigning immovable or fixed restraints to 

simply supported and clamped plate edges, respectively. The immovable condition 

accommodated rotation of the edge nodes, but restricted all translation, while the fixed 

condition did not allow rotation or translation of edge nodes. Figure 2 shows the 

implementation of this finite element model for the case of CCSS boundaries with an eccentric 

mass located at xM =0.12 m and yM =0.10 m. In this figure, the simply supported boundaries 

are symbolized with arrows along each primary axis, indicating that edge nodes translation is 

constrained. Clamped edges are symbolized with flanged arrows pointing along each primary 

axis, indicating that edge nodes are translation and rotation constrained. 

Material properties were assigned to correspond to aluminum (E = 69 GPa, ρ = 2700 

kg/m3, ν=0.33), and geometric parameters were set to Lx =Ly=0.16 m and h=0.001 m. Only one 

inertial inclusion was considered: a cubic body with side lengths of 0.01 m and total mass 0.011 

kg, located at the center of the plate (xM =yM =0.08 m). The inertial inclusion was assigned 

material properties corresponding to pure lead (Pb) and modeled as a linear elastic body 

perfectly bonded to the plate. A frequency analysis was conducted and solved using the Intel 

Direct Sparse solver, yielding the first 20 eigenfrequencies and corresponding modal responses. 

Finite element data were compared to analytical predictions for a plate–mass system with 

corresponding material and geometric properties. Numerical parameters were given by 

N=3600 (Nx=Ny=60), I =16, and K =100. 
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Table 2 compares the analytic and finite element predictions for the first eight 

eigenfrequencies of plates with CCCC and SSSS mounting conditions. Analytical predictions 

achieve an accurate agreement with finite element results. The average difference between the 

analytic and finite element results for the first eight modes is 1.41%, with a maximum error of 

4.06%. Analytic predictions for these mode shapes corresponding to these eigenfrequencies are 

pictured in Figure 3 for CCCC plates. Mode 3 and mode 8 are omitted from this figure as these 

modes are simple 90 deg rotations of modes 2 and 7, respectively. In all figures depicting modal 

response, solid contours indicate positive plate deflection in the z direction, and dashed 

contours indicate negative deflection. The brightness of contour lines correlates with deflection 

amplitude, 

 

Figure 2. Finite element model implementation for the CCSS plate with eccentric mass highlighting 
element types and boundary conditions 
 
Table 2 Comparison of analytic and finite element eigenfrequency predictions (centrally located mass, 
ξM,CM= ηM,CM= 0.5) 
 

                      Clamped boundaries (CCCC) Simply supported boundaries (SSSS) 
Mode Index Analytic 

(Hz) 
FEA (Hz) Error (%) Analytic 

(Hz) 
FEA (Hz) Error (%) 

1 251.1 247.4 1.47 149.8 149.0 0.53 
2 681.4 676.8 0.68 465.1 464.4 0.15 
3 681.4 676.8 0.68 465.1 464.4 0.15 
4 1016 974.7 4.06 726.1 713.9 1.68 
5 1087 1054 3.04 773.1 767.6 0.71 
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6 1301 1279 1.69 961.1 958.0 0.32 
7 1526 1481 2.95 1199 1190 0.75 
8 1526 1481 2.95 1199 1190 0.75 

 
where brighter lines indicate higher magnitude than darker lines. Clamped boundaries are 

indicated by a hatched region along the corresponding edge, otherwise edges are simply 

supported. The mode shapes captured in Figure 3 are distinct yet analogous to the 

corresponding shapes exhibited by plates with SSSS boundary conditions. 

The modal response shapes predicted by each method similarly achieve agreement: 

Figure 4 shows a comparison of normalized displacement maps of modes 1, 4, and 7 generated 

by finite element and analytic techniques. This figure highlights consistency between the two 

methods for doubly symmetric plate motion—modes 1 and 4—and antisymmetric-symmetric 

plate motion—mode 7—about midplanes normal to  x and  y. Because the mass was placed 

centrally for model verification, modal responses were exclusively symmetric and 

antisymmetric (for the boundary conditions considered in Table 2). However, the ability to 

predict both types of response confirms the absence of symmetry limitations present in the 

previous work. 

For confidence in the ability to accurately accommodate eccentric mass placement and 

combinations of simply supported and clamped boundary conditions, additional data were 

generated for plates with eccentric mass placement (xM = 0.12 m, yM = 0.10 m) on plates with 

CCSS and CSCS boundaries. Table 3 compares analytic and finite element predictions for the 

first eight eigenfrequencies of such plates. Analytical predictions again achieve reasonable 

agreement with finite element results. The average difference between the analytic and finite 

element results for the first eight modes is 2.12%, with a maximum error of 3.96%. 

