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Abstract: A deployment-scale array of locally resonant membrane-type acoustic 

metamaterials (MAMs) is fabricated. The acoustic performance of the array is measured in a 

transmission loss chamber, and a complex interaction between the individual cell and the array 

length scales is shown to exist. Transmission behavior of both the membrane and the array are 

independently studied using analytical models, and a method for estimating transmission loss 

through the structure that combines vibroacoustic predictions from both length scales is 

presented and shown to agree with measurements. Degradation of transmission loss 

performance often associated with scaling individual MAM cells into arrays is explained using 

analytical tools and verified using laser vibrometry. A novel design for hierarchical locally 

resonant acoustic metamaterials is introduced, and experimental and analytical data confirm 

this approach offers an effective strategy for minimizing or eliminating the efficiency losses 

associated with scaling MAM structures. [DOI: 10.1115/1.4045789] 
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1. INTRODUCTION 

Designing acoustic barriers that reject low-frequency noise transmission has been a particularly 

challenging task for materials scientists and acousticians. Typical approaches for reducing 
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sound transmission through an acoustic barrier generally rely on increasing the thickness or 

density of the barrier in question. Transmission efficiency through these structures can be 

predicted using the acoustic mass law, but experimental data indicate that many structures 

underperform this benchmark [1]. Further, the acoustic mass law indicates that for such 

strategies to be effective in the low-frequency regime (20–2000 Hz), a significant addition of 

mass is required. For weight-critical applications, this additional mass may be untenable, and 

alternative solutions are demanded. 

To address the need for a slim, weight-efficient acoustic barrier effective at low 

frequencies, membrane-type acoustic metamaterials (MAMs) were conceived [2]. 

Experimental and finite element modelling demonstrated that membrane-type acoustic 

metamaterials significantly outperform the acoustic mass law in certain frequency ranges [3]. 

Comprising one or more masses bonded to a pretensioned membrane, MAMs exhibit a 

characteristic transmission profile that can be tuned with respect to frequency by adjusting the 

size of the masses or changing the tension in the membrane [4]. The influences of membrane 

geometry and mass location have been measured using a transmission loss tube and predicted 

using finite element models [5]. While MAMs can be entirely passive structures, work has been 

done to explore the active frequency response tuning and energy harvesting using a variety of 

approaches [6–8]. 

Structures similar to MAMs have been investigated for use in duct silencing where a 

tensioned membrane (with no mass bonded to it) replaced a portion of the duct wall to reflect 

gracing incident noise [9]. In such structures, acoustic propagation is directed primarily parallel 

to the surface of the membrane, whereas MAMs are typically tuned for normally incident 

acoustic propagation. Demonstration of duct-membrane systems both with and without sealed 
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backing cavities provide acousticians with a better understanding of how membrane geometry 

and tension influence the acoustic performance of such structures [10,11]. 

While finite element tools have been shown to accurately predict the acoustic performance of 

MAMs, their implementation is not well suited for some design and optimization challenges. 

Parametric analysis of one or more geometric variables (e.g., size, shape, location, or the 

number of masses) would be particularly inefficient using finite element methods, as it would 

require successive remeshing of the bodies involved. Alternatively, analytical methods can be 

easily implemented, efficiently used, and seamlessly integrated with automated design 

optimization tools. This has driven the development of several analytical tools for the 

prediction of sound transmission through MAMs with a variety of geometries. Chen et al. 

developed coupled vibroacoustic analytical models for both circular and Cartesian membranes 

under tension with fixed boundaries, using a point-matching approach to capture the influence 

of the attached mass [12]. Langfeldt et al. simplified the numerical implementation of this 

model by using dimensionless parameters to compose a linear eigenvalue problem and 

decoupling the membrane from the surrounding air to avoid costly numerical integration [13]. 

Both models assume that the stiffness of the membrane contributes no restorative force during 

MAM excitation and deformation. 

Other analytical models were developed to capture the influence of bending stiffness 

on MAM performance. An acoustically coupled analytical model describing membrane motion 

according to pre-tensioned plate-like dynamic equations was developed but was limited to 

MAMs with clamped boundaries and required any masses to be placed symmetrically about 

both the midplanes of the surface of the membrane [14]. Efforts to develop a similar model that 

considers bending effects, relaxes symmetry and boundary condition limitations, and integrates 

the numerical efficiency of the model presented in [13] culminated in analytical tools that 
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accommodate any combination of simply supported and clamped boundaries and allow for an 

arbitrary number of masses with no symmetry requirements [15]. 

Efforts to scale MAMs beyond a single cell have investigated arranging several 

membranes in series and in parallel. Arranging MAMs in series—such that acoustic energy is 

transmitted sequentially through each membrane structure—has been shown to increase 

transmission loss, and independent tuning of each MAM allows designers more control over 

the spectral response of the system [16]. Initial investigation into scaling MAMs in the in-plane 

direction has been conducted by the same authors by creating an array of several membranes, 

creating parallel transmission paths for acoustic energy. Small samples have been fabricated 

and tested in a transmission loss tube with results indicating that even incremental scaling (from 

one membrane to four) results in the decay of favorable transmission properties [17]. Modeling 

efforts describing multi-celled arrays of MAMs in a single panel have resulted in an analytical 

model that produces more realistic predictions for the transmission loss through arrays of 

membranes that can each be independently tuned [18]. This model, however, assumes that each 

edge of each membrane cell is fixed (i.e., the membrane support grid is rigid). 

Efforts to deploy increasingly larger arrays of membrane cells have been thwarted by 

similar decay of the theoretical transmission loss performance. It has been primarily thought 

that this performance decay is linked to the motion of the array frame (the substrate on which 

the membranes are bonded), where this motion violates the assumption that individual 

membrane resonators have fixed boundaries. To reduce the magnitude of frame motion—and 

thereby mitigate this issue, stiffer materials have been investigated for use as a substrate by the 

authors. Preliminary results have suggested this is not a comprehensive solution. 

Some efforts have been made to capture the influence of array compliance in multi-

celled MAM arrays using numerical and analytical techniques. Langfeldt et al. used numerical 
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techniques to begin exploring the importance of considering grid compliance when estimating 

transmission loss for very low frequencies [18]. Subsequently, the relationship between MAM 

boundary compliance and transmission loss was further explored when an analytical model 

was developed that accommodates elastic MAM cell edges [19]. 

