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A B S T R A C T

Hand layup is a commonly used process for making composite structures from several plies of carbon-fiber
prepreg. The process involves multiple human operators manipulating and conforming layers of prepreg to a
mold. The manual layup process is ergonomically challenging, tedious, and limits throughput. Moreover, dif-
ferent operators may perform the process differently, and hence introduce inconsistency. We have developed a
multi-robot cell to automate the layup process. A human expert provides a sequence to conform to the ply and
types of end-effectors to be used as input to the system. The system automatically generates trajectories for the
robots that can achieve the specified layup. Using the cell requires the automated generation of different types of
plans. This paper addresses two main planning problems: (a) generating plans to grasp and manipulate the ply
and (b) generating feasible robot trajectories. We use a hybrid-physics based simulator coupled with a state
space search to find grasp plans. The system employs a strategy that applies constraints successively in a non-
linear optimization formulation to identify suitable placements of the robots around the mold so that feasible
trajectories can be generated. Our system can generate plans in a computationally efficient manner, and it can
handle a wide variety of complex parts. We demonstrate the automated layup by conducting physical experi-
ments on an industry-inspired mold using the generated plans.

1. Introduction

Composites are widely used in the industry to realize lightweight
structures with high performance. The global composites industry was
valued at $66 billion in 2015 and is expected to grow to $130 billion by
2024 [33]. Carbon fiber is a widely used raw material for the produc-
tion of composites. For low-volume production and complex parts, a
hand layup process is used to laminate plies of carbon fiber prepreg (a
resin-infused fiber bed). An expert technician deposits pre-cut plies of
prepreg in prescribed orientations on a mold to build up the desired
thickness. The layup is then vacuum-bagged and cured at a prescribed
temperature and pressure to produce the final component. Fig. 1 il-
lustrates the layup process on a medium-sized mold. The hand layup
process is ergonomically challenging and skill-intensive. Human op-
erators must apply various levels of pressure to the plies. Multiple op-
erators must collaborate to conform larger plies to complex contours.
The hand layup process is labor-intensive and can exhibit inconsistency
due to variability in human operation.

Current automation solutions in the composites industry are limited

primarily to automated tape layup (ATL) and automated fiber place-
ment (AFP). In these processes, prepreg tape of various widths (com-
prised of unidirectional fibers) is used, as opposed to plies of fabric
prepreg. These solutions are limited primarily to larger and simpler
geometries due to the large tape-dispensing end-effectors. We have
shown the feasibility of hand layup automation in our prior work in
[59,62] which shows a robotic cell to handle and conform to prepreg
plies. Fig. 2 shows the robotic cell used for automating the process. In
an industrial setting, we envision a robotic cell to perform the complex
layup process under human supervision.

Multiple articulated robot arms are required to perform the layup
operation in the robotic cell. Significant planning challenges arise as a
consequence of using robots in the cell. We cannot expect humans to
program the robots in the cell. The tool paths for the draping tools and
grippers used for the operations of the cell must be automatically
planned. Planners that generate the point-to-point motion and path-
constrained motions are required. Moreover, manipulating the plies is a
complex physics-based motion planning problem. Vision and haptics-
based sensors must be integrated into an online plan refinement to
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avoid defects and handle contingencies. Path-constrained synchronous
trajectories are needed, which satisfy process and dynamic constraints.
The feasibility of these trajectories is largely dependent on the place-
ment of the robots around the mold. Planners that can automatically
determine where to place the robots around the mold are required. The
system must address both trivial and challenging planning problems in
order to automate the process.

We identified two planning problems which are challenging for the
system: (a) finding grasp plans that generate the tool paths for grippers
to handle the ply, and (b) finding suitable robot placements. This work
addresses these two planning tasks. Grasp plans are the tool paths for
the grippers that manipulate the ply during the process. Several grasp
plans can exist in the space around the tool. The system must determine
a grasp plan which leads to a defect-free layup and minimizes a cost
defined by our approach. Robot placements, on the other hand, influ-
ence the feasibility of generating path constraint trajectories.
Inappropriate robot placements will lead to failure to execute draping
and grasping robot tool paths. We use a state space search strategy
assisted by physics-based simulation framework to generate optimal
grasp plans. A successive application of constraints strategy is then used
to identify feasible robot placements and generate the robot trajec-
tories. We have reported prior work in the robot placement algorithm in
[60,61]. In the present study, our work is extended by discussing the
challenges that occur when more constraints are imposed on the pla-
cement and present a different approach for solving the problem. The
two planning problems are computationally challenging, and that our
planners can handle complex cases in real-time. We test our algorithms
on a mold inspired by an industrial component and also develop in-
terfaces through which humans and robots can collaborate.

2. Related work

2.1. Automation in composite manufacturing

In this section, we describe the progress towards automating the
hand layup process.

Previous work [35] demonstrated how a numerical model could be
created to predict the draping of a ply on the mold. This drape can then
be used to estimate the sequence of motions that can be performed by a
technician or a machine to achieve the desired layup.

A categorization of the layup techniques used by technicians has
been reported [24]. These layup techniques can serve as baseline mo-
tion primitives to automate the ply draping. In [13], a complete system
to handle and lay up prepreg on a mold using an industrial robot was
proposed. A concept of cell design was illustrated with four manip-
ulation mechanisms. Molfino et al. proposed a hyperflexible cell design
in [70]. Although these works lacked algorithms to automatically
generate instructions for the robot, they demonstrated concepts of au-
tomation solutions that can be applied. Researchers in [25] used an
industrial robot to apply pressure to drape the ply. The robot was
manually programmed, and the ply was preformed in a hydraulic press
to avoid manipulation and shear. This work furnished insights into
what end-effectors can be used with manipulators, and challenges in
the layup process. Other works also studied the development of end-
effectors to handle composites, which requires the design of specialized
grippers for carbon fiber prepreg [27,86]. Newell et al. presented a
numerical model to predict the behavior of prepreg when gripped at
certain points [75]. Behavior or woven prepreg plies on a doubly
curved mold was investigated using a kinematic mapping in [47]. Au-
tomated handling for pick and place operations of composites during
manufacturing was briefly reviewed in [9]. A brief review of grasping
technologies and advances in automation of composites is provided in
[26].

2.2. Multi-arm manipulation of deformable materials

As illustrated in Fig. 2, the robotic cell requires multi-arm manip-
ulation of a prepreg ply (deformable material). In this section, we will
discuss the work related to this topic. Manipulation of flexible materials
requires coordinated motion and/or control of multiple different robots
[1,18,19,34,37,49,79,87,88,100]. Recent survey papers on the manip-
ulation of deformable objects include [40,44]. Different applications
impose different requirements on the underlying approach for solving
the problem. Specialized planning, learning, and control approaches
have been developed for 1-D problems (e,g., wires and
ropes) [50,63,71,77,81–83,92], cloth folding [5,7,22,45,46,54,57,
64–67,85,91], and ply manipulation [29,38,48,93]. A method to gen-
erate trajectories for multi-robot systems to handle sheet metal while
minimizing deformations was proposed in [32]. Some approaches, such
as rope manipulation and cloth folding, do not impose strict require-
ments on the final shapes. These approaches seek only the qualitative
presence of the desired feature after the operation. Some applications
require the final shape to be controlled precisely. In applications such as
composite layup, the behavior of the underlying material can be com-
plex. Therefore, we rely on advanced simulations to estimate the state
of the flexible material.

