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Abstract:  

A common method for dealing with in-process manufacturing waste is to cut the prepreg scrap into 

rectangular strands, and use these strands to produce composites. The properties of the strand composite 

depend on a number of factors, including the aspect ratio and orientation of the strand. Predictive 

simulations are required to determine the stiffness of such materials so that optimal composites can be 

fabricated without extensive experimental testing.  

In this work, we present a hybrid method for predicting the stiffness of strand composites by using a 

combination of finite element and analytic mean field homogenization techniques. The proposed model 

combines the versatility of finite element models and the ease of computation of analytic schemes. This 

method can be used to model strands of any shape and orientation distribution; it also presents 

possibilities for detailed parametric analysis. The proposed method yields predictions that are consistent 

with experimental measurements and provides insights about testing protocols and observed scatter in 

experimental results. 

1. Introduction 

There is increasing use of composite materials in industrial applications, in particularly in the aerospace 

sector. Increased usage of such materials also leads to increased amounts of waste generated during 

production. Typically, composites are made by cutting prepreg (short for pre-impregnated fiber) into the 

desired shape and using a combination of temperature and pressure to achieve compaction. Despite 
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using CAD-based optimization for cutting and shaping, about 20-30% of prepreg tape and fabric is 

inevitably discarded as scrap. Recently, efforts have been made to fabricate composite laminates out of 

prepreg scrap by cutting prepreg scrap into rectangular “strands” and using a combination of heat and 

pressure to achieve compaction [1]. A pictorial representation of the process of converting prepreg scrap 

to viable composites is presented in Figure 1. Thus far, only rectangular strand shapes with random 

orientation distributions have been considered for this purpose. The stiffness and strength of such 

materials depends on the shape, aspect ratio, and also the volume fraction of carbon fiber. Feraboli et al. 

[2,3] showed that the stiffness properties of such materials depend on the strand length.  

 

Figure 1 In-process prepreg waste; (B) uncured prepreg scrap strands measuring 25 mm by 6 mm; (C) 

composite hat-stiffened part made from prepreg scrap strands 

Development of optimum composites produced from prepreg scrap requires an understanding of the 

manufacturing processes as well as the dependence of the properties on the strand shape, orientation, 

and volume fraction. Due to the large number of possible permutations and combinations, a purely 

empirical “hit-or-miss” approach is not practical. Additionally, it is not easy to develop test protocols for 

such non-conventional materials. Modeling of structure-property relations can be helpful to provide a 

clearer understanding of expected scatter in the experimental quantities. There have been some efforts at 

understanding the manufacturing of such composites [4,5]. However, models for predicting the stiffness 

of such materials are limited. Such models can be useful to guide development and to optimize strand 

composites without the necessity of estensive experimental test campaigns. Here, we present a method 

for predicting the stiffness of strand composites as a function of shape, orientation, and volume fraction.  

In prior work, Selezneva et al. [6,7] proposed an analytic model for predicting the strength of strand 

composites using a “weakest link” model. This model assumes a two-dimensional strand geometry and 

orientation distribution. Feraboli et al. [8] used a laminate analogy to develop models for stiffness 
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predictions of strand composites. Such models, however, have major shortcomings. First, they are based 

on the assumption that the strands have two-dimensional geometries and they retain that geometry after 

compaction. Secondly, these models are valid only if the orientation distribution of the strand is two-

dimensional and uniformly random. Also, only rectangular strands can be modeled by such methods. 

Often, these assumptions are not valid. Strands can and usually do undergo flexural deformation during 

manufacturing, and out-of-plane orientation of strand is not uncommmon. Finally, it is desirable to 

explore alternate shapes in efforts to develop composites with optimum properties.  

In the absence of analytic models, one is often tempted to use full finite element (FE) models to 

calculate the effective stiffness. Such attempts are based on creating a representative volume element 

(RVE) consisting of composite microstructure and subjecting the RVE to periodic boundary conditions. 