An alternative strategy for addressing performance knockdowns associated with 

membrane array scaling is presented here. We suggest that a hierarchical approach can be 

taken: the array of MAMs can be considered analogous to an individual membrane cell where 

the bending stiffness of the array plays the same role as the tension in the membrane cell and a 

mass of appropriate size is bonded to the array. In hierarchical structures, the material is 

organized at different length scales, and structural elements comprise one or multiple sub-levels 

of structural organization. Such hierarchically organized materials occur naturally in tooth 

enamel and spider silk, for example, and it is their hierarchical organization that results in 

emergent mechanical properties [20,21]. Prior to this work, the principles of hierarchical design 

have been successfully applied to a variety of acoustic metamaterials to broaden the frequency 

ranges in which desirable behavior occurs. For example, Zhang and To presented a hierarchical 

phononic crystal that achieved bandgaps in order of magnitude larger than those exhibited in 

conventional structure [22]. A variety of other hierarchical metamaterials have been studied 

[23–25], but to the authors’ knowledge, this work represents the first time such principles have 

been applied to membrane-type acoustic metamaterials. 

To demonstrate the effectiveness of a hierarchical design approach in controlling the 

dynamic response of an array of MAMs, we detail the first fabrication and experimental 

characterization of a deployment-scale, hierarchical MAM. The primary contributions of this 

work are (1) to explain the decay of transmission loss performance associated with scaling 

from one MAM to an array of MAMs, (2) to demonstrate a design solution in the form of a 
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novel hierarchical acoustic metamaterial structure, and (3) to explore and explain the behavior 

of such a hierarchical membrane structure. These contributions are enabled by the application 

and verification of analytical modeling tools that enable uncovering of the physical mechanism 

by which the transmission loss profile of an array of membranes differs from that of an 

individual, identically tuned membrane. The modeling tools developed for this purpose also 

provide predictive tools to the acoustician for use when designing hierarchical MAMs. 

Section 2 contains (a) details regarding the fabrication of a hierarchical MAM array, 

(b) the methods used to measure transmission loss and modal response, and (c) details about 

the implementation of analytical models describing each length scale of the structure. In Sec. 

3, experimental and analytical data explaining the transmission loss performance 

characteristics of hierarchical MAMs are presented. Further, the influences of changing the 

size of the mass bonded to the array and to each membrane are demonstrated and discussed. 

Finally, a summary of findings is shared, and the implications thereof are explored. 

2 METHODS 

2.1 Fabrication of Membrane Array. An array of 36 MAM cells was fabricated by first 

milling a six-by-six grid of 4 × 10−2 m by 4 × 10−2 m square holes through a 0.251 m by 0.251 

m by 7.5 × 10−3 m thick plate of aluminum. The holes were located such that each of the four 

exterior edges of the plate was 3 × 10−3 m wide, and the material remaining between each hole 

was 1 × 10−3 m across. After machining, the surface of the plate was covered with an epoxy 

adhesive over which a 7.62 × 10−5 m thick film of polyethylene terephthalate (PET) was 

draped. The assembly was placed into an oven and warmed to 120 °C during which time the 

PET was bonded to the aluminum plate. After the epoxy adhesive cured, the assembly was 

removed from the oven and allowed to cool, during which time dissimilar thermal expansion 

properties introduced a residual tensile stress in each of the membrane cells.  
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In the center of each prestressed membrane cell, an annular inertial inclusion of interior 

diameter 9.53 × 10−3 m and exterior diameter 1.59 × 10−2 m was bonded. Investigations using 

inclusions of thickness 5.1 × 10−4 m (mass 1.6 × 10−4 kg) as well as thickness 1.1 × 10−3 m 

(mass 3.20 × 10−4 kg) were conducted; in each case, a spray adhesive was used to bond the 

inclusions to the membrane cells. Figure 1 shows a photograph of the completed MAM array. 

The system’s two levels of hierarchy are depicted schematically in Figure 2, where the entire 

array structure and large centrally bonded mass (not pictured in Figure 1) constitute one level 

of the hierarchy, and an individual membrane cell with corresponding inclusion constitutes 

another. 

2.2 Transmission Loss Testing and Modal Analysis. A small-scale, two-chamber 

transmission loss test facility, constructed in accordance with ASTM 2249-02 [26], was used 

to measure random-incidence transmission loss through the membrane metamaterial array with 

various and mass loading conditions (on both the individual membrane cells and the array 

structure). The facility comprised a reverberant chamber (15 m3) and an anechoic chamber (12 

m3), separated by a square (0.241 m× 0.241 m) orifice used to hold the test panel. To ensure 

clamped boundary conditions on the membrane array, the test panels were mounted covering 
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Figure 1. Photograph of completed hierarchical membrane-type metamaterial acoustic barrier 

 
Figure 2. Schematic representing two tiers of design hierarchy: array level and individual cell level 
 
the orifice using an aluminum frame and tightly bolted at 16 equally spaced locations around 

the perimeter of the sample as shown in Fig. 3. Fasteners were tightened with a torque-

controlled hand drill to achieve maximally consistent mounting conditions. 
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An acoustic signal was generated in the reverberant chamber, where nine nonparallel, 

reflective walls produced a diffuse sound field measured using a rotating boom sound pressure 

level microphone to determine a spatially averaged sound pressure level intensity. In the 

anechoic chamber, the transmitted acoustic energy was measured using an intensity probe on 

 

Fig. 3 Metamaterial sample mounted in the transmission loss chamber with clamped boundaries 
a motorized gantry located 0.17 m away from the test panel. Measurements were collected at 

equally spaced locations to determine an average transmission loss through the whole 

membrane array. The frequency range of the noise source was 100 Hz–6.4 kHz and source-

side pressure levels were maintained at between 90 and 95 dB for all tests. Previous work 

determined the cutoff frequency of the diffuse field—due to the geometry of the reverberant 

chamber—to be 315 Hz [27]. 

For several samples, the out-of-plane motion of the array during vibration was 

determined using a laser vibrometer (Ometron VH300+ Laser Doppler Vibrometer Type 8329) 

to measure the motion of 85 discrete points within the domain of the aluminum array. 

Vibrometry measurements were collected at each midpoint along each edge and each corner of 

each membrane cell, excluding cell edges and corners on the boundary of the array. For each 

measurement, sound pressure levels in the reverberant room were also recorded. The frequency 

range of the noise source was 100 Hz–6.4 kHz. For each of the 85 points measured, auto- and 
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crosscorrelations were used to calculate the H2 transfer function relating the motion of the 

array (vibrometer signal) to the acoustic excitation (sound pressure signal) as a function of 

frequency. At frequencies where coherence between these signals was high for many of the 

measured points, the data were used to determine natural frequencies and recover an estimate 

of their corresponding modal responses. 