Sampling-based motion planning approaches have been developed
for manipulating deformable objects in static environments [6,51,72].
Planning approaches that consider deformable environments have also
been investigated [30,31,78,80]. Learning from demonstration
methods has been adopted to learn task-specific actions for deformable
parts [39,52,53]. Recent work in this area formulates a constrained
optimization problem to compute a plan for a team of mobile manip-
ulators to manipulate a highly deformable object [1]. In [21], a team of
mobile robots was used to grasp and assemble a part comprised of
multiple components. They formulated the problem as a constraint

Fig. 1. Illustration of hand layup process being done by multiple operators
[69].

Fig. 2. Robotic cell comprising of manipulator, specialized grippers, heating
system, feedback systems, and conforming tools required to automate the
carbon fiber ply layup process.
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satisfaction problem, then divided it into independent smaller problems
to achieve faster computation times.

2.3. Workpiece/robot placement

This section describes the work related to the robot base placement
problem. A variant of this problem is to find locations of components of
an assembly [74]. The authors used the gradient of the manipulability
index, which is a measure of the ability of the robot to orient the end-
effector at a given position. Manipulability index can be obtained from
the Jacobian of the manipulator [94–96]. The position and orientation
reachability of the robot was precomputed in [90]. The base of the
robot was then placed such that target grasping locations could be
reached without collision.

These works dealt with individual locations in Cartesian space. A
path will consist of a sequence of such locations called waypoints. A
path can be represented with respect to a coordinate frame. Finding a
feasible placement of this path with respect to the robot is equivalent to
finding the placement of the coordinate frame. Aspragathos et al. pro-
posed an approach in [3] in which the mean value of the manipulability
index was maximized across all the waypoints in a path. They illu-
strated this approach by placing a simple curve in the robot workspace.
To improve the velocity performance of the manipulator while ex-
ecuting the paths, Aspragathos et al. proposed a manipulator velocity
ratio (MVR) [4,73]. MVR can be maximized to obtain the maximum
end-effector velocity for the least joint angle velocity, which can im-
prove the velocity performance of the manipulator while executing the
path. Cycle time was reduced by placing the workpiece such that it
minimized the time coordinated joint motion in [28]. A posture opti-
mization methodology for 6R industrial robots was proposed using
performance maps in [55]. Other variants for solving this problem also
considered minimizing the energy consumption, actuator torques, and
forces [89] for a orthoglide parallel robot.

Authors of [14,15,23] found the placement for a redundant robot.
Redundancy in their system arose from the process requiring fewer
degrees of freedom (DOF) compared to the DOF of the manipulator.
They considered the tool path followed by a milling tool on a small
cube. As the orientation of the spindle (end-effector) about its axis of
rotation can take any value, it is a redundant system. They formulated
the problem with the objective of minimizing the deflection of the
spindle during the operation. They presented an approach where the
redundant angle was assigned a value while solving the optimization
problem. Work in [20] integrated two multi-objective optimization
loops. The outer loop was used to fix the redundant angle to minimize
joint limits, singularities, and collision as a single non-differentiable
objective function. Once redundancy was taken care of, the solution
was passed to the inner loop, which determined the workpiece place-
ment. Kabir et al. presented an approach which finds synchronous
trajectories for high DOF multi-arm systems in [43]. The pose of robot
base frame can be considered in the optimization problem to find sui-
table base placements.

The trajectory for a high DOF system, including a mobile base, was
planned using inverse kinematics branching in [10]. They formulated
the problem as a quadratic program, and constraints were included as a
part of the objective function. The position of the mobile base could be
determined while planning for the trajectory. The overall joint motion
was minimized by taking the difference between two consecutive joint
configurations on the path in [36]. They formulated an unconstrained
optimization problem where redundancy was simultaneously resolved.
They also described various local and global indices used in this area as
surrogates to serve some objective while placing the path. The work in
[97,98] proposes a capability map to encode the position and orienta-
tion of the robot in a discrete representation. In [99], they use this map
as an approximation to the robot inverse kinematics (IK) to find suitable
placements for a mobile base. Hybrid approaches to place the manip-
ulator with respect to the path by avoiding singular configurations have

also been studied. For instance, a hybrid method which takes the ad-
vantage of genetic algorithms, quasi-Newton optimization, and a con-
straint handling method was described in [68].

Most of the work revolved around optimizing some local or global
performance index for the manipulator. Additional constraints, such as
force, velocity, continuity, avoiding singularity, and collision, were
either absent or conservatively applied to make the problem compu-
tationally tractable. However, this does not ensure that trajectories can
actually be generated over the paths. The works cited, including the
ones aimed at resolving a redundant system, consider smaller work-
pieces and simpler geometries. For completely utilizing a robot work-
space, an approach is required which can be applied to large complex
geometries. Path-constrained trajectory generation is a computationally
expensive affair, as it involves identifying the IK of a robot under
constraints. If additional constraints like velocity, force, and path con-
tinuity are enforced, the problem becomes computationally intractable.

3. Robotic cell for composite layup

3.1. Background

The carbon fiber prepreg ply is a dry fiber bed infused with a viscous
thermoset polymer resin (e.g., Fig. 3). Fibers can be unidirectional (UD)
or woven fabrics. Depending upon the type of weave and resin system
used, various mechanical properties can be obtained. Multiple plies are
stacked on top of the mold at prescribed orientations. The designer can
tailor the anisotropic mechanical response as per loading conditions by
controlling the orientation of each ply and type of materials being used.

The prepreg structure can undergo in-plane deformation (e.g., trellis
shear, as shown in Fig. 3). In-plane deformation allows conformation of
flat prepreg plies onto non-developable and complex surfaces. Techni-
cians apply local pressure to shear the ply and conform it to the mold.
Hand-held tools or hands are used to apply this pressure [42]. Typi-
cally, a 1–10 cm2 area is conformed at a time. Fig. 4 shows the different
techniques used during the process and illustrates defects that can
occur. Moreover, material and environment-related factors can also
influence the drapeability and quality of the layup. Prepreg tack (ad-
hesion), for instance, depends on ambient temperature, humidity, out-
time, and through-thickness compliance (bulk factor) of the prepreg.
After a layup, the laminate is enclosed in a vacuum bag and cured using
a prescribed pressure and temperature cycle to produce the final com-
ponent.

Quality of the layup is evaluated on the basis of how well the plies
are conformed to the substrate (mold or the underlying prepreg). In-
plane and out-of-plane shearing can cause changes in fiber orientations.
The fiber orientations should be within specified tolerances. In addi-
tion, defects such as air pockets, wrinkles, or foreign object con-
tamination should be absent. Defects can require scrapping the entire
laminate or reduced part strength. Wrinkles can cause delamination
between layers. Another important factor in determining laminate
quality is the resin distribution across the laminae. Resin-starved

Fig. 3. Prepreg (carbon fiber infused with epoxy) covered with backing paper
[2] (left), and an illustrative example of in-plane shearing mechanics (trellis
shear) for woven fabric (right).
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regions can cause the fibers to fail prematurely, as no matrix is present
to distribute. Despite these challenges, hand layup is used for complex
molds or production volumes where current automation solutions are
technically or economically infeasible.