The applied strain is then related to the average stresses to generate the equivalent stiffness of the 

material [9]. FE calculations can accommodate any shape of reinforcement, yield accurate results, and 

also present rich information about local micro-stresses.  However, creating representative 

microstructure models in FE is usually difficult and time consuming. The difficulty in creating the 

microcstructure increases exponentially as a function of increasing volume fraction of the strand content 

as it is progressively harder to ensure that the two strands do not intersect each other. Even if one were 

able to create a representative microstructure, there are additional challenges in meshing and 

computation. The challenges in meshing are primarily due to the low distance between two adjacent 

strands, this can either lead to the requirement of a fine mesh or elements which are distorted. The  mesh 

refinement comes at the cost of higher computational cost, and distorted elements lead to erroneous 

results. 

These problems are typically circumvented by making assumptions about the shape and orientation 

distribution. Jin et al. [9] developed a FE based method for stiffness and damage prediction by idealizing 

strands as two dimensional plane strain elements, and a similar approach was also used by Picher-Martel 

et al. [10]. Such assumptions lead to drawbacks similar to those of analytic modeling (limited to two-

dimensional uniformly random or aligned distribution of strands). 

There are multiple methods based on the solution of Eshelby [11], including, for example, the Mori-

Tanaka (MT) formulation [12], self-consistent formulations [13,14], and double interpolative inclusion 

schemes [15]. Collectively, these are known as the mean field homogenization schemes. Such models 
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are known to provide reasonable accuracy, and are easy to set up and execute at modest computational 

cost [16]. However, these models are applicable only for reinforcements which can be approximated as 

ellipsoids. The reason for the inapplicability of these formulations for non-ellipsoidal inclusions is that 

there are no analytic solution for Eshelby’s tensor [11]. The Eshelby tensor is required to derive the 

dilute strain concentration, which subsequently leads to the effective stiffness. In contrast, there is no 

formal restriction to the shape of the inclusion in the mean field assumptions. This is not to say that 

these schemes have been exclusively used for ellipsoidal inclusions. These schemes have been used to 

model the effective stiffness of a wide range of materials, either by direct approximation of the inclusion 

shape to an ellipsoid, or by transforming the inclusion to a family of inclusions. Some examples of 

applications to composite materials include short fiber reinforced composites [16], short fiber 

composites with debonded interphase [17], curved fiber composites [18], textile reinforced composites 

[19], and nanocomposites [20]. Despite the versatility of mean field homogenization schemes, this 

approach cannot be used to model the stiffness of strand composites. It is not easy to approximate the 

shape of the prepreg strand to an ellipsoid.  

In the context of mean field homogenization schemes, the reinforcement is modeled as an inclusion, and 

hence the two terms are often used to imply the same thing. Thus, in this work, both reinforcement and 

inclusion imply a single strand.  

Sheet molding compounds (SMC) have internal architecture similar to the composites described in this 

paper. Attempts have been made to homogenize SMC materials, for example [21]. Also, Jendli et. al. 

modeled SMC material by treating the fibers as ellipsoids [22]. 

In this study, mean field homogenization schemes are extended to model the stiffness properties of 

strand composites by using a combination of finite element calculations and analytic expressions. We 

propose to create efficient algorithms for generating volume elements (VE) in finite element software 

which closely replicate the dilute strain condition, and using these algorithms to calculate the Eshelby 

tensor and implement mean field homogenization schemes. The key advantage of such an approach is 

that any reinforcement/inclusion shape can be handled, and yet the model is computationally fast and 

easy to set up, facilitating parametric studies. The accuracy of the proposed model is confirmed using 

experimental data, and parametric analysis is performed to better understand the scatter in observed 

properties and to prescribe testing standards for such materials. 
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In general, the mean-field homogenization methods are known to be versatile and capable of being 

implemented for a wide range of materials. However, it must be acknowledged that compared to full 

finite element solutions, these methods cannot describe fully the microstress and local stress 

concentrations. For the purpose of homogenization, the details of stress concentrations are not critical. It 

has also been reported that the accuracy of these models drop when the concentration of inclusions is 

high, there are a few methods which are known to be quite accurate for high concentrations [23].  One of 

the methods developed specifically for this purpose is the double interpolative inclusion [24], which will 

be used in this paper. Another major criticism of the proposed model is that these models are suspectible 

to yielding a non-symmetric stiffness tensor which is physically inadmissible [25]. Jain et al. [26] 

showed that for anisotropic ellipsoid inclusions with a sufficiently large RVE, the degree of non-

symmetricity was low.  We will recheck this assertion for non-ellipsoid anisotropic inclusions. 