2.3 Analytical Model. To further confirm and study the transmission properties of hierarchical 

MAMs, analytical models were implemented, capturing the behavior of individual membrane 

cells, the entire array, and the two length scales in concert (referred to going forward as the 

compound system). Below, we describe in detail the mathematics used to model each length 

scale of the hierarchical MAM array structure. In Sec. 2.3.1, we present relevant details of the 

fourth-order model used to approximate the vibration of the array, described as a Kirchhoff–

Love plate with homogenized stiffness and mass properties and clamped boundaries. In Section 

2.3.2, we highlight the parallel mathematical framework used to describe the motion of 

individual membrane cells, described according to second-order dynamics, and define 

analogous terms and parameters. Finally, we present an approach for predicting the 

transmission loss through the compound structure using both models in conjunction. 

2.3.1 Modeling Array Behavior: Plate-Like Dynamics. Using the model presented in Ref. [15], 

we approximate the array structure as a monolithic isotropic plate of dimensions 𝐿!∗ 	and 𝐿#∗ , 

homogenized surface mass density 𝑚$
% , and homogenized effective bending stiffness T*. A 

rigid inertial inclusion of mass MA is bonded to the array, its center of mass is located at 

coordinates [𝑥&'∗ , 𝑦&'∗ ], and its rotational moments of inertia about the y *′ and x *′ axes are 

given as Jx* and Jy* respectively, where the coordinate frame { x *′, y *′, z *} is defined such 

that its origin is located at the center of mass of the inertial inclusion. As shown in Figure 4, 

the origin of the coordinate frame { x *,  y *,  z *} is located at one corner of the plate with the 
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positive x *-axis and y *-axis oriented along edges of the plate and the z *-axis orthogonal to 

the plate surface with the positive direction defined in accordance with the right-hand rule. The 

out-of-plane displacement of the plate is given by w*(x*, y*, t) and its motion is governed by 

Kirchhoff–Love plate dynamics 

mA’ (
!

()!
𝑤∗(x∗, y∗, t) +	T∗∇*∇*w∗(x∗, y∗, t) = P(x∗, y∗, t) 	+ f′$(x∗, y∗, t)    (1) 

where ∇2 = ∂2/∂x2 + ∂2/∂y2 is the Laplace operator in Cartesian coordinates, P(x*, y*, t) is the 

acoustic pressure acting on the array, and f′$	is the coupling force resulting from inertial 

inclusions mounted to the array. Assuming harmonic time dependence and normally incident 

incoming acoustic excitation, we can write 

w*(x*, y*, t) = 𝑤5	∗(x*, y*)eiωt          (2) 

P(x*, y*, t) = P6(x*, y*)eiωt           (3) 

f ′(x*, y*, t) = f7′(x*, y*)eiωt           (4) 

 

Fig. 4 Definition of geometric and mathematical variables for modeling array behavior 
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For the sake of brevity and clarity, the time dependence of the terms in Eqs. (2)–(4) is omitted 

from all following mathematical expressions. Dimensionless parameters are then defined 

according to  

ξ* = x*/L+∗    η∗ = y*/L,∗    ζ∗ = z*/L+∗    u* = 	w+
∗; /L+∗  

Λ = L+∗ /L,∗    β∗ = P6L+∗ /T∗   k∗2 = m-
% ω2L+∗./T∗  γ* =  f7′-L+* /T∗    (5) 

The dimensionless parameters given by Equation (5) simplify Equation (1) to 

−k∗*𝑢∗ +	(
"/∗

(0∗"
+ 2 ∧∗* ("/∗

(0∗! (1∗!
+	∧∗. 	(

"/∗

(1∗"
=	β∗ +	γ∗      (6) 

The influence of the rigid mass is captured using a point-matching approach to approximate 

the coupling force that is applied over a continuous domain as a finite set of I* forces that act 

at discrete points within and on the boundary of the domain of the inclusion. The coupling force 

is expressed as 

𝛾∗ =	∑ 𝛾2∗𝛿	(𝜉∗ −	𝜉2∗)	𝛿	(3∗
245 𝜂∗ −	𝜂2∗)       (7) 

where 𝛾2∗ is the dimensionless coupling force contributed by the ith collocation point and δ is 

the Dirac delta function. Substituting Equation (7) into Equation (6), the resulting equation is 

solved using a modal expansion approach, approximating the response of the system as a finite 

linear combination of N* eigenfunctions Φ*(ξ*, η*) determined by the boundary conditions 

and geometry of the system. In this implementation, the boundaries of the array are assumed 

to be rigidly clamped to a support structure, resulting in boundary conditions given by 

𝑢∗(0, 𝜂∗) = 𝑢∗(𝜉∗, 0) = 𝑢∗J𝜉∗, 𝐿#∗ K = 𝑢∗(𝐿!∗ , 𝜂∗) = 0      

6/∗(8,:∗)
6<

= 6/∗(<∗,8)
6:

= 6/∗=<∗,>$∗ ?
6<

= 6/∗(>%∗ ,:∗)
6:

= 0       (8) 

To satisfy these boundary conditions, the eigenfunction 𝛷@%@$
∗ (𝜉∗, 𝜂∗) = ΦA&

∗ (𝜉∗)ΦA$
∗ (𝜂∗) is 

chosen such that ΦA
∗  (ϖ) = cosh(aAϖ) − cos(aAϖ) − bn(sinh(anϖ) − sin(anϖ)) is the nth mode 

shapes of a clamped–clamped single-span beam. 
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The coefficients an are the solutions to 

cos(an) cosh(an) = 1            (9) 

and the corresponding coefficients bn are determined according to 

𝑏@ =
BCAD(E')FBCA	(E')
HIBD(E')JHIB	(E')

                    (10) 

The unitless modal displacement is then approximated according to 

𝑢	 ≈ 	∑ 𝑞@∗𝜙@∗ =K∗
@45 ∑ ∑ 𝑞@%@$

∗ 𝜙@%
∗ (𝜉∗)𝜙@$

∗ (𝜂∗)K$∗

@$45
K%∗
@%45                (11) 

where N* = 𝑁!∗𝑁#∗ and n = 𝑁#∗ (nx − 1) + ny. 