3.2. Draping and grasping robots

The cell consists of two types of robots, (a) the draping robot and (b)
the grasping robot. The draping robot applies local pressure on the ply
to conform it to the surface of the mold. The grasping robots manipulate
the ply to facilitate the layup operation. The robots are equipped with
custom end-effector tools that are designed as per the mold geometry. A
RGBD-camera is used for monitoring the layup process during execu-
tion.

The draping robot needs to account for machining errors during the
manufacturing of the mold and the registration errors while placing the
mold in the work cell. This requires the robot to operate under im-
pedance control. We have selected 7 DOF KUKA iiwa robot for draping
that provides impedance controller. The controller allows the robot to
comply with the surface irregularities as well as maintain constant force
during the draping operation. Same robots are used for grasping as well.
For larger and more complex geometries, the grasping robots require
force feedback while manipulating the ply. Tension in the ply also must
be accurately controlled, and the robots need to comply if the ply is
being sheared or stretched too much. We can achieve these objectives
under impedance control.

3.3. End-effectors

Draping Tools:A roller is used to replicate the motion of human
hands to drape the ply. A cylindrical roller is effective for the con-
forming ply on single- and double-curvature convex regions of the
mold. Fig. 5(A) shows the fabricated cylindrical roller. The main body is
additively manufactured with ABS. The support structures for the roller
are aluminum for reducing the dimensions to access compact features
within a mold without making any unwanted contact with the ply. For
concave regions with small radii, we have designed a conical roller
Fig. 5(B), and a dibber Fig. 5(E) tool. The conical roller is used for
improving the draping speed along the concave regions, but it poorly
conforms plies to areas with tight corners. This limitation of the conical
roller is overcome by the dibber tool, although it reduces the con-
forming speed. The end-effectors used in our work are inspired by the
work done in [25].

Better conformity can be obtained by heating the prepreg. Heating
improves tack and assists in adhering the ply to the mold. Heating also
reduces the viscosity of the infused resin so fibers can deform easily and
take shape. We have designed a heating system that applies heat locally
to the region that will be conformed as the draping robot
moves.Grasping Tools:Commercial grippers (Robotiq) are used for
grasping. Prepreg readily adheres to the rubber fingers of the gripper.
Teflon (PTFE) is appropriate for handling prepreg. We have designed
custom gripper fingers to grasp and manipulate the ply. Along with it,
internal channels are provided to carry compressed air. A high-velocity
jet of air detaches the ply from the gripper fingers if it adheres to the
gripper. The air jet is deployed to prevent the ply from being dragged
with the grippers when they change location. Fig. 5(C and D) shows the
gripper and the CAD model with internal channels used in the setup.

3.4. Part inspection

We assess layup quality using four metrics described as follows:

1. Conformity: The degree to which the sheet has conformed to the
substrate. A map is generated to compare the point cloud of the
layup with respect to a reference (CAD or substrate).

2. Fiber Alignment: Measure of the deviation of fibers in the woven
fabric with respect to a reference or average alignment in a region.

3. Resin Distribution: Measure of distribution of resin (ideally homo-
geneous) throughout the fabric after the layup process.

4. Other Defects: Foreign object deposition (FOD), air pockets, wrinkles,
or fiber damage.

The cell is equipped with Apodius Vision System 2D, Hexagon ab-
solute arm with an integrated laser scanner, Intel RealSense D-415
depth camera, and DinoLite digital microscope. Fig. 6 shows these in-
struments in images A, B, C, and D respectively. We use the depth
camera for monitoring the state of the sheet in real time. The state of
the sheet is extracted after occluding the robots and the grippers from
the cell. Online modification to grasp plans generated in this paper can
be made by using feedback from the depth camera. Defects such as air
pockets, and wrinkles can also be detected using the sheet state. Torque
sensors in the robots monitor the force being applied at the end-effec-
tors. Necessary compliance and local adjustments are made using the
data from these sensors. DinoLite digital microscope is used to study the
distribution of the resin in the layup.

Fig. 4. (A) Layup techniques involving use of multiple operators and local pressure application [59]. (B) Layup defects like wrinkles and air pockets. [59]. (C)
Example of an ongoing layup.
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4. System architecture

Fig. 7 shows the system architecture of the robotic layup cell. The
cell takes an expert input and automatically generates the plans for the
robots. We categorize the automated composite layup process into three
phases: (a) planning phase, (b) setup phase, and (c) execution phase.
The expert user input is discussed in detail in Section 5. We will now
discuss the three phases of our system.

4.1. Planning phase

The planning phase is responsible for taking the expert generated
inputs, and converting them into actions that can be executed by the
robots for performing layup operation. Expert user input provides the
draping tool paths and some additional information that is used to
generate the grasp plans and robot placements. The process parameters
based on the mold geometry, grasp plans for manipulating the ply,
robot placements with respect to the mold, and the draping and

Fig. 5. (A) Fabricated cylindrical roller. (B) Fabricated conical roller. (C) The gripper used. (D) Section view of the gripper fingers showing the air channels. (E) CAD
model of the dibber used in the process [62].

Fig. 6. Inspection equipment used in the robotic cell. (A) Apodius 2D sensor.
(B) Hexagon absolute arm with integrated laser scanner. (C) DinoLite digital
microscope. (D) Intel realsense D415 depth camera.

Fig. 7. System architecture diagram illustrating the three main phases in the robotic cell for composite layup.
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grasping robot trajectories are computed in this phase. The grasp plans
are visualized through an interface. The user can modify these plans
through the interface, if required.

The system selects the process parameters required, given the CAD
geometry and the type of material. We investigated the bounds on these
process parameters by conducting offline experiments on common mold
geometries [62]. For this work, the draping force (Fdrape) and the dib-
bing force (Fdibb) will be bounded within [15,30] N. Maximum Carte-
sian velocity of the roller used will be 50 mm-s 1 and the temperature of
airflow used will be 45∘ C. The stiffness of the end-effector under im-
pedance control is bound within [1500,3000] N-m 1.

4.2. Setup phase

The setup phase consists of all the components that are required
before the physical layup process begins. This phase involves placing
the robots at the computed locations with respect to each other and to
the mold, performing a vision and contact-based mold registration, and
recomputing the robot trajectories.

The robot placement algorithm will give the transformation of the
robots with respect to the mold. The cell operator can then place the
robots using this transformation. However, in practice, the exact
transformation of the mold is different so the transformation error must
be corrected. The CAD model provides a reference point cloud. We then
generate a point cloud from the depth camera and compare it with the
reference point cloud. An iterative process similar to iterative closest
point (ICP) is used to find the transformation of the point cloud with
respect to the robots. We then perform contact-based registration to
obtain an accurate transformation of the mold. The new transformation
is used to recompute the robot trajectories.

4.3. Execution phase

The robot trajectories are executed by the impedance controller. A
Cartesian impedance controller measures the joint torques and com-
putes the force at the end-effector to comply as per hooke’s law. Sensors
are used to monitor defects during the process. We use torque mea-
surements and camera feedback for monitoring. The feedback is used to
refine the drape and grasp plans to prevent the defects. An expert is
called for assistance if the robots cannot repair the defects. The human
operator also performs minor adjustments to the grasp plans if required
to prevent defects from occurring. An online grasp plan modification
strategy has also been presented in our work in [58].