The results verify that the analytical model presented herein accurately captures modal 

behavior of the mass-loaded plate. Furthermore, the model accurately captures symmetric 

(about both midplanes) and asymmetric plate motion, significantly relaxing symmetry 
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requirements present in the previous work. This aspect is particularly critical for investigating 

plates with dissimilar opposing boundaries (CCCS, CCSS, CSSS), for plates with multiple 

masses that are not characterized by symmetric loading about both midplanes (parallel to   z   x 

and   y   z), and for plates with a single eccentric mass. 

Effect of Boundary Conditions on Vibroacoustic Properties 

Modal Response. To investigate the effect of boundary conditions on the transmission 

loss profile of plate structures, all combinations of clamped and simply supported edges were 

considered. The same geometric and material parameters used to describe the plate and inertial 

inclusion are given in the validation section above. Table 4 compares the eigenfrequencies of 

analogous modes for all combinations of boundary conditions considered. Plates with fewer 

clamped edges exhibit lower natural frequencies (with frequencies for CCSS generally being 

lower than for CSCS plates). For corresponding eigenmodes, eigenfrequencies were 

 



        

Please cite the article as: W Edwards, CM Chang, G McKnight, and SR Nutt “Analytical model for 
low-frequency transmission loss calculation of plates with arbitrary mass loading”, J Vibration 
& Acoust (2019) DOI:10.1115/1.4042927 

Fig. 3 Analytical prediction for the first six unique mode shapes of CCCC plates. Modes 3 and 8 are 
omitted, because they occur at the same frequency and are simple 90 deg rotations of modes 2 and 7, 
respectively. 
 
20–40% lower in SSSS plates than CCCC plates. Generally, lower order modes were more 

strongly influenced by mounting conditions. 

As the natural frequencies of this system are directly related to its stiffness, the 

boundary conditions studied can be ranked from the stiffest to the least stiff according to 

CCCC, CCCS, CSCS, CCSS, CSSS, SSSS. One notable exception to this trend is mode 4 in 

CCSS plates. The eigenfrequency of this mode is greater than the corresponding 

eigenfrequency in CSCS-mounted plates. This anomalous increase in frequency is 

accompanied by a corresponding change in mode shape: Figure 5 shows that, although 

occurring at different frequencies, nearly all plates exhibit analogous response shapes except 

for the CCSS plate. The unique response of the CCSS plate is attributed to the doubly 

mismatched nature of its opposing boundaries, giving rise to a mode shape that differs 

substantially from its analog in other plates. 

Indeed, when discussing the influence of boundary conditions on mode shape, it is helpful to 

divide the boundary conditions studied into two classes. The first class we identify as Class A, 

defined by plates in which each pair of opposing edges is identically supported—this class 

includes CCCC, CSCS, and SSSS conditions. The second class we identify as Class B, in which 

plates have at least one pair of opposing boundaries where a clamped edge is opposite as simply 

supported edge—this class includes CCCS, CCS, and CSSS conditions. For improved clarity, 

in the remainder of this paper, each boundary condition will include a subscript indicating to 

which class it belongs (e.g., CCCCA belongs to Class A and CSSSB belongs to Class B). 
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Fig. 4 Comparison of mode shapes 1, 4, and 7 (left to right) for simply supported boundaries as 
predicted using (a) analytic and (b) finite element techniques 
 
Table 3 Comparison of analytic and finite element eigenfrequency predictions (eccentric mass 
placement, ξM,CM= 0.75, ηM,CM= 0.625) 
 

                                                 CCSS                          CSCS 
Mode Index Analytic 

(Hz) 
FEA (Hz) Error (%) Analytic 

(Hz) 
FEA (Hz) Error (%) 

1 214.2 211.0 1.49 251.9 247.8 1.63 
2 499.8 480.0 3.96 485.7 470.9 3.05 
3 583.6 575.7 1.35 585.5 574.7 1.84 
4 865.9 841.7 2.79 848.9 838.0 1.28 
5 1016 996.2 1.95 971.3 950.7 2.12 
6 1076 1058.0 1.67 1115 1093 1.97 
7 1347 1310 2.75 1295 1271 1.85 
8 1405 1361 3.13 1421 1406 1.06 

 

Table 4 Comparison of eigenfrequencies for identical plate–mass system with all combinations of 
clamped and simply supported boundary conditions 
 

Mode Index CCCC CCCS CSCS CCSS CSSS SSSS 
1 251.1 228.0 210.8 201.2 176.8 149.8 
2 681.4 572.8 516.4 539.8 485.6 465.1 
3 681.4 658.1 645.5 566.7 529.5 465.1 
4 1016 936.7 818.6 891.7 793.1 726.2 
5 1087 995.0 935.8 917.1 840.3 773.2 
6 1301 1212 1186 1108 1047 961.1 

indicating to which class it belongs (e.g., CCCCA belongs to Class A and CSSSB belongs to  

Plates belonging to Class A produced modal responses that were all either symmetric 

or antisymmetric about each midplane parallel to  y  z and  x  z. A representative example of 

Class A mode shapes can be seen in Figure 3 which shows the first eight modes of the CCCCA. 
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The mode shapes of CSCSA and SSSSA plates are unique but analogous to those pictured in 

Fig. 3. Modes 2, 3, 7, and 8 can be seen to exhibit antisymmetric responses across only one 

midplane of the plate, while mode 5 was characterized by antisymmetric response across each. 