After substituting Equations (7) and (11) into Equation (6), the equations of motion can 

be arranged into matrix form according to 

(𝑪∗ − 𝑘∗2𝑴∗)q* = β*b* + L*γ*                             (12) 

where the dimensionless coupling-force vector γ* contains entries [𝛾5∗ , 𝛾*∗, . . . , 𝛾K∗
∗ ]T, the 

stiffness matrix 𝑪∗ = (𝑐L@∗ )ϵℝK∗×K∗, the mass matrix 𝑴∗ 	= 	 (𝑐L@∗ )ϵℝK∗×K∗ has entries given 

by 

𝑐L@∗  = Z𝑎@
∗. + 2 ∧∗* ((𝑏@*𝑎@*)(2 − 𝑏@𝑎@)*) +	∧∗. 𝑎@. 			𝑓𝑜𝑟	𝑚 = 𝑛

0				𝑒𝑙𝑠𝑒
              (13) 

𝑚L@ =	 c
1			𝑓𝑜𝑟	𝑚 = 𝑛	

0		𝑒𝑙𝑠𝑒
                    (14) 

and the coupling matrix L* = (𝑙L@∗ ) ϵ ℝN∗×O∗and forcing vector b* = (𝑏@∗ ) ϵ ℝN∗ have entries 

given by 

𝑙L@∗ =	𝜙@%
∗ (𝜉@∗)	𝜙@$

∗ (𝜂@∗ )                   (15) 

bA =	 f
5PQ(&Q()
R(&R()

	for	n+n,	odd

0	else
                              (16) 

The second set of equations is developed to describe the motion of the inertial inclusion. This 

set of equations is written in the coordinate frame {  x*′,  y *′,  z *} whose origin is located at 
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the center of mass of the inertial inclusion mounted to the array (see Figure 4). The 

displacement anywhere within the domain of the rigid inclusion can be related to the position 

of its center of mass uA,CM and two terms αξ* and αη* describing its rotation about the  x *′ and 

y *′ axes, respectively 

𝑢$(𝜉∗%, 𝜂∗%) = 	𝑢',&' −	𝛼:∗𝜉∗% +	
5
∧∗
𝛼<∗𝜂∗%	                 (17) 

The additional unknown terms in Eq. (17) — uA,CM, αη* , and αξ* — can be expressed as a 

function of dimensionless frequency parameter k*, dimensionless mass parameter                        

μ* = MA/(𝑚$
% 𝐿!∗*), dimensionless rotational inertia parameters ϑξ* = Jx*/(MA𝐿!∗*) and                    

ϑη* = Jy*/(MA𝐿!∗*), and the point-force coupling terms γC∗according to 

𝑢' , 𝐶' =	 5
T∗U∗!

∑ γ2∗3∗
245                    (18) 

𝛼0∗ =	
5

T∗U∗!∧∗V*∗
∑ ξ2∗%γ2∗3∗
245                    (19) 

𝛼1∗ =	
5

T∗U∗!V+∗
∑ η2∗%γ2∗3∗
245                    (20) 

𝑢$(𝜉∗%, 𝜂∗%) =
5

T∗U∗!
∑ (1 + <∗,<-

∗,

V+∗
+ 1∗,1-

∗,

∧∗!V.∗
)γC∗3∗

245                 (21) 

Since the inertial inclusion is perfectly bonded to the array, its motion will match identically 

the motion of the plate at each of the I* colocation points, implying 

u-Jξ∗%Wη
∗%
WK = u∗(ξW∗ ηW∗ )  for 1 ≤ m ≤ I∗                 (22) 

which can be written in matrix form according to 

−𝐋∗X𝐪∗ + 5
Y!
𝐆𝛄 = 0                    (23) 

where the matrix G* = (gWA∗ ) ϵ ℝ I*×I* has entries given by 

gWA∗ 	= 5
T∗
(1 + <∗,<-

∗,

V+∗
+ 1∗,1-

∗,

∧∗!V.∗
)                  (24) 

Combining equations Equations (12) and (23) into a single block matrix, the resulting equations 

of motion can be expressed as 
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y
𝑪∗ − 𝑘∗*𝑴∗ −𝑳∗

−𝑳∗Z 𝑮∗
𝑘∗*| } ~𝒒

∗

𝛄∗� = 𝛽∗ �𝒃
∗

0 �                 (25) 

whose homogeneous form can be expressed as the generalized eigenvalue problem given by 

𝐀∗x* = k*2B*x*                     (26) 

where 

𝐀∗ = �𝑪
∗ −𝑳∗
0 𝑮∗ �, 𝐁

∗ = �𝑴
∗ 0

𝑳∗Z 0�, and x = ~
𝒙[∗

𝒙\∗
�                           (27) 

The solution to this eigenvalue problem is found using standard solvers to identify the first K* 

eigenvalues (indicating dimensionless modal frequencies) and eigenvectors (indicating 

coupling forces at collocation points and modal coefficients for eigenfunction weighting 

coefficients). 

The steady-state behavior of the structure under forced vibration can be determined by 

approximating the solution to Equation (25) as a finite linear combination of the first K* 

eigenmodes. This approximation is captured in Equation (28) 

[	𝒒∗Z𝜸∗Z 	]Z≈ 𝐗∗𝐜∗(k∗)                   (28) 

where X*ϵ ℝ (N*+I*)×K* is a matrix of eigenvectors such that the ith column corresponds to the ith 

eigenvector of Equation (26) and c* = [c5∗, c*∗, . . . , cU∗
∗ ]T is a vector containing modal 

contribution coefficients. The modal contribution coefficients can be determined by 

substituting Equation (28) into Equation (25), pre-multiplying by the matrix X*T, taking 

advantage of the identity A*X* = B*X*Λ* (where Λ*ϵ ℝ K*×K* is a diagonal matrix with entries 

corresponding to the first K* dimensionless eigenfrequencies extracted from Equation (26)), 

and rearranging to express these coefficients c* as a function of dimensionless frequency k* 

and according to 

𝒄∗(𝑘∗) = β∗(∧∗− 𝑘∗*𝑰)J5(𝑿∗Z𝑩∗𝑿∗)J5𝑿∗Z �𝐛
∗

0 �                           (29) 
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2.3.2 Modeling Cell Behavior: Membrane-Like Dynamics. 

Using an analogous mathematical framework, the individual membrane cells are described 

according to a model presented by Langfeldt et al. [13]. The rectangular membrane is given in 

dimensions Lx and Ly, surface mass density 𝑚'
%  is subject to a uniform tension force per unit 

length T and is taken to have perfectly fixed edges. 