5. Getting expert user input

Expert input is a part of the initial setup process which simplifies the
grasp planning problem. The user selects regions on the mold which
deconflicts the workspaces of the robots. Grasp points which can be
used by the robots are also specified. More details on how expert input
is used in planning is described in Section 6.5. A drape simulator is used
to simulate how a fully draped ply appears on the mold. Fig. 8 shows
the molds we are using to determine the grasp plans and the corre-
sponding drape states simulated. The expert can estimate the drape
sequence to be followed to drape the ply from these simulations. We use
a virtual fiber placement simulator or VFP provided by the research
group at the University of Bristol.

The robots must follow the drape sequence. We have developed an
interface - the human operator selects the mesh triangles that belong to
each discrete stage. Fig. 10 shows a few of the discrete stages in the
draping sequence for one of the molds used for evaluation. Stage 1 in
the figure shows that the operator starts by adhering to the ply in the
center portion of the mold, which is also the highest point on the mold.
Later, the operator proceeds downwards towards the right in stage 5,
and finishes one half of the mold by stage 10. Finally, the left half of the
mold requires four more discrete steps to cover the entire mold surface.
Fig. 9 shows the draping regions selected by the technician for all the
molds that are used to evaluate the layup operation. Each region in the
figure is shown in a distinct color and labeled as RX, where X is the
number of the region. For example, Region 1 is denoted by R1.

In each region RX of the draping sequence, the robot draping tool
must make contact with the ply and apply the necessary force to attach
the ply to the mold. In this paper, we use the technician’s assistance to
provide the path that the draping tool should follow while laying up the
ply. We have developed an interface (see Fig. 11) which the technicians
can use to input the draping paths. The user can select the start and
endpoints of each drape path on the mold surface, and the software
generates geodesic curves on the mold that connect these points. These
geodesic curves comprise discrete waypoints of the surface of the mold,
and we term this collection of discrete waypoints as draping tool paths,
which are used to compute draping robot trajectories.

During the layup process, the grasping robots are used to manip-
ulate the ply before the draping robot adheres the ply to the mold.
Given the size of the ply, the number of robots used for grasping the ply
varies. In the current version for generating the grasp plans, we de-
conflict the regions on the ply that must be handled by each robot using
a virtual partition. These virtual partition lines are provided by the

Fig. 8. The molds used in our work. Fully draped mesh obtained from virtual fiber placement is shown on the molds.
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technicians for all the mold and shown by the white center line in
Fig. 9. Section 6.4 provides more details about the partitioning and its
use in the grasp planner.

6. Grasp planning

6.1. Background

The grasping robots are responsible for manipulating the ply during
the draping process. If accidental contact is made between prepreg

layers, air entrapment is possible. Ply collision with the mold must be
checked in order to prevent contact. Alignment of the ply must be
maintain with a specific coordinate axis on the mold. Misalignment of
the ply can be caused if the ply excessively bends in a region, and the
draping tool moves over the region. Excess tension or bending in the ply
are high deformation states that can cause wrinkles. Such high de-
formation states can be characterized by an increase in the energy of
the ply. Thus, we must generate the plans which keep the energy of the
ply low.

The ply is represented by a mesh. Fig. 12 illustrates a mesh over the

Fig. 9. The user interface is used to select region (R) in the draping sequence, virtual partitions, and mesh triangles along the ply edges which the robot can use to
grasp the ply.

Fig. 10. Four intermediary steps of the draping sequence are
shown. In all the draping sequence is discretized into 14 steps.
Step-14 is the fully draped ply. Unconformed ply is not si-
mulated.

Fig. 11. The graphical user interface (GUI) used for the selection of draping tool paths is shown. The CAD model and a draped mesh approximating the ply is also
illustrated.
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mold. We represent a grasp point as the center of a pair of consecutive
vertices along the edge of the mesh. The robots can hold the ply from a
specific grasp point along the edge of the ply. We can determine the
combination of grasp points and their a location in space to obtain a
state which is favorable to satisfying some constraints for a given
conformed region. Fig. 12 illustrates different grasp points along the
edge of the ply and ply state by holding it at a grasp location from a
specific grasp point. In this work, our planner only considers the 3D
coordinates along X, Y, and Z axes in Cartesian space for assigning lo-
cations.

In the proposed framework, we have discretized the draping process
into a sequence of regions. As stated earlier, this sequence of regions is
given by a human expert. Each region with conformed and un-
conformed ply vertices in it is termed a stage. Fig. 10 shows only the
conformed vertices of the mesh for some stages in the discrete sequence
on a mold. Unconformed vertices are not shown, as their state is de-
termined by where the ply is being held. In total, there were 14 discrete
stages selected in the drape sequence. The figure illustrates four inter-
mediate stages. Stage-14 is the fully draped ply. We can also increase
the resolution between stages by discretizing them with smaller areas,
which will result in a smoother solution but at the cost of more planning
time.

The sequence of grasping points and their locations for every stage
in the process defines the grasp sequence. If the grasp points are different
for consecutive stages, a re-grasp motion is required. If the grasp point
remains the same between the stages, but the locations are different, a
repositioning motion is required. Fig. 13 illustrates this concept be-
tween two consecutive stages. There are two robots holding the un-
conformed ply, which is represented in green. One of the robots has to
grasp from a different grasp point, so a regrasp motion is required. The
other robot had to reposition the ply from the same grasp point. The
sequence of grasp points are computed by the grasp planner. De-
formation of the sheet during regrasping motion is not accounted for
during offline computation. An online refinement strategy is im-
plemented for considering the deformations that happen when the sheet

is released [58]. The draping robot waits for regrasping motion(s) (if
any) to be completed between stages. However, trajectories are con-
tinuously executed to conform to the area that is represented by a stage.

We present a solution framework by posing the grasp sequence
generation problem as an optimization problem with constraints.
Expert users seem to prefer certain types of sequences. These pre-
ferences are validated by conducting experiments. User preferences are
modeled as a cost function, developed as a part of our approach.
Different components of cost function describe aspects of user pre-
ferences. We use a weighted cost to capture different aspects of pre-
ferences. A grasp sequence that satisfies all constraints and minimizes
the given cost is the solution.

6.2. Problem formulation

We assume the CAD model of the mold is given. v represents
the voxelized map of the CAD model. The set of parameters (material
properties and scaling constants) used in the drape simulator is re-
presented by P . Consider a draping sequence = …W W W{ , , , },d r1 2
where Wi is a stage and r is the total number of discrete stages in the
draping sequence. A set of available grasp points along the edge of the
unconformed ply is computed. For every stage, we will have this set
given by = …G g g g{ , , , }r k1 2 . For an unconformed ply, all the grasp points
will be available, in which case k equals the total number of grasp
points on the ply. If we assign a location < x, y, z > in the Cartesian
space to the grasp point, we will be able to simulate the state of the ply.
We denote this location assignment as l(gk) to the kth grasp point. A grasp
sequence can be represented as = …G l g l g l g{ ( ), ( ), , ( )}j k k kr1 2 which is
essentially a sequence of assignments of location to the corresponding
grasp point for every stage Wi d. The grasp planning problem is
formulated as finding a grasp sequence that minimizes a cost. Eq. (1)
defines the grasp planning problem.

G G Parg min ( , , , )s
G

t i d v
i (1)

Gs is found by minimizing a cost function that has three main
components, as discussed earlier. The next section defines the cost
function.