In the paper, Section 2 outlines the theory and formulation, Section 3 describes the implementation, and 

the experiments are recalled in Section 4. The validation of the scheme and analysis is presented in 

Section 5, and conclusions are given in Section 6. 

2. Theory and formulation 

In the proposed model, we calculate the stiffness of strand composites using a mean field 

homogenization scheme. However, instead of the using the analytic expressions of Eshelby for 

calculation of the Eigen strain and the dilute strain concentration tensors, FE models are built to 

represent dilute strain concentration conditions. The dilute strain concentration tensor is subsequently 

extracted and input into the mean field homogenization scheme for the calculation of the stiffness 

properties. The double interpolative (DI) scheme as proposed by Lielens [24] is chosen as the preferred 

mean field homogenization scheme, because the volume fraction of carbon fiber in such composites can 

be as high as ~50%. At high volume fractions, it has been reported previously that the double 

interpolation scheme is most accurate [23]. In the following two sub-sections, a brief but complete 

description of the double interpolation scheme and finite element modeling is presented. 

2.1 Double interpolative inclusion 

In the mean field homogenization, the strain concentration tensor of the inclusions 𝐴𝛽 is related to the 

stiffness of the composite using the expression below. 
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𝐶𝑒𝑓𝑓 = 𝐶𝑚 + ∑ 𝑐𝛽(𝐶𝛽 − 𝐶𝑚)𝐴𝛽𝑀
𝛽=1              (1.1) 

𝜀𝛽 = 𝐴𝛽𝜀∝                                              (1.2) 

Here, 𝐴𝛽 is the strain concentration tensor, 𝐶𝑒𝑓𝑓 is the effective stiffness of the composite, 𝐶𝑚, 𝐶𝛽 are 

the stiffness of the matrix and inclusion respectively, 𝑐𝛽 is the volume fraction of the individual 

inclusion, and M is the total number of inclusions. 𝜀𝛽 and 𝜀∝ are the strain in the inclusion and the 

applied far field strain respectively. 

The double interpolative inclusion scheme was first proposed by Nemat-Nasser and Hori [15] and later 

improved by Lielens [24]. This method assumes that the inclusion is embedded in the matrix, which in 

turn is embedded in a medium in which the stiffness values, CR, are to be assigned. Two sets of strain 

concentration factors in the inclusion are calculated by choosing different stiffness values of the medium 

(CR), and the strain concentration of the inclusion is obtained by interpolation. 

The stiffness of the medium, CR, is assigned the values of the stiffness of the inclusion, 𝐶𝛽, and the 

matrix, 𝐶𝑚.  Thus, this scheme can be interpreted as an interpolation of the Mori-Tanaka (MT) and 

inverse MT formulations. The inverse MT formulation corresponds to a MT formulation where the 

properties of the surrounding medium are the same as those of the inclusion, as opposed to the matrix, 

during the MT formulation. The former is a good approximation when the volume fraction of the 

inclusions, 𝑣1, is high, while the latter is a good approximation for low inclusion contents. Thus, an 

interpolation function which is based on the volume fraction (𝑣1) was deemed appropriate. The 

interpolation function, 𝜁(𝑣1) must be a function of the volume fraction and continuous in the region (𝑣1 

= 0, 1). A quadratic function is used in the analysis presented here (eq 2.1). 

    𝜁(𝑣1) =  
1

2
𝑣1(1 + 𝑣1)                                                       (2.1) 

This choice of interpolation function is based on the smoothness and continuity requirements prescribed 

by Lielens [24], which have been reproduced below 

𝜁(𝑣1) > 0, 

𝑑𝜁

𝑑𝑣1
(𝑣1) > 0,                                      (2.2) 
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lim
𝑣1→0

 𝜁(𝑣1) = 0, 

lim
𝑣1→1

 𝜁(𝑣1) = 1  

The strain concentration of the inclusions can thus be calculated using the expression 

𝐴𝛽 =  [(1 − 𝜁(𝑣1)) 𝐴𝑙
𝜀−1 + 𝜁(𝑣1)𝐴𝑚

𝜀−1]−1                                     (3) 

where 𝐴𝑙
𝜀−1 and 𝐴𝑚

𝜀−1is the strain concentration factor for the two simulations, viz. Mori-Tanaka (MT) 

and the inverse MT formulation. Once the strain concentration for each inclusion has been calculated, 

the effective stiffness of the composite can be calculated using Eqn (1.1). The input for this analysis is 

the dilute strain concentration tensor, 𝐵𝑚, which relates the strain inside the inclusion subject to the far-

field applied strain. The strain concentration tensor for inclusion α, 𝐴𝛽, is related to 𝐵𝑚 by  