 

Figure 5. Definition of geometric and mathematical variables for modeling membrane behavior 
Bonded in the center of the membrane is an annular inertial inclusion of mass MM. Geometric 

parameters and variables are defined in Figure 5, where the origin of the {  x,  y,  z} coordinate 

frame is located at one corner of the membrane with the positive  x- and  y-axes oriented along 

edges of the membrane. The out of the plane motion of the membrane is given by w(x, y, t) 

which evolves according to the inhomogeneous wave equation given by Equation (30) 

𝑚'
% (!

()!
𝑤(x, y, t) − 	T∇*𝑤(x, y, t) = P(x, y, t) 	+ f′'(x, y, t)               (30) 

Equation (30) is normalized using dimensionless parameters analogous to those used in 

modeling the array. These parameters are given by Equation (5) when the “*” symbol is 

dropped from each term and the subscript “M” (for membrane) is substituted for the subscript 

“A” (for array) where appropriate. Modal responses of the membrane cells can then be 

approximated as a linear combination of N eigenfunctions. The eigenfunctions used to 

approximate the membrane’s modal response are given by Φn(ξ, η) = Φ@%@$(ξ, η) =        

sin(nxπξ) sin(nyπη) where n ϵ {1, 2, …, N}, nx ϵ {1, 2, …, Nx}, ny ϵ {1, 2,…, Ny}, N = NxNy, 



         

Please cite the article as: WT Edwards and S Nutt “Transmission Loss and Dynamic Response of 
Hierarchical Acoustic Metamaterials”, Journal of Vibration and Acoustics (2019) DOI: 
10.1115/1.4045789  
 

and n = Ny(nx−1) + ny. The matrix equation of motion this produces is analogous to Equation 

(12) 

(C − k2M)q = βb + Lγ                    (31) 

The entries of the stiffness matrix C = (cmn) ϵ ℝN×N, mass matrix M =(mmn) ϵ ℝN×N, forcing 

vector b = (bn) ϵ ℝN, and coupling matrix L =(lmi) ϵ ℝN×I have entries given by 

cmn = �
]!

.
(𝑛!* +∧* 𝑛#*)			𝑓𝑜𝑟	𝑚 = 𝑛

0				𝑒𝑙𝑠𝑒
                             (32) 

𝑚L@ =	�
5
.
			𝑓𝑜𝑟	𝑚 = 𝑛	
0		𝑒𝑙𝑠𝑒

                    (33) 

bA =	�
.

]!A&A)
	for	n+n,	odd

0	else
                              (34) 

lmi = sin(mxπξi) sin(myπηi)                    (35) 

The coupling effect between the continuously vibrating membrane and the rigid, bonded mass 

is approximated by the same point-matching approach as described in Section 2.3.1. A 

selection of I discrete colocation points, located within (and on the boundary of) the domain of 

the annular inclusion, was used to approximate continuous-domain coupling. Equations 

describing the motion of the inertial inclusion on the membrane are given according to 

Equation (21) when the “*” symbol is dropped from each of the terms and the subscript “M” 

is substituted for the subscript “A” in uA. Further, the equivalence relation between equations 

of motion for each body at each of the I colocation points is given in matrix format by Equation 

(23), and entries to the matrixGare given by Eq. (24)—again, the “*” symbol is dropped from 

each of the terms in both equations.  

The resulting matrix equation of motion describing the vibration of the membrane cell 

is given by 
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y
𝑪 − 𝑘*𝑴 −𝑳
−𝑳Z 𝑮

𝑘*| } �
𝒒
𝛄� = 𝛽 �𝒃0�                  (36) 

The homogeneous part of the resulting equation is solved in the same fashion as above: by 

finding the first K eigenvalues and eigenvectors of 

Ax = k2Bx                     (37) 

where 

A = �𝑪 −𝑳
0 𝑮 �, B = �𝑴 0

𝑳Z 0�, and x = ~
𝒙[
𝒙\�                 (38) 

These solutions are then used to approximate the inhomogeneous solution, calculating the 

mode participation factors c in the same method as outlined above according to 

c(k) = β(∧ −𝑘*𝑰)J5(𝑿Z𝑩𝑿)J5𝑿Z �𝐛0�                 (39) 

2.3.3 Transmission Loss: Compound Structure. The dynamic response of each of the two length 

scales of the array of MAMs is used to estimate the acoustic transmission properties of the 

system. Transmission efficiencies through both the membrane and the array are each 

determined under the assumption that the surface-averaged vibration amplitude dominates the 

sound radiation behavior of the system. This assumption is appropriate for frequencies with 

acoustic wavelength λ > �𝐿!∗* + 𝐿#∗* larger than the characteristic length of the array. Because 

low-frequency performance is of primary interest, this assumption is not particularly restrictive 

and is discussed more thoroughly below. The surface-averaged vibration amplitude is used to 

determine the effective mass density of the structure, from which transmission loss can be 

predicted in accordance with the acoustic mass law. In accordance with Newton’s Second law, 

the effective mass density of the compound structure 𝑚� %&^ 	is expressed as 

𝑚� %&^ =
⟨`⟩
⟨b̈/0⟩

= ⟨`⟩
d!⟨b/0⟩

                   (40) 
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where 〈〉 indicates the surface average of the quantity it encloses. Because the total summed 

area of the membranes is roughly equivalent to the area of the array itself, the surface average 

motion of the compound structure 〈𝑤&^〉 can be estimated as the sum of the surface average 

motion of the array and the individual membrane cells: 〈𝑤&^〉= 〈w*〉+ 〈w〉. Using the 

relation in Equation (40), rearranging terms, and making the appropriate substitutions for 

dimensionless parameters, the effective mass density of the compound structure is given by 

𝑚�&^% = (𝑚� %J5 +𝑚� ∗,
J5
)J5                   (41) 

where 

𝑚� ∗% = − L1
,

U∗![f∗2		8]h∗i∗
                    (42) 

𝑚� % = − L3
,

U![f2		8]hi
                    (43) 

The acoustic mass law is used to calculate the transmission coefficient t according to 

5
j
= 1 + 2dLk/0

,

*l4i4
                     (44) 

where ρ0 and c0 are the density and speed of sound of the acoustic fluid through which sound 

is being transmitted (typically air). In this study, the transmission coefficient of the individual 

membrane cell, the array, and the compound structure were each determined and compared. 

Finally, transmission through the compound structure can be calculated according to                

TL0 = −20 log10 |t|. 