The volume displaced during vibration on either side of these planes of antisymmetric response 

is equal and opposite, implying that these modes will not contribute to the transmission 

of acoustic energy through such plates. 

For all plates belonging to Class A, only modes 1, 4, and 6 were characterized by 

symmetric motion across both the  y  z- midplane and the  x  z- midplane. Of these modes, only 

modes 1 and 4 displace a nonzero volume of acoustic fluid during vibration for all three 

boundary conditions. These modes for CCCCA plates can be seen in Figure 3 and mode 4 for 

all plates is shown in Figure 5. Figure 6 shows that mode 6 only displaces a nonzero volume 

for CSCSA plates. In this figure, two midplanes of anti-symmetry in CCCCA and SSSSA 

plates can be identified for mode 6: each plane defined by the z a line from one corner of the 

plate to the opposite corner. The existence of these midplanes of antisymmetric motion 

indicates that mode 6 will not contribute to the transmission of acoustic energy the plates with 

CCCCA and SSSSA boundary conditions. For CSCSA plates, however, the motion about these 

planes is asymmetric—but not antisymmetric—and the volume displaced during mode 6 

during vibration is nonzero. Only activation of modes with nonzero volume displacement will 

propagate acoustic energy through the plate. 

Plates belonging to Class B demonstrated modal responses that exhibit 

symmetric/antisymmetric motion about only one plane. For CCCSB and CSSSB cases, 

eigenmodes exhibit this behavior about the midplane parallel to the only pair of matching 

boundaries (i.e.,  x  z and  y  z, respectively). Strictly symmetric or antisymmetric modal 

responses, however, are not observed about the midplane parallel to the pair of mismatched 

boundaries. In all cases, deflection was larger on the side of the midplane corresponding to the 
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simply supported boundary than on the clamped side. In plates with CCSSB boundaries, modal 

responses were asymmetric about both the  x  z- and  y z- midplanes, but symmetry (or anti-

symmetry) was observed about the diagonal midplane containing  z, the origin, and the point 

(Lx, Ly, 0). This can be clearly seen in Figure 7 where the first six modes for CCSSB plates are 

pictured. Asymmetric deformation about these midplanes is explained by higher plate 

compliance on the simply supported side than on the clamped side, resulting in larger 

deformation on the simply supported side. An important implication of this asymmetry is that 

fewer modes oscillate with zero volume velocity. Specifically, for CCCSB boundaries, the only 

modes to exhibit zero net volume displacement are modes 3, 5, and 7; for CSSSB boundaries, 

 

Figure 5. Comparison of normalized shapes of mode 4 for various boundary conditions 
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Figure 6. Comparison of mode 6 for Class A plates. CCCC and SSSS plates are characterized by an 
antisymmetric response that is not observed in CSCS plates. 
 
only modes 2, 5, and 8 exhibit zero net volume displacement. This result indicates that plates 

belonging to Class B have a more complex transmission loss profile than plates belonging to 

Class A because there are more modes that propagate acoustic energy. 

Transmission Loss. Figure 8 compares the transmission loss profile of a single plate–

mass system with each type of boundary condition in Class A. The frequency range considered 

spans 10–2000 Hz, although the assumptions presented in the Theory section are only satisfied 

for frequencies less than 1515 Hz. Fortunately, frequencies of primary interest for targeted 

acoustic treatments (between modes 1 and 4) are captured accurately for the plate sizes studied. 