𝐴𝛽 =  𝐵𝛽(𝑐𝑚𝐼 + ∑ 𝑐𝛼𝐵𝛼𝑀
𝛼=1 )        (4.1) 

𝜀𝛽 = 𝐴𝛽𝜀𝑚           (4.2) 

where, 𝐵𝛽 is the dilute strain concentration tensor of inclusion β, and c is the volume fraction of 

inclusions. 𝜀𝛽 and 𝜀𝑚 are the strain in the inclusion and the applied far field strain in the matrix 

respectively when the concentration of the inclusion is dilute. 

Here, we propose to calculate the dilute strain concentration tensor using FE methods described in the 

following sections. 

2.2 Calculation of the dilute strain concentration tensor using FE models 

The dilute strain concentration tensor relates the strain in an inclusion surrounded by an infinite matrix 

to the far-field strain. In other words, the dilute strain concentration relates the strain inside the inclusion 

to the applied strain in the matrix, when the volume concentration of the inclusion is extremely low, 

such that the inclusion behaves as though it were surrounded by an infinite amount of matrix (see 

equation 4.2). 

The dilute strain concentration can be calculated by finite elements using a model with a large cuboid 

containing a single inclusion. The centroid of the inclusion and cubic matrix are co-incident. This cubic 

model is subjected to six uniaxial unit strains, and the average strain in the inclusion is calculated. Each 
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FE calculation is used to populate a horizontal row of the dilute strain concentration matrix, leading to 

the 6×6 matrix. 

Note that the analysis presented here assumes linear elastic behavior for both the strand and the matrix. 

However, these methods can be extended to accommodate the non-linear behavior of the composite by 

accounting for matrix non-linearity [27] and/or damage in the inclusions [17]. 

3. Implementation 

Implementation of the proposed model consists of two major steps. First, the FE volume element 

consisting of one inclusion is built, and the condition of dilute concentration is confirmed. Next, the 

double interpolation scheme is implemented. The two steps are described in detail in the following sub-

sections. 

3.1 FE model building 

When the FE model consisting of a single inclusion and matrix is first created, the volume fraction of 

the inclusion is as low as possible to ensure that the conditions of dilute concentration are met. A cubic 

matrix with unit dimensions 10 × 10 × 5 is created in FE software (ABAQUS [28]). For the meshing, 

each of the six cube faces is portioned into three sections. The center part of the cube where the 

inclusion will be embedded has a fine mesh, and the rest of the cube has a progressively coarser mesh to 

ensure that the nodes in embedded regions can be tied.  

Quadratic tetrahedron elements are used for the meshing, and the strand is meshed using the same 

quadratic tetrahedron element. The strand is embedded into the matrix volume element such that the 

centroid of the strand and the matrix are coincident. The use of embedded elements affords benefits 

during the creation of FE VE. The inclusion and the matrix can be meshed independently, expensive 

contact algorithms and sectioning of the matrix are not needed, and meshing challenges are minimal 

[29].  Due to the use of embedded elements, the matrix cube is created and meshed only once, strands 

with different shapes, aspect ratio etc. can be meshed independently, and an FE model is created. The 

meshing and the location of the strand are shown in Figure 2. 
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Figure 2 Meshing of the cube and the inclusion, the matrix cube (in the left) has finer mesh in the 

regions where the strand will be embedded, while the strand (in the right, zoomed) has uniform fine 

mesh with sufficient number of elements through the thickness 

A mesh sensitivity analysis of the volume element indicated that there must be at least 6 elements 

through the thickness of the strand. The mesh size of the core region of the volume element was 

fractionally smaller than the strand so as to ensure that the embedded equation could be applied by the 

FE software. The size of the volume element was about one hundred thousand elements for the cubic 

matrix and less than few thousand elements for the strand. The problem of volume redundancy due to 

the embedded element technique was resolved using the solution proposed by Tabatabaei and Lomov 

[30]. 