6.3. Cost function components for guiding grasp planning

Energy Function: Breen et al. used a physics-based simulation to
generate the grasp plan, and our approach is similar to their work
[11,12]. Each particle (vertex) is allowed to translate along the X, Y,
and Z axes in 3D Cartesian space. The material properties are encoded
as an inter-particle relationship. Fig. 14 shows a particle Pi surrounded
by its manhattan neighbors. Deformed and undeformed configurations
of the mesh surrounding the particle are shown. The link between a
particle under consideration and a neighbor is represented by a spring.
The mass of the ply is divided amongst all the particles. This mass-

Fig. 12. Grasp points along the edge of the mesh are used by the robots for
grasping. The state of the ply simulated while holding it from a grasp point at a
location in space is also illustrated.

Fig. 13. Regrasp and repositioning concepts are illustrated for two consecutive
stages.

Fig. 14. Neighborhood of a particle Pi in the mesh. Illustrations of the deformed
and undeformed mesh are provided. The position of the particles and shear and
bending angles are used to compute the potential energies.
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spring model is widely used for simulations in the computer graphics
community. The physical state of the ply represented by n particles in
the 3D Cartesian space is defined by the 3n × 1 coordinate vector

= < >X x x x x, , , , n1 2 3 3 .
At any state, the total energy of the ply is represented by the fol-

lowing four potential energies: spring, bending, shear, and gravita-
tional. A particle pair is connected by a linear spring in our model, so
the spring potential is given by k*dx2, where dx is the change in the
distance between the particles. We define the shear and bending en-
ergies with respect to the radian angle between the concerned particle,
and its neighbor. Fig. 14 shows the shear angle between particle Pi and
its immediate neighbor P1. Three other shear angles between Pi and the
neighbors P2, P3, and , P4 can be computed. Bending energy is defined
between the pairs Pi, P1 and Pi, P3. We conducted two different tests to
determine the relationship between shear and bending energies and the
corresponding radian angles of deformation. The tests and the re-
lationships obtained are discussed in Section 6.7.2. The gravitational
potential is represented by m*g*h, where m is the mass of the particle, g
is the gravitational acceleration, and h is the change in height (z co-
ordinate of the particle) relative to the mold.

The state of the ply under given boundary conditions is found by
minimizing the overall energy of the ply. The boundary conditions in
our case include restricting the particles in the draped region and those
gripped by the robot from any motion. The rest of the particles are free
to move. We are interested in finding the lowest energy state, which
will be the solution to the simulation. The unconstrained optimization
problem given by the Eq. (2) is solved to find the solution. We use the
limited memory Broyden-Fletcher-Goldfarb-Shanno (BFGS) [56,76] al-
gorithm from the nlopt library [41] to solve the problem.

+ + +
=

X U U U Uarg min ( )
X i

n

spring
i

shear
i

bending
i

gravity
i

1 (2)

Deformation energy cost can also incorporate misalignment con-
straint for the ply. For instance, if an edge of the ply needs to be aligned
with edge of the mold, the cost will be higher if the edge excessively
bends and misaligns. The grasp point and location will be biased to-
wards such regions in order to keep it relatively flat so that alignment is
maintained. Alignment costs can also be incorporated as separate in-
equality constraint over grasp point and location where robot is forced
to grasp from predefined points and stay within location tolerances.
Such constraints are often defined by the process itself.

Regrasping Cost Function: When the robot needs to regrasp the ply,
the gripper will open and release the ply, slide along the edge to the
next grasp location, and close. The cost function used in our approach
minimizes the number of regrasps required for the process. We use the
Euclidean norm of the distance between two consecutive grasp loca-
tions of the respective grasp points to find the regrasping cost.

Collision Cost:We use the Euclidean distance transform (EDT) of the
mold to detect collisions. The position of each particle in the un-
conformed region of the mesh is used to query the EDT map. The col-
lision has a binary value. If the EDT value is below a certain threshold,
the particle in the ply collides and vice versa. The threshold value for
declaring if a particle is colliding is the same in case of uniform collision
cost. Different threshold values for every particle are used for a non-
uniform collision cost. For instance, draped, to-be draped, and free
regions on the sheet can be assigned different collision costs for ease of
implementing feedback systems in the future.

Weighted Cost: In order to maintain the quality of the layup, we
should minimize the area under the absolute energy vs. stages curve.
Collision and regrasping costs are then incorporated into the cost
function along with the integration of the absolute energy over stages.
This cost function t is given by the Eq. (3). Cu, Cc and Cg are the energy
cost, collision cost, and regrasp cost respectively. We measure collisions
using v and the regrasp cost as the euclidean distance between two
expanded node states l(gk1) and l(gk2) for two consecutive stages.

= + +

=
=

=

w C w C w C

C U ds
C n n

C l g l g

* * * ,
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W
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(3)

where nc is the number of colliding particles and nf is the number of free
particles for that stage. Also, + + =w w w 11 2 3 . U is the absolute energy
of the ply and ds is the normalized value representing a stage. For in-
stance, if the process has r discrete steps, =ds r1/ .

6.4. Virtual partitioning of state space

We can use any number of robots for manipulating the ply. In the
current version for generating the grasp plans, we deconflict the regions
on the ply that needs to be handled by a single robot using a virtual
partition. Fig. 9 illustrates this concept for our case. The user selects the
regions which will be handled by the corresponding robots. For two
robots, we represent the two regions separated by a white line. The
corresponding robot number is labeled in the figure. Each of the regions
is termed as a virtual partition. Usually, in a draping process, the ply is
conformed along a line path that runs on the mold. The path inherently
deconflicts the workspaces for the molds. In Fig. 9, for the sequence
shown on mold C and E, the first conformed region R1 will split the
robot workspaces in two without conflicts. However, for other molds,
both the robots will have shared unconformed regions as the free re-
gions for both the robots interact with each other. A robot action in
conflicting regions will influence the grasp location of another robot as
an unconformed ply state is being shared between them.

Even though the robots will have shared unconformed regions, we
solve the grasp planning problem for each robot separately. We find
nominal grasp sequences for each robot. We then use these nominal
grasp sequences to account for the conflicting regions. Section 6.6
discusses the algorithm in detail. In our case, we use two robots. We
solve two independent, grasp planning problems. Fig. 15 illustrates the
use of virtual partitions in our approach. The stages and grasp points
available for grasping in the case of mold A for the robot-2 are shown in
the figure. While planning for robot-2, all the particles that belong to
the virtual partition of the robot-1 remain in their draped position.

6.5. State space representation

The available grasp points are known beforehand. We can construct
the graph with the nodes as the available grasp points in every stage.
In our approach, selecting a node in the graph is equivalent to selecting
a grasp point. A grasp point is selected and then moved around in a
discrete Cartesian space. Cost is evaluated at each discrete location. A
location that reduces the total cost of the grasp sequence is assigned to
the grasp point for that stage. We call this a location assignment search.
The location assignment search is discussed in detail later in this sec-
tion. We evaluate the node cost by using the location assignment
search.