In the work presented below, the following geometric parameters and derived quantities 

were used and held constant when modelling the array, membrane, and compound structures: 

𝐿!∗ = 𝐿#∗ = 0.241	m, h = 7.5 × 10−3 m, [x'∗ , y'∗ ] = [0.1205 m, 0.1085 m], Lx = Ly = 0.040 m, 

xM = yM = 0.020 m, T = 750 N/m, and 𝑚'
%  = 0.0971 kg/m2. The numerical parameters used 

were given by N!∗  = N#∗  = 𝑁! = 𝑁# = 40, I* = 44, and I = 16. Simulations were conducted for 
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combinations of MA = {0, 2.5, 10.3, 20.5} × 10−3 kg and MM = {0, 1.6, 3.2} × 10−4 kg using 

the appropriate corresponding values of Jx*, Jy*, Jx, and Jy given inclusion geometry. 

The areal mass and flexural rigidity of the homogenized array (with no masses bonded 

to individual membrane cells) were estimated according to 𝑚$
%  = 1.16 kg/m2 and                            

T* = 30.77N/m2. The method for estimating the areal mass of the array was measuring the mass 

of the array, adhesive, and membrane after assembly (but prior to the placement of individual 

masses on each membrane cell), subtracting the mass of the edge regions of the array (which 

are clamped in the test fixture during transmission loss measurement), and dividing the 

remaining mass by the area of the test window (0.05801 m2). The mass of the array, adhesive, 

and bonded membrane was measured to be 0.128 kg, the mass of the array edges clamped in 

the test fixture were theoretically calculated to be 0.0608 kg, and the resultant areal mass of the 

homogenized array was determined to be 𝑚$
%  = 1.16 kg/m2. When individual membrane cells 

had masses bonded to them, the areal mass of the homogenized array was increased 

appropriately. For example, when 0.16 g masses are added to each of the 36 individual 

membrane cells, this mass is assumed to be distributed uniformly, and the areal mass of the 

homogenized array is increased to 𝑚$
%  = 1.26 kg/m2 to account for this additional inertia. The 

flexural rigidity of the homogenized array was estimated fixing the areal weight of the 

homogenized array in the manner previously described, then fitting a value to T* such that the 

analytical model predictions match experimental data for the fourth eigenfrequency of the 

homogenized array vibration. This frequency was measured to be approximately 1.8 kHz for 

the array when 0.16 g masses were attached to individual membrane cells and no mass was 

attached to the array (𝑚$
%  = 1.26 kg/m2, MA = 0). The resultant homogenized flexural rigidity 

of the array used for modeling was estimated to be T* = 30.77N/m2. 

3. RESULTS AND DISCUSSION 
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The transmission loss was measured and analytically predicted through 12 different 

configurations of the MAM array structure. The results demonstrated a complex interaction 

between the two length scales, showed that new transmission properties—present for neither 

length scale independently—can be achieved in the compound structure, and established the 

importance of considering this interaction when scaling MAM structures. In this section, we 

first present transmission loss results characteristic of the hierarchical metamaterial structure 

fabricated for this study and explain the vibroacoustic behavior responsible for features of 

interest. Subsequently, we demonstrate the effect of varying the mass of the inertial inclusions 

bonded to both the array and the individual membrane cells. Finally, we discuss the limitations 

of the modelling approach presented in Sec. 2.3 and indicate possible future extensions or 

improvements in the model. 

3.1 Hierarchical Acoustic Metamaterial: Characteristic Performance. The experimentally 

measured transmission loss through the array of 36 MAM cells is plotted in Figure 6 for the 

case of MA = 2.5 × 10−3 kg and MM = 1.6 × 10−4 kg. Experimental data in this figure are 



         

Please cite the article as: WT Edwards and S Nutt “Transmission Loss and Dynamic Response of 
Hierarchical Acoustic Metamaterials”, Journal of Vibration and Acoustics (2019) DOI: 
10.1115/1.4045789  
 

 

Figure 6. Characteristic transmission loss performance of hierarchical acoustic metamaterial 
 
compared against analytical predictions for transmission loss through the individual membrane 

cells, the homogenized array, and the compound structure. It is apparent that the transmission 

loss properties of the compound structure arise directly from the behavior of, and interaction 

between, each length scale of the structure. Previous work has demonstrated that the low-

frequency propagation of acoustic energy through membrane- and plate-type acoustic 

metamaterials is determined by the modal responses of such structures. Similarly, it is apparent 

that the modal responses of each length scale of the hierarchical metamaterial contribute to the 

transmission properties of the structure. The modal contributions responsible for each local 

minima and maxima are explained. When interpreting Figure 6, it is worth noting that estimates 
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for the performance of neither length scale individually (the membrane cell scale or the 

homogenized array scale) is anticipated to match the estimates produced by the compound 

model or experimental data across the whole frequency range. Features such as minima in 

estimates of the performance of each length scale are apparent in the compound model over 

narrow frequency ranges, but (appropriately) when transmission loss is non-zero for both 

length scales, a more complex interaction between the two levels of hierarchy occurs. Rather 

than to achieve good matching with the compound model or experimental data, Figure 6 

includes estimates of the performance of each length scale to explain the origin of transmission 

loss maxima and minima apparent in the compound model prediction and experimental 

measurements. 

Four experimentally measured transmission loss local minima can be seen in Figure 6 

at frequencies of 315 Hz, 765 Hz, 1455 Hz, and 3200 Hz. At each of these frequencies, the 

transmission loss of the compound structure is dominated by the behavior of one of its two 

constituent length scales. That is, the behavior of the homogenized array dictates the 

transmission loss behavior at 315 Hz and 1455 Hz, while the behavior of the individual MAM 

cells dictates the behavior at 765 Hz and 3200 Hz. At each of these frequencies, the compound 

structure is nearly transparent to acoustic propagation, and the admittance of nearly all-acoustic 

energy through the structure is explained by the excitation of a mode (either modes of the 

homogenized array or modes of the membrane cells) characterized by non-zero average surface 

motion during oscillation. 

The first transmission loss minimum in Fig. 7, near 315 Hz, corresponds to activation 

of the first fundamental mode of the homogenized array. While analytic techniques predicted 

this mode to occur at approximately 360 Hz, experimental data indicated that the first resonance 
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of the array occurs near the transmission loss minimum at 315 Hz. Acoustic energy is 

efficiently transmitted through the hierarchical acoustic metamaterial at this frequency— 

 

 

Fig. 7 First modal response of homogenized array as predicted analytically (left) and measured 
experimentally (right) 
 
resulting in a transmission loss of nearly zero—because the surface-averaged motion of the 

array oscillating in this mode is non-zero. Further, because the effective mass density of the 

homogenized array (𝑚� ∗%) is nearly zero at the first fundamental mode of array vibration, the 

term contributed by the array to Equation (41) far outweighs the term contributed by the 

membrane cell-level behavior. This explains why array-level behavior dominates the 

performance of the compound structure near the first transmission loss minimum. 