Once the volume element has been meshed, it is subjected to periodic boundary conditions and 6 

uniaxial strains one by one. The strain concentration tensor is then extracted by volume weighted 

averaging the strain in each element of the inclusion. The properties of the strand are taken to be that of 

carbon fiber [31]: E11 = 230 GPa, E22=E33= 15GPa, nu12 = 0.2, nu23 = 0.35 and G12= 15 GPa. Note 

that in this model, the composite is viewed as a heterogeneous material with carbon fiber interspersed in 

the matrix. This fundamentally distinguishes this approach from previously developed models. During 

composite fabrication, the individual existence of the prepreg is somewhat lost, as the matrix of the 

prepreg mutually inter-fuse and become a single continuum medium in which the fibers are interspersed. 

3.2 Check for the dilute strain condition 

An important step in the implementation of the proposed scheme is to ensure that the conditions for 

dilute concentration are met. Theoretically, a concentration is said to be dilute if a single inclusion is 

included in an “infinite” sea of matrix. However, it is not possible to create a FE volume element with 
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infinite dimensions. Numerically, the dilute concentration of inclusion is confirmed by creating a 

volume element with a single inclusion, subjecting it to uniaxial strain, and estimating the resultant 

average strain in the inclusion. This exercise is repeated for different volume elements with 

progressively lower volume fractions of the matrix. The concentration of the inclusion is said to be 

dilute if on further reduction of the volume, there is no change in the average strain in the inclusion.  

To confirm  dilute strain concentration condition, a series of FE models with matrix (E=3.4GPa, υ = 0.4) 

and isotropic spherical inclusion (E=100 GPa, υ = 0.2) is created.  A spherical isotropic inclusion is 

chosen so that the average strain FE predictions at dilute concentration can be compared with that of the 

analytic solution by Eshelby. The volume fraction of the inclusion is progressively reduced, and the 

average strain in the inclusion is calculated. The average strain in the inclusion as function of the volume 

fraction is shown in Figure 3. 

 

Figure 3 Average strain in the spherical inclusion. The applied strain in the volume element is 1%, the 

x-axis is logarithmic 

We are thus confident that a volume fraction of 0.1% or less corresponds to the dilute concentration 

limit. The dilute strain concentration tensor is calculated using the Eshelby solution and compared with 

the FE calculation. For an applied load of 1% in the VE, the values of ε11, ε12, ε44 derived from the 

analytic solution were 0.072, 0.009 and 0.12% respectively, and the corresponding values predicted by 

FE calculations were 0.073, 0.009 and 0.13. Thus, the FE based calculations closely match the analytic 

solution, confirming once again the dilute concentration limit, as well as use of embedded elements and 

the volume redundancy correction for small volume fractions. Note that without the volume redundancy 

correction, the error in the ε12 was about 15% with a calculated value of 0.0078%. The ε11, and ε44 terms 
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did not depend strongly on the volume redundancy correction, as the average value in the inclusion with 

and without the correction was nearly the same. The condition of dilute strain concentration was also 

checked for flat square inclusions, revealing that the limit of dilute concentration was also ~ 0.1%. 

3.3 Implementation of the double interpolation scheme 

Once the FE models are built and the dilute strain concentration tensor extracted, the next step is to 

implement the double interpolation scheme which begins with the creation of the RVE.  

The orientation of each strand is represented by a vector p (say), which in turn is defined by two angles, 

θ and φ (see figure 4). Mathematically,  

𝑝1 = 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑  

𝑝2 = 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑                                                                                               (6) 

𝑝3 = 𝑐𝑜𝑠𝜃  

 

Figure 4 Illustration of the Euler angles to determine the orientation of the strand 

The angle φ represents the orientation of the strand in the x-y plane (in-plane orientation), while the 

angle θ measured from the z-axis represents the out-of-plane orientation. A θ value of -90° implies that 

the strand has no out-of-plane orientation. For a uniform 2D random distribution of the strand, the value 

of θ is constant and equal to -90°. Whereas, during the study of out-of-plane orientation, certain ranges 

of permitted values are prescribed for the angle (90-θ). The angles θ and φ are generated randomly using 

the “quasi-random number generator” in software (Microsoft Excel) in all the cases presented in this 

paper to create representative volume elements.  
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Two sets of simulations are performed per AR of strand. In the first set of simulation, the number of 

strands is approximately the same as the number of strands in the coupons which have been 

experimentally tested. Based on the dimensions of the coupons (25 × 200× 5 mm) and the measured 

volume fraction of carbon fiber, we estimate that the approximate number of strands in the 10, 20 and 50 

mm strand coupon to be 672, 336 and 135 respectively. 