We use an approach based on a backward simulation, where we
start with a fully draped ply. The root node corresponds to the fully
draped ply stage, where no grasp point is available as we progress along
with the discrete set of stages; the ply unconforms until it is fully un-
conformed. This framework can be used to propagate information into
later stages. The graph is an acyclic directed graph. Fig. 15 illustrates
the different stages in the process. Unconformed ply particles are
highlighted in green. The corresponding graph is also shown. As the
stages progress, the grasp points that are available to be used are re-
presented by integers along the edge of the ply. Gi essentially is a grasp
sequence of nodes, forming a path from the root to the leaf node having
the lowest cost. The figure also shows one such path in the graph
highlighted by forwarding arrows. As the graph is acyclic and directed,
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minimum cost grasp points in every stage lead to an optimum grasp
sequence.

A location assignment search is conducted by varying the height (Z-
axis) of the grasp point and moving it forward or backward (Y-axis)
relative to the mold. Fig. 16 illustrates the Z and Y axes of the motion
for a grasp point. We discretize the motion along these axes. Motion
along the edge of the ply (X-axis) is equivalent to changing the grasp
point. The cost varies as a grasp point is moved during the location
assignment search. Out of all the different locations that can be as-
signed to a grasp point, we pick the one with the minimum cost. A state
space search is then used to find the optimum solution. In our im-
plementation, Gradient descent algorithm is used to find the minimum
cost location. The initial location assignment is given by a heuristic
function, which also reduces the computation cost. The heuristic used is
described in detail in Section 6.6.

The local minimum found by an optimization algorithm, such as
gradient descent, is the global minimum due to the behavior of the cost
function in this application domain. Fig. 16 shows the behavior of the
energy and collision costs as a function of the Z location of a grasp

point. Collision cost decreases as the ply is lifted, but energy cost starts
increasing due to high deformation and potential. At one point, a steep
increase in energy is obtained with less reduction in a collision. Similar
behavior is obtained with these costs when the ply is lowered.

6.6. Algorithm for generating grasp plan

Our algorithm is an any-time algorithm. It generates a grasp plan
and then updates it further to reduce the cost. The algorithm can be
terminated if a time limit is reached, the cost cannot be decreased any
further, or all the nodes have been evaluated.

Our goal is to use domain-dependent heuristics to generate a low-
cost initial plan and obtain an optimal resolution solution in a com-
putationally tractable time. We propose an ordering heuristic that
prioritizes the nodes in every stage. The ordering heuristic first explores
the state space to prioritize the nodes (grasp points) which are pro-
mising. The planner begins by exploring a small number of grasp lo-
cations for every node. Two grasp locations which are equally spaced
between the mold surface and a maximum height above the mold are
evaluated. The location with a lower cost is picked and assigned to the
corresponding grasp point. All the grasp points in a stage are then or-
dered based on the respective assigned costs. The procedure is re-
presented as PrioritizeNodes in Algorithm 1. We then use the generated
lower cost grasp locations as an initial guess for the gradient descent
step used in local assignment search. The heuristic significantly reduces
the computational cost. It allows us to generate good initial guess for
the gradient descent search during location assignment. A minimum
cost solution is then found with fewer iterations as opposed to exploring
the entire search space for the optimal solution. Additionally, prior-
itizing nodes helps us evaluate the grasp points which can have a lower
cost in the beginning of the algorithm. As a consequence, our algorithm
generates grasp plans with a low initial effort compared to randomly
selecting nodes.

The planner goes through all the stages and evaluate the nodes
which have the highest priority as determined by the ordering heuristic
in the first iteration. The first iteration provides an initial grasp plan

Fig. 15. Different stages in the backward tracking graph are illustrated. The available grasp points are marked by integers along the edges of the ply. Virtual partition
generated by the user deconflicts the regions handled by the robots. Separate graphs are generated for the robots. The graph generated for the robot 2 (RB2) is shown
here.

Fig. 16. (Left) Optimum grasp location (magenta) obtained using an initial
guess (black) in the local assignment search. Z and Y axes along which the state
space is discretized are shown. (Right) Behavior of collision and energy in the
local neighborhood of optimum grasp location. Global minimum (l*) is found
by a gradient based algorithm within the domain. Any step Δl leads to an in-
crease in the cost. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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having a low cost. In the successive iterations, steps 6 to 16 of the
Algorithm 1 are followed. We maintain a list of boolean values (1 or 0)
corresponding to each stage. All the members in the boolean list are
initialized to one. If a stage showed improvement in the previous
iteration (boolean value 1), Another node is evaluated from the top of
the prioritized queue. The path is updated (UpdateOrder) only if the cost
of the new path is less than the previous cost. The newly evaluated node
provides information to reprioritize the order of the nodes. We can
update this order using the new information at UpdateOrder. If the stage
does not show any improvement, a node is not evaluated in the next
iteration from that stage. The boolean value corresponding to the stage
is set in the list to zero. When all the members in the boolean list are
zero, and the stopping condition has not been met, we reinitialize all
the elements to one (lines 8 - 10 of Algorithm 1). This allows us to bias
the search towards evaluating more nodes from the stages that are
showing a reduction in cost.

This algorithm is used to find solutions for the grasp plans in each of
the two-state spaces corresponding to each robot separately in our case.
Consider the mold A shown in Fig. 17 as an illustration. The two in-
dependent solutions are found for robot-1 (RB1) and robot-2 (RB2). The
first two images show that only the unconformed particles in a robot’s
virtual partition are considered during evaluation. The unconformed
particles in the other robot’s partition are considered to be fixed at their
draped position during the simulation. The third image in the sequence
shows the combined solution, which is generated from the nominal
grasp locations. The ply collides with the mold so a state space search is
used to reposition the grippers of both the robots in order to minimize
the cost. Gradient descent is used to adjust for the grasp locations,
which gives us a solution shown in the fourth image.

6.7. Computational results

6.7.1. Test cases
We have tested the grasp planner on five different mold geometries.

Fig. 8 shows these molds and the fully draped plies on them. The molds
are inspired by industrial use cases. They cover the basic geometries
like single curvature to more complex concave and double curvature
geometries. We do not use the entire mold for draping the ply. A portion
of the mold around the perimeter is used for vacuum bagging, which is
a part of the curing process. These unused regions are visible on the
molds. The dimensions, link length, and the number of stages for each
mold are provided in Table 1.

6.7.2. Drape simulator
We will first discuss the results from the drape simulator being used

for determining the unconformed state of the ply during the process.
Shear and bending energy relationships to be used for the simulation
are determined. For shear, we have used the bias extension test data,
which generates the force (F) vs. deflection (dS) curves. The shear en-
ergy relations is found using the equation =U FdSshear . Bending en-
ergy, on the other hand, is found by using the beam theory. Different
samples of prepreg are used to find the 1-dimensional bending under its
own weight. The bending energy for a cantilever beam is given by the
equation =U FL EI/(6 ),bending

3 where F, L, E, and I are the force applied,
lever arm, young’s modulus, and the moment of inertia respectively. We
determine the bending angle at discrete points along the length of the
sample and compute the energy stored for that point. This gives us the
bending energy relationship. Exponential function is used to best-fit the
data collected from the experiments to estimate these relations. The
shear and bending energy relationships with respect to the respective
radian angles are given in equation 4 and (5) respectively.

=U e9.132* *shear
( 4.485 )shear (4)

= +U e e
e

1.124 10* *
0.06109* *

bending
( 15.34 )

( 1.1386 )

bending

bending (5)

The spring potential energy is adjusted to simulate the ply as closely
as possible for different test cases under various conditions of grasping.