The analytically predicted (left) and experimentally measured (right) modal responses 

of the array oscillating in its first mode of vibration are pictured in Figure 7. Experimental 

mode shape plots were produced by fitting a surface to the 85 vibrometer measurements using 

a locally weighted scatterplot smoothing algorithm, normalizing out of plane deformation, and 

generating contour lines and shading to indicate the magnitude and direction of out of plane 

array deformation. In Figure 7, as for all figures showing the modal response of the membrane 
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or array, regions of deformation below the neutral plane appears darker than regions of 

deformation above the neutral plane. A normalized deformation value of negative one 

corresponds to black coloration and normalized deformation of positive one corresponding to 

white coloration. The similarity of the analytical and experimental modal responses pictured in 

Figure 7 indicates the efficacy of the modeling approach presented herein. Discrepancies 

between the two modal response shapes can likely be attributed to noise in the laser vibrometry 

data and imperfectly clamped array edges. 

The second transmission loss minimum corresponds to the activation of the first mode 

of the individual MAM cells. Analytic and experiment data agree that this mode is located at 

approximately 765 Hz. The shape of membrane deformation under excitation at this frequency 

is analogous to the first mode of the vibrating array (see Figure 6) and similarly produces a 

non-zero surface-averaged displacement during oscillation, resulting in efficient transmission 

through the structure, and dominating performance over array-scale behavior at this frequency. 

From Figure 6, it is apparent that the third analytically predicted and experimentally 

measured transmission loss minimum can be attributed to the dynamics of the array. 

Experimental and theoretical results agree that the fourth fundamental mode of array vibration 

is located at approximately 1455 Hz. Activation of this mode dominates transmission loss 

characteristics of the compound structure at this frequency. Because the surface-averaged 

deformation of the array is significant at this frequency, acoustic energy is efficiently 

transmitted, resulting in a transmission loss minimum. The analytically predicted and 

experimentally measured mode shapes for this frequency achieve excellent agreement and are 

shown in Figure 8. Unlike with the first transmission loss minimum of the compound structure, 

the experimental and analytical data indicate non-zero transmission loss at this frequency 

despite the analytic model of the homogenized array indicating that zero transmission loss 
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should be achieved. Indeed, experimental measurements indicate that transmission loss of no 

less than 12 dB is in the vicinity of this frequency. This discrepancy can likely be attributed to 

the frequency band averaging performed during experimental data collection and compound 

model result processing. The effect of averaging transmission loss data over a 1/8th octave band 

 

Figure 8. Second quasi-symmetric modal response of array as predicted analytically (left) and 
measured experimentally (right) 
 
is exacerbated by the relatively narrow frequency range at which this mode of the array 

achieves large amplitude vibration. 

The fourth experimental transmission loss minimum in Figure 6 is correlated with the 

fourth modal response (second symmetric response) of the individual membrane cells. 

Experimental and analytical results locate this mode at approximately 3200 Hz. An analytical 

prediction of the mode shape at this frequency is shown in Figure 9. The apparent non-zero 

surface-averaged displacement seen in this figure explains the efficiency of acoustic 

transmission through the structure at this frequency. 

At each of the minima discussed, the transmission properties of the structure are 

dominated by the vibratory behavior of a single length scale, where resonance results in large 

volumetric displacement across the neutral plane of the structure. Transmission loss maxima, 
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however, are not dominated by the behavior of either length scale individually, and instead, 

require the sum of volumetric displacements for each length scale to be zero. For example, 

modeling data describing the compound structure indicate the first transmission loss peak in 

Figure 6 occurs at approximately 430 Hz where the structure achieves a transmission loss of 

35 dB. There is no local maximum for either the array or membrane length scales at this 

frequency, however, and the transmission loss predicted at each length scale is found to be 14 

dB and 13 dB for the array and membrane, respectively. The increased transmission loss when 

compared against either individual length scale can be attributed to the phase difference 

between the motion of the array and the membrane cells. At this frequency, the motion of the 

array lags the acoustic excitation signal by about pi radians, while the motion of the individual 

membrane cells is approximately in phase with the excitation signal, resulting in near-zero net 

displacement during oscillation, and efficient rejection of acoustic energy. 

Like the first transmission loss maximum, the second and third maxima in the analytical 

compound structure predictions are located at frequencies for which the surface-averaged 
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Figure 9. Analytical prediction of second symmetric mode shape in individual membrane cells 
 
displacement of the homogenized array is predicted to be equal and opposite to the surface-

averaged displacement of the individual membrane cells. Such frequencies are located at or 

immediately adjacent to frequencies at which the transmission loss curves of the two length 

scales cross. The second transmission loss maximum of the compound structure is predicted to 

be at 1275 Hz, near the frequency where the transmission loss curves of the homogenized array 

and membrane cell cross over at 20.3 dB. The third transmission loss maximum is similarly 

located at such a crossover point at 1775 Hz. These analytically predicted transmission loss 

maxima correspond reasonably well with experimental data, indicating the effectiveness of the 

modeling approach presented in this paper. 
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3.2 Parametric Effect of Inertial Inclusions. By varying the size of the inertial inclusions 

incorporated into each length scale of the hierarchical acoustic metamaterial, the frequencies 

at which characteristic transmission loss peaks and dips can be shifted. Figure 10 shows 

measured and predicted transmission properties through the structure studied for MM = 0 kg 

and various values of MA. As MA increases, the frequency at which the first transmission loss 

dip occurs, corresponding to the first symmetric eigenmode of the array, decreases. Similarly, 

the frequency of the first transmission loss peak is also shifted to a lower frequency range. 

Note, however, that features on the curve above approximately 800 Hz are unaffected by 

changes in MA. This is because the dynamics of the membrane dominate the transmission 

performance of the structure above this frequency, resonating with a large amplitude over a 

wide frequency band. Further, the lack of inertial inclusions on the individual membrane cells 

results in a second symmetric mode that is unfavorable for sound rejection. 

The parametric influence of MA can be further characterized as shown in Figure 11, 

where the size of the mass on the membrane cells is MM = 1.6 × 10−4 kg. In this figure, the 

influence of the second symmetric mode of the array becomes clearer. The eigenfrequencies 

associated with this mode for each case of increasing MA are given as 1791 Hz, 1600 Hz, 1377 

Hz, and 1297 Hz, respectively. For each case, the transmission efficiency of the structure is 

enhanced in the neighborhood of this frequency, and transmission loss is reduced. This 

phenomenon is largely responsible for the 
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Figure 10. Parametric effects of MA on transmission properties for MM = 0 g 
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Figure 11. Parametric effects of MA on transmission properties for MM=1.6 × 10−4 kg 
 
decay of transmission loss performance that is associated with the scaling of MAM structures. 