Next, 24 different RVEs with the same number of strands are generated, and the average as well as 

scatter is evaluated and compared with experimental data. The second set of simulations is performed 

with a RVE size sufficiently large to remove scatter due to the small number of strands. For this, the 

number of inclusions is ascertained after a sensitivity analysis, and the number of inclusions in RVE is 

deemed to be sufficient if the predicted stiffness for different realizations with similar  numbers of 

inclusions is within 5%. (Results of the sensitivity analysis will be presented in Section 5.1). The 

generation of the RVE and double interpolation scheme is implemented in programming language (C++ 

in Visual Studio 12.0). A schematic representation of the entire workflow of the scheme is shown in 

Figure 5. In this workflow, the FE based calculations must be performed once, and realization of the 

RVE and double interpolation scheme can be repeated as often as needed. The FE calculation takes ~ 15 

minutes to run on an ordinary desktop PC, while the realization of the RVE and double interpolation 

scheme takes a fraction of a second. 
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Figure 5 A flowchart of the proposed algorithm. Items in red dotted boxes are finite element 

calculations, while the black boxes relate to implementation (in Visual Studio) 

4. Experiments 

Rectangular strands were cut from unidirectional prepreg consisting of carbon fiber impregnated with 

epoxy (CYCOM 5320, Cytec Industries, fiber specification Hexcel IM7 12K [32]). The width of the 

strands was 10mm, and three lengths were considered: 10, 20 and 50mm. There was some deviation in 

strand length - the actual maximum and minimum length deviated from the desired length by ~ +/- 5%. 

The strands were then randomly placed to form a thin layer, and analogous to prepreg (henceforth 

referred to as “strand prepreg”), these layers were placed one on top of the other. Six layers of strand 

prepreg was used for fabrication of a single laminate, and each strand prepreg layer weighed ~ 42 grams, 

leading to a laminate weight of about 250 grams. The laminate dimensions were 216 × 216mm with 

mean thickness of ~ 3mm (Figure 6).  

 

Figure 6 Laminate made of chopped prepreg with strand dimensions 10mm by 20 mm 

Curing of the panels was achieved by compression molding in a heated platen press (Wabash). The 

compression force (pressure) of ~ 3.4 MPa was used to reduce the amount of voids and resin bleed on 

the recommendation of Wei et al. [33]. The curing cycle was 121°C for three hours with a ramp rate of 

2.8 °C/minute, followed by a 2-hour free-standing post-cure at 177 °C. The void content in the laminates 

was measured and derived using X-Ray computer tomography (XCT). XCT settings used were 80 kV 

and 150 uA, with a 500 ms exposure time, yielding a resolution of 13 µm/pixel. The void content was 

about 3.3% for the three laminates. The fiber volume fraction was subsequently calculated to be 68% by 
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weight. A detailed description of the manufacturing methods including comparison of the different 

methods has been reported [34]. 

The laminates were then machined to produce coupons for tensile testing, the dimensions of which were 

25 × 200mm. Tensile tests were performed according to ASTM standard D3039, the standard for 

continuous composites. (To the best of our knowledge, there are no ASTM standards for strand 

composites.) Here, the suitability of this standard for strand composites will be critically examined. End 

tabs were attached to the coupons, and 5 tensile tests were performed for each strand aspect ratio. The 

average measured modulus for AR 1, 2 and 5 were 48, 52 and 58 GPa respectively. The ratio of the 

maximum and minimum measured values for each AR was 1.1, 1.18 and 1.37 respectively. The modulus 

of the strand composite is comparable to that of aluminum (~60GPa), suggesting that composites 

fabricated in this fashion could replace aluminum for semi-structural components. However, we 

acknowledge that comparison of in-plane stiffness is not sufficient to confirm suitability of the material 

for certain applications, and other relevant properties must also be studied. 

 Also, the measured modulus increases as the strand size increases. The scatter and variation of the 

measured modulus was also a function of strand size - coupons with bigger strands showed larger 

scatter. 