1: G ← GetGrspPts(Wd)
2: PriorQ← PrioritizeNodes(Wd,Mv, ~P)
3: path← GenInitialPath(G,PriorQ)
4: iter ← 0
5: boolList← Identity(sizeo f(W))
6: while UntilConvergencedo
7: for s ∈ [0,W] do
8: if isZero(binList)then
9: binList← Identity(sizeo f(W))

10: end if
11: if binList(s) then
12: path← U pdatePath(G,W,PriorQ, ~P)
13: PriorQ← U pdateOrder(PriorQ, path,G,W)
14: end if
15: end for
16: end while

Algorithm 1. GenGraspPlan( P, ,d v ).

Fig. 17. (Left to Right) Independent solutions obtained for robot-1 (RB1) and robot-2 (RB2), ply state simulated for combined solution obtained from the nominal
grasp locations, solution improved using a state space search using the nominal grasp locations.

Table 1
Dimensions, length of each link in undeformed mesh, and number of stages
excluding the stage-0 are provided.

Dimensions (mm) Link length in
undeformed mesh (mm)

Number of stages
excluding stage-0

Mold Length Width Height
A 500 450 200 32 4
B 440 220 140 20 8
C 570 570 110 25 16
D 300 300 56 15 12
E 820 570 75 40 19
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Plies used to tune the simulator are 250 × 250 mm and 500 × 250 mm
in size. The current version of the simulator is implemented in C++ on
a computer with an Intel Xeon 3.50GHz processor and 32GB of RAM.
Fig. 18 shows the computation time for producing a solution state of the
ply relative to the number of free particles in the ply. We can observe a
linear increment in the computation time for the simulation with re-
spect to the number of free particles. As numerical gradients are used in
the current version of the implementation, the simulation times are
high. This leads to high planning times. With analytical gradients and
an adaptive mesh-based model, we can significantly reduce the simu-
lation time.

6.7.3. Computational performance of grasp planner:
We benchmark the grasp planner with a brute force approach where

all the nodes are evaluated to find the optimum solution. The time
taken for evaluating each node is recorded by taking the average time
for all simulation runs in the local assignment search. We present the
number of nodes evaluated and the computation time taken for both the
robots. Table 2 shows these results. The brute force approach is labeled
as the baseline approach we are benchmarking against. The number of
nodes reported is the total number of grasp points present in all the
stages in the graph. MATLAB was used for the implementation of the
grasp planner. We used parallel processing with 4 cores during the local
assignment search to explore the discrete state space, which reduced

the overall computation time. The location assignment search essen-
tially uses drape simulations.

We compared the cost of the initial grasp plan generated by using
the ordering heuristic with a randomly generated path. Table 3 shows
the comparison. We can observe that the initial grasp plan costs are
lower for our approach as compared to randomly generated paths. The
initial grasp plan costs are also closer to the optimum costs, as reported
in the table. The heuristic can provide initial plans that are closer to the
optimum, which further reduces the computation time to find the op-
timum solution.

Fig. 19 shows the solution obtained for mold C. As we mentioned
earlier, the stages are numbered in ascending order from the root node.
The root node is the fully draped ply in a backward tracking search. We
report the solution obtained in simulation for both the robots in the
order of the drape sequence. Particles in the conformed regions are
highlighted in blue, unconformed ones in green, and the grasp point is
highlighted by a magenta marker. We can see the regrasps that occur
during the process.

6.7.4. Scalability
The molds we have used range from smaller to medium-sized geo-

metries. For instance, mold A has only 4 stages in the graph excluding
stage-0 with a total number of 22 nodes. Mold E, on the other hand, has
19 stages and 300 nodes for robot-1. However, the computation time
reduces as compared to the brute force approach by around the same
factor for these molds. This shows that if we increase the size of the
molds to larger-scale dimensions of over 2 m, our approach will still
evaluate a fewer number of nodes for generating the plans.

We can also have the same number of grasp points, even with a
higher mesh density. This is because the gripper will physically hold the
ply using a 10–15 mm edge length. So even if the cell size in the mesh is
5 mm, we can combine more particles instead of two particles as used in
our approach to create a grasp point. However, as the number of grasp
points increases, the computation time increases.

We will now discuss the second important planning problem to
automate the composite layup process. Once the drape and grasp tool
paths are computed, we need to ensure that the robots are reachable
and satisfy all constraints. The robot placement algorithm finds suitable
placements as a solution to the problem.

7. Algorithm for robot placement

7.1. Background

The position of a body is defined by the < x, y, z > components
along the X, Y, and Z axes of a Cartesian frame. A quaternion vector

Fig. 18. The simulation time (seconds) for one simulation run vs the number of
free particles in the unconformed region of the ply.

Table 2
Comparison of the baseline approach with our approach. Results reported are for robot-1 and robot-2.
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< q0, q1, q2, q3 > is used to describe the orientation of a body. Rigid
body motions are described by attaching a frame to it. A frame is es-
sentially defined by Cartesian coordinates to represent its position and
unit direction vectors bx, by, bz along the X, Y, and Z axes, respectively.
These unit direction vectors can also be used to obtain the orientation of
the frame with respect to a reference frame. In this work, we will use
the color scheme red, green, and blue to illustrate the unit vectors bx,

by, bz for a frame. We use a homogeneous transformation ATB to re-
present a frame B with respect to another frame A [17].

The CAD model of the mold is used to generate the tool paths for the
draping and the grasping robot. The set and comprise of all the
tool paths for the draping and the grasping robot respectively, where

= =S S S S S S{ , , , } and { , , , }d g1 2 1 2 . Sd and Sg are represented
as a set of waypoints. For simplicity, we describe a kth path using a set

Table 3
Comparison of the cost of initial grasp plan for using ordering heuristic and random generation. The percentage reduction in the initial path cost
when using ordering heuristic for both the robots is provided.

Fig. 19. Simulation of the solution obtained for mold C. Particles in blue are part of the conformed region. Particles in green are unconformed. Grasp point at the
assigned location is highlighted by a magenta marker. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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of waypoints …w w w{ , , , }k k
i
k

1 2 . The number of waypoints i can be dif-
ferent for the paths. The path can belong to either of orD G. Each
waypoint represents the pose (position and orientation) in which the
robot end-effector will need to align itself. Waypoints are defined in a
local frame attached to the mold.

A manipulator (i.e., a robot) is fully defined by identifying its joint
configuration in the configuration space. For an n-DOF manipulator, n
joint angles will represent the joint configuration vector

= { , , , }n1 2 . Joint velocity and the joint torques are represented
as and respectively. We attach a tool center point (TCP) frame to
the tool or end-effector of the robot. Robot aligns this TCP with the
waypoint within some tolerances while executing the tool paths. We
will be using the words workpiece and the mold interchangeably in this
work.

A robot needs to be placed with respect to the workpiece such that it
is reachable in position and orientation. Process constraints also need to
be met. Solving the problem becomes challenging, as the workspace of
a robot is limited. The constraints also have complex interactions be-
tween them. For instance, the regions where a robot can apply large
amounts of force may be limited by the magnitude of velocity it can
sustain.