In all cases, there is a transmission loss minimum at the frequency of the first mode. First, as 

the number of clamped boundary conditions decreases, the maxima and minima of the 

transmission profile are shifted to lower frequency ranges, a result that is consistent with the 

trend evident in Table 4. Further, the transmission loss through the structure at frequencies 

below the first mode where acoustic transmission is stiffness dominated is indeed strongly 

influenced by the boundary conditions of the plate: more compliant mounting conditions result 

in significantly larger displacements and hence higher acoustic transmission, leading to 

differences of up to 12 dB. 
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Note that the first two minima in Figure 8 for all cases correspond to the frequencies of 

modes 1 and 4 from Table 4, and no features indicate any influence of modes 2, 3, 5, 7, or 8 on 

any curve. In the cases of CCCCA and SSSSA plates, mode 6 also appears to have no influence 

on the transmission properties; however, for CSCSA plates, this is not true. Figure 8 shows 

that for CSCSA plates, an additional transmission loss minimum and maximum exist in the 

vicinity of mode 6 (at 1186 Hz). These additional features arise from the mismatched boundary 

conditions, which promote a modal response that has nonzero volumetric displacement across 

the xy-plane and increases transmission efficiency. In the cases with CCCCA and SSSSA 

boundaries, the symmetry of boundary conditions ensures the corresponding mode has zero net 

displacement. 

A similar effect can be seen in the class of asymmetric boundary conditions. Figure 9 

shows the transmission loss performance of the remaining plate–mass systems studied, from 

which it is apparent that the vibroacoustic behavior of systems with asymmetric mounting 

conditions is considerably more complex than systems with symmetric boundaries. In the case 

of symmetric boundaries, many eigenmodes have zero net displacement across the xy-plane. 

However, the corresponding modes in plates with asymmetric boundaries result in small, but 

nonzero, displacements, yielding efficient transmission at these frequencies. 

When Figure 8 is compared against Figure 9, the importance of ensuring that the 

prescribed boundary conditions are enforced is evident. Even one insufficiently clamped 

boundary results in a sharp transmission loss dip with 100 Hz bandwidth at a frequency near 
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Figure 7. Analytical prediction for the first six mode shapes of CCSS plates 

 

Figure 8. Transmission loss through plates belonging to Class A as a function of frequency 
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Figure 9. Transmission loss through plate–mass systems belonging to Class B as a function of frequency 
 
the peak transmission loss of the fully clamped case. This presents a problem for MAM 

designers, as the improper installation of these structures can markedly reduce efficiency in the 

frequency range they may be designed to attenuate. Precisely how important the boundary 

conditions are relative to other design parameters is captured in Figure 10, which shows that 

the effect of different mounting conditions can more strongly influence the transmission loss 

curve than the effects of an added mass. In this figure, the first and second transmission loss  

 
Figure 10. Transmission loss through plates with and without mass loading, demonstrating the relative 
importance of boundary conditions 
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minima for an SSSSA plate with bonded 0.011 kg mass (150 Hz) relocate to a higher frequency 

when the edges are clamped (250 Hz) than when the mass is removed (187 Hz). 

3. CONCLUSIONS 

An analytical model was developed and validated to describe acoustic transmission loss 

through plate structures with attached rigid masses of arbitrary number, shape, weight, and 

location under various boundary conditions. A point matching approach was used to 

approximate the coupling force between a Kirchhoff–Love plate and attached rigid mass as a 

finite set of discrete point forces. Admissible functions given by natural mode shapes of single-

span beams with appropriate boundary conditions were used to solve the resulting equations of 

motion using a modal expansion approach. The representative linear eigenvalue problem was 

presented and its components were defined for rectangular plates with any combination of 

clamped and pinned boundaries. The effective surface mass density of the plate was calculated 

as a function of excitation frequency for normally incident acoustic waves and used to 

determine the transmission loss through the metamaterial. Edge mounting conditions of the 

platelike metamaterial were shown to strongly influence the acoustic performance of the 

structure, with asymmetric mounting conditions giving rise to additional transmission loss 

maxima and minima when compared with symmetric boundaries. Boundary conditions also 

strongly influenced the off-modal transmission properties. 

The model presented offers improved utility over previous work by allowing prediction 

of the antisymmetric plate motion, while inheriting the efficiency and accuracy of the 

numerical scheme presented by Langfeldt et al. [12]. The model can be implemented using 

standard linear algebra methods and solved efficiently using existing techniques and packages, 

but its accuracy is limited to acoustic frequencies below the frequency corresponding to a 

wavelength equal to the characteristic length of the plate. The model can accommodate any 
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number of masses placed arbitrarily on the plate; however, masses are assumed to be ridged. 

This assumption is not limiting for masses that are sufficiently small or stiff; however, the 

model is not well suited to capturing the behavior of large, thin, compliant mass loading. 

The practical significance of this work is threefold. First, we provide a theoretical 

demonstration that the same phenomena giving rise to favorable transmission loss properties 

exhibited by MAMs can also be inspired in stiffer materials systems. This result opens the 

design space of locally resonant, two-dimensional acoustic metamaterials. Second, we 

demonstrate the critical importance of boundary conditions and explore their influence on 

platelike acoustic metamaterial performance. Finally, the efficient analytical tools presented 

here give engineers and acousticians a toolbox for streamlining and optimizing the design and 

frequency response of plate-type acoustic metamaterials. 
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