5. Results and discussion 

In this section, the results of the modeling are presented. First, we present a sensitivity analysis of the 

modeling, ascertaining the minimum number of strands for creating a representative volume element 

(RVE) and explaining the scatter observed in the experiments. Next, the predicted values of the model 

are compared with measured values. 

5.1 Sensitivity analysis 

Ensuring the “representativeness” of the RVE is the first step towards any homogenization exercise. In 

the present work, the size of RVE is said to be sufficiently large if the ratio of minimum and maximum 

predicted stiffness for the same constituent inclusion and matrix but different realizations of the RVE is 

less than 1.05. A similar sensitivity analysis was performed for fatigue and stiffness properties elsewhere 

[35]. The number of strands is varied, and 24 different RVE each with same number of strands are 

created . The ratio of maximum and minimum predicted stiffness for each size of RVE is shown in 
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Figure 7 for strand aspect ratio 1. The minimum number of strands required for RVE with minimum 

scatter in simulated properties is 1000.  

 

Figure 7 The scatter in the predicted and measured modulus as a function of the number of strands in 

the representative volume element (RVE) 

The measured experimental scatter as a function of the number of strands in a coupon is superimposed 

over the simulated variation in the predicted properties in Figure 7, showing that the simulations capture 

the trend in scatter in observed properties. 

Note, also that during the sensitivity analysis, a total of 168 simulations are performed. However, the FE 

calculations were performed only once, and the rest of the analytic calculations took less than 2 minutes. 

This represents a significant advantage of this model over conventional finite element modeling, where 

the finite element models would have to be rebuilt for every simulation, and the computational costs of 

each simulation would be significantly higher, leading to days of computation, as opposed to few 

minutes by the proposed method. 

5.2 Comparison with experimental values 

Comparison of the experimental and predicted values of average stiffness is presented in Figure 8a,b. 

Experimental values match simulated values for coupons having strand aspect ratios 1 and 2 for both the 

sets of simulation, viz., average of 24 simulations with small RVE and 1 simulation with 1000 strands. 

In both cases,  stiffness is over-predicted slightly for AR 5. The predicted values by averaging 24 

simulation are slightly less than the one predicted by the single simulation of 1000 strands. 
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Figure 8 Comparison of the average experimental modulus and the predicted stiffness (a) comparison of 

the predicted stiffness, (b) scatter 

The predicted simulation scatter is compared with experimental observations in Figure 8b. As expected, 

the numerical scatter is a function of the RVE size, and when a smaller RVE with number of strands 

approximately the same as the experimental coupon is used, we see larger scatter in the simulations. 

This simulated scatter is similar but less than the observed experimental scatter. When the RVE size is 

increased to 1000 strands, the numerical scatter almost disappears. From these results, it is clear that the 

scatter observed during experiments is due to two sources - the first is physical scatter, which is 

characteristic of the material, and the second is due to insufficient number of strands in the coupons to 

make it representative of the actual material.  We recommend to increase the coupon size such that it 

includes at least 1000 strands, so that the scatter due to insufficient number of strands can be reduced 

and the characteristic scatter of the material will be known. Instead of following the ASTM standard, 

which prescribes a width of 25mm, it is advisable to increase the width as much as the testing equipment 

permits. Ideally, the width of the coupon must be greater than the width of the largest strand. 

5.3  Effect of out of plane orientation and extra matrix 

In this sub-section we study the effect of two parameters, viz., out-of-plane orientation of the strands and 

the effect of additional matrix. Both sets of parametric analyses are performed with an RVE size of 1000 

strands. 

5.3.1 Out of plane orientation 

In this sub-section, the effect of out-of-plane orientation distribution of the strand is studied. In the 

experiments presented, we made special attempts to ensure that all the strands were randomly oriented in 

the same plane. However, there are manufacturing methods which lead to some out-of-plane orientation 



                                                                                                                  

Please cite this article as “Atul Jain, Bo Cheng Jin, Steven Nutt, Mean field 

homogenization methods for strand composites, Composites Part B: Engineering, 

Volume 124, 1 September 2017, Pages 31-39, 

https://doi.org/10.1016/j.compositesb.2017.05.036. 