The figure demonstrates the importance of considering the dynamics of the array, as the modal 

responses can provide efficient parallel transmission paths that are highly efficient in some 

frequency ranges. 

3.3 Accuracy and Extensions to the Modeling Approach. 
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Readers may notice several differences between the analytical predictions and experimental 

data presented in Figures 10 and 11. Some of these differences can be attributed to the 

averaging necessary for the collection of experimental transmission loss data that are not 

present in the analytical predictions. Because experimental data are averaged over a 1/8th octave 

band around each sampling frequency, the magnitude of the transmission loss maxima and 

minima measured are significantly less extreme than those estimated by the analytical tool. 

Averaging of the experimental data is largely responsible for the difference between model 

predictions and measurements in Figure 11 in the range of 1–2 kHz. When analytical data are 

subjected to 1/8th octave band averaging over this range and sampled at the same frequencies 

as experimental data, the minimum forecast transmission loss increases from 0 dB to 8–14 dB 

(depending on array mass loading condition), and the maximum forecast transmission loss data 

decreases from infinite to 30–45 dB. Averaging of the analytical data also entirely obfuscates 

the transmission loss maxima and minima analytically predicted to occur just below 1 kHz in 

Fig. 11. Indeed, such local extrema are not seen in the measured transmission loss data. Overall, 

averaging the estimated transmission loss results in a much closer match with experimental 

measurements, and the effect of such averaging is not always intuitive due to the logarithmic 

nature of transmission loss data and frequency sampling. 

Beyond the difference between averaged and unaveraged transmission loss data, the 

experimental and analytical results likely deviate from one another due to variability in 

membrane tension and mass size and location within each membrane cell. While each MAM 

cell in the array was intended to be identical, imperfections in the machining of the array, the 

thickness of the membrane, adhesion of the bond between the two, and location and size of the 

mass placed on each membrane cell no doubt resulted in a distribution of similarly tuned 

membrane cells. The effect of this on the transmission loss through the structure would serve 
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to further reduce the extremity of the maxima and minima predicted analytically throughout 

the frequency range of interest. Such a difference in the tuning of individual membrane cells is 

likely responsible for differences in the shape of the experimental and analytical transmission 

loss profiles near the first maximum in Figures 10 and 11. At this transmission loss maximum, 

the volume velocity of the sum of membrane cells is approximately equal to and opposite of 

the volume velocity of the array structure. This results in inefficient transmission through the 

metamaterial, yielding high transmission loss. Analytical tools assume that all membrane cells 

are oscillating with identical shape and that they are perfectly phase matched. The inherent 

variability in the manufacturing of the array of MAMs, however, prevents such synchronistic 

motion from being physically realized. The effect of this distribution of frequency responses 

in individual membrane cells is such that the measured transmission loss maximum is broader 

but of reduced amplitude around this frequency when compared against analytical estimates. 

Some of the differences between the estimated and measured transmission loss data are 

due to the limitations of approximating the membrane array as a homogenized plate rather than 

a true array. Data indicate that this assumption is a useful first-order approximation, but authors 

acknowledge that the eigenfrequencies and mode shapes of a grid do not match identically with 

those of an equivalent isotropic, homogeneous plate. Further, the nature of the homogenization 

scheme used, whereby the flexural rigidity was determined using the measured response of the 

array near 1.6 kHz, is such that the analytical estimate of behavior is anticipated to be accurate 

near this frequency, but accumulate error when moving toward significantly higher or lower 

regimes. Indeed, this is demonstrated in Figures 10 and 11 where analytical and experimental 

data deviate most significantly at the lowest frequencies considered. The authors anticipate that 

the accuracy of the model could be improved if the array length scale of the hierarchical 

structure was modeled as a grid rather than a homogenized plate. 
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One additional way that the accuracy of the model could be improved would be to 

include the effect of motion coupling between the array and membrane cell scales. 

Incorporation of such a coupling term would require simultaneous solving of the membrane 

and array length-scale behaviors. The impact of considering this coupling would be most 

significant in the low-frequency range where array deformation is the largest. In high-

frequency ranges where the amplitude of array deformation is smaller, the assumption of zero-

displacement membrane cell edges is better satisfied, and the consideration of motion coupling 

would have a smaller impact. 

It is worth noting here that while this modeling approach was uniquely developed to 

describe hierarchical MAMs, and it cannot be used to study different types of hierarchical 

metamaterials, the model can be extended to capture the effect of additional degrees of 

hierarchy in these structures. If, for example, each membrane cell comprised an array of 

MAMs, then modeling this additional length scale could be done in a manner similar to how 

the membrane and array length-scale behavior was estimated and combined into the compound 

model in the same manner as described in Section 2.3.3. 

4. CONCLUSIONS 

The acoustic behavior of deployment-scale arrays of locally resonant MAM structures was 

investigated. Vibroacoustic behavior responsible for the decay of transmission loss properties 

typically associated transitioning from a single MAM cell to an array of cells was explained 

using experimental and analytical results. A novel hierarchical design approach was proposed, 

considering both the individual membrane cells and the array of membranes as independent, 

locally resonant acoustic metamaterials that can each be tuned by varying stiffness and mass 

parameters. A theoretical approach for predicting transmission loss through such structures was 

presented and validated against experimental data. Results indicated the importance of 
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considering dynamic properties of the frame used to mount individual MAM cells and 

demonstrated that hierarchical design can be an effective tool to maximize transmission loss 

performance in regimes of interest. 

The practical significance of this work is that it provides acousticians and materials 

scientists with an effective strategy for maximizing the performance of MAM structures. The 

analytical tools presented herein grant designers a toolbox that can be used prior to costly 

sample fabrication and testing. Engineers can confirm and ensure favorable interaction between 

membrane- and array-scale dynamics during the design process. The primary limitation of the 

technique presented herein, however, is that the required addition of mass to the membrane 

array compromises the weight efficiency of the structure. Further, as the size of MAM arrays 

increases, assumptions about the phenomena dominating acoustic transmission through the 

structure begin to break down. As a consequence, larger MAM array structures may face 

inherent limitations to the frequencies in which they can operate or the efficiency they can 

achieve. 
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