17 

of the strand composite [34]. A series of RVE were made with varying ranges of out-of-plane 

orientation of the strands, and in each case, the maximum out-of-plane angle was prescribed and each 

strand was prescribed a random out-of-plane orientation value in that range. Note that not all the strands 

had out-of-plane orientation, but instead the out-of-plane orientation follows a random distribution with 

the specified range of angles. 

The effect of out-of-plane orientation of strand for composites with aspect ratios 1, 2 and 5 is shown in 

Figure 9a. As expected, the out-of-plane orientation of the strand leads to drop in stiffness and the 

magnitude of drop increases as the range of out-of-plane orientation increases. The composite with 

strand AR 5 suffered the greatest loss in stiffness due to out-of-plane orientation of the strand. The 

predicted loss in stiffness for the AR 1, 2 and 5 was 19.5, 23.4 and 27.9% respectively. 

 

Figure 9 Parametric studies (a) Effect of out of plane orientation (b) Effect of adding matrix 

5.3.2 Addition of extra matrix 

Composites fabricated with cured prepreg can have the tendency to have large numbers of voids. This 

problem can sometimes be solved by adding extra resin during the manufacturing process. Judicious 

choice of the grade and quantity of resin can lead to significantly lower voids, better shapability, and 

increased toughness. In this section, we perform a parametric analysis showing the effect of the extra 

resin on stiffness. Simulation is performed by introducing extra resin as a fraction of the volume of the 

prepreg strands. Figure 9b shows that the stiffness of composite decreases as we introduce extra resin. 

The fraction of stiffness drop depended slightly on the aspect ratio of the strand. The stiffness drop if the 

amount of resin is the same as the initial volume of the strands was 62, 63 and 65% respectively for the 

three cases (AR =1, 2 and 5) respectively. 
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5.4 A note on the non-symmetric stiffness tensor 

A final note concerns the non-symmetric stiffness tensor. A common reservation about the use of mean 

field homogenization techniques for calculating the effective properties of heterogeneous materials is 

that the stiffness tensor predicted by the scheme is often non-symmetric, leading to physical 

inadmissibility conditions [25]. For each of the simulations with 1000 strands, the degree of 

symmetricity, Δ𝐶𝑖𝑗 was determined using the equation 

Δ𝐶𝑖𝑗 =
𝐶𝑖𝑗−𝐶𝑗𝑖

𝐶𝑖𝑗
 , i≠j              (6) 

where C is the stiffness tensor. The maximum degree of asymmetry was on the order of 5-8%. While 

this is greater than the 0.1% reported by Jain et al. [26] for anisotropic ellipsoid inclusions, this is 

expected, since the shapes considered here are not regular ellipsoids. However, the degree of asymmetry 

is not large enough to warrant a full rejection of the proposed scheme. At the end of each simulation, the 

predicted stiffness is made symmetric by averaging the non-symmetric stiffness and its transpose. This 

leads to introduction of additional error of ~ 2.5-4 % in the in-plane properties and is not considered 

critical. One could argue that the use of pseudo-grain discretization techniques [36] or similar variants of 

the mean field homogenization techniques could be used to avoid a non-symmetric stiffness tensor. 

However, all known variants of the method guarantee a symmetric stiffness tensor only if the inclusions 

are isotropic, and the inclusions are anisotropic here. Also, the use of such methods for strands with non-

ellipsoid shapes has not yet been explored. 

6. Conclusions 

A method for calculating the stiffness of strand composites has been developed and demonstrated. The 

proposed method uses a combination of finite element methods and analytic mean field homogenization 

methods. The embedded volume technique combined with volume redundancy correction is a viable 

method to extract the dilute strain concentration tensor, and yields a good match with the analytic 

solution. A sensitivity analysis shows that at least 1000 strands are required for reliable simulation and 

testing. Some of the observed experimental scatter is shown to be due to insufficient number of strands, 

and not due to material property scatter. The simulated results match well with experiment and the 

degree of asymmetry in the stiffness tensor is limited. 
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The problem of prepreg scrap generated during  fabrication of composite parts is rapidly growing. 

Development of predictive tools like the one proposed in this paper could be an important component of 

a comphrehensive strategy to guide the design of strand composites made out of prepreg scrap.  

Also, in this paper we have developed a homogenization scheme validated for strand composites, this 

scheme can be easily used to model different types of composite materials with irregular shaped 

reinforcement for example nano-clay.   
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