The robot must also meet the process constraints and avoid collision
and singularities. Another example is the continuity constraint, which
forces the robot to execute the paths without large joint angle changes.
Fig. 20(D) shows a workpiece on which continuity is violated by other
constraints that are satisfied. The constraints velocity, force, continuity,
collision, and singularity, are a function of the robot joint configuration.

A placement is feasible when joint configurations can be generated
for all the waypoints. We need to solve an expensive inverse kinematics
(IK) problem to find these joint configurations, which can minimize the
overall reachability error. We can perturb the workpiece pose in the
workspace of the robot until successful IK solutions can be obtained. We
call the solution thus obtained as an exact solution. In order to find this
exact solution, a non-linear optimization problem calls the IK function
for cost evaluation. However, this problem is computationally in-
tractable due to the following reasons. Any optimization algorithm is
susceptible to local minima. All constraints have variations in the
workspace of the robot. Depending upon the initial placement, the
gradient can strongly lead to regions where one or few constraints are
satisfied. The region where a solution exists can also be far from the
initial guess, and it may take several iterations before it can be found. A
large number of initial samples will, therefore, be required to be tested

before one closer to a feasible configuration space region is generated.
Such a sample will then lead to the solution. As for the size of the paths
and DOF of the robot increase, the computational complexity of this
problem gets intensified.

Fig. 20 illustrates this concept using bad workpiece placements. In
the figure, A shows a part that is not reachable in position, so a large
number of iterations are required to glide it into the workspace before a
local minimum is found near the boundary where constraints are not
satisfied. In B, C, and D, the part is reachable in position and orienta-
tion, and hence, feasible joint configurations exist. But the collision,
velocity, and continuity constraints are not upheld, respectively.

The problem of workpiece placement has a 6-dimensional Cartesian
state space. But, manufacturing processes like the composite ply layup
involve the use of a large and heavy mold. Often due to physical con-
straints or to avoid using special fixtures, the mold is placed on the floor
or table, and robots can be placed around it. This limits the DOF of the
mold in the workspace to only 3 dimensions < x, y, q0, 0, 0, q3 > .
< x, y> is the translation along the horizontal plane (floor or a table)
and < q0, 0, 0, q3 > describes the rotation of the mold about a
vertical axis Z of the global reference frame. The state space in an IK
problem to evaluate the reachability of the robot will be dependent on
the DOF of the robot. For our case, we use a KUKA iiwa robot having
7DOF. So the configuration space has 7 dimensions to it. Our approach,
however, can be used for robots having more than 7DOF as well.

7.2. Problem formulation

We need to identify the homogeneous transformations of all the
robots with respect to a reference frame. We take the world frame as a
reference frame for the cell. The world frame coincides with the mold
reference frame. The spatial transformations are written as WTM, WTD,
WTG1, andWTG2 for the mold, draping robot, grasping robot-1, and
grasping robot-2 respectively. WTM is identity. D, G1, G2 are the robot
base frames. We can then represent the mold in any robot frame using
the equation =T T T* ,R

M
W

D
W

M
1 where R is the base frame of a robot.

This will describe the pose of all waypoints in the robot base frame.
Robot trajectories can then be generated by solving the inverse kine-
matics (IK) problem and finding the configuration Θi for an ith way-
point. All constraints, including the process constraints, are enforced
while solving the IK and a feasible trajectory that satisfies the con-
straints will exist when joint configurations can be found for every
waypoint in the tool paths. We are interested in finding the spatial
transformations WTM, WTD, WTG1, WTG2, given the robot description
(robot), CAD model of the mold, and the process requirements. We
formulate this problem as follows:

=find T b M D G G
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Here, g h( ) and ( )i
k

i
k represent the inequality constraints for the

ith joint configuration in the trajectory corresponding to the path Sk.
The motion of the mold is restricted to a feasible set of f . f comprises
of a feasible position in XY plane and orientation about Z that the mold
can take. If necessary height adjustments are available, an additional
translation along the Z-axis can be permitted.

7.3. Capability map

Explicit generation of capability maps can significantly improve the
computation time for the robot placement (see Section 7.4 for details).
This section will discuss the approach for generating capability maps.

Capability map captures the position and orientation information
of a manipulator throughout its workspace. This map can be used as an
approximation to the positional and orientational reachability instead

Fig. 20. (A) Waypoint are out of robot workspace. (B) Collision constraint is
violated. (C) Velocity is not met. (D) Discontinuity exists in a path.
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of computing an exact IK solution. The robot positional workspace
boundaries can also be explicitly defined using this map. The position is
encoded in a discrete approximation of the workspace. In order to
generate the map, one can solve an expensive IK problem over uni-
formly sampled orientations for every discrete position in the work-
space and mark the reachability in the underlying data structure.
However, computing a high fidelity map can be expensive, and there-
fore, we randomly sample joint configurations to obtain reachable or-
ientations of the robot.

1. Sampling in Configuration Space: A randomly sampled joint config-
uration gives the position and orientation of the robot flange with
respect to the robot base in the workspace. The position can be
mapped to the nearest discrete voxel in the space. Fig. 21 illustrates
the TCP attached to the robot flange and its nearest voxel as a green
cube. TCP orientations are represented with the unit direction vec-
tors < bx, by, bz> along the X, Y, and Z axes of the flange frame.
The orientations can be appended to the list of previously sampled
orientations in the voxel. We also maintain a list of manipulability
indices for all sampled configurations in the corresponding voxel.

2. Ensuring uniformity: As the position and orientations are randomly
sampled; we need to examine the neighborhood of all the voxels in
the workspace. If the neighboring voxels of the voxel in considera-
tion have a higher number of samples, then we improve the density
in that voxel by solving IK over sampled orientations. These or-
ientations are uniformly sampled on a sphere with the position of
the sparsely populated voxel as the center.

3. Sampling near workspace boundaries: To ensure that a voxel is un-
reachable at the workspace boundary, we solve IK over uniformly
generated orientations in the boundary voxels and guarantee that

the voxel is truly unreachable. This distinctly identifies the work-
space boundary for the robot.

4. Generalizing orientations to axis-angle: All the unit vectors along the
X, Y, and Z direction of the flange frame for the reachable orienta-
tions are captured for each voxel. A set of unit vectors along a un-
ique direction X or Y or Z can be represented by using a principal
axis and two angles β1, β2. Fig. 22 shows the cross-section of a unit
sphere and few of the sampled orientations along the Z-axis that are
sampled in a voxel. β1 and β2 mark the inclusive region relative to a
principal axis, which encloses all the orientations reachable in that
voxel. β1, β2 ∈ [0, π] radians. Thus when the queried orientation lies
in between these angles, it is marked reachable by the robot. In
terms of storage, we need to store the principal axis and two-radian
angles from the actual map. Thus the used occupies very low
memory. The map we generated for KUKA iiwa 7 robot occupied
5398 KB of memory.

5. Filtering singularities: We can compute the average manipulability
index of the robot for every voxel. Fig. 23 shows the variation of this
index throughout the workspace of the robot. We can explicitly filter
the voxels having a low manipulability index and omit them from .
This can avoid placing the part in regions where the robot will hit
the singularity.

is computed for the robot flange. It is not required to compute the
map again when a tool is attached. We can use a rigid body transfor-
mation to obtain the pose of the flange given the pose of the tool. As the
map needs to be pre-computed only once for a robot, computational
performance of the algorithm is not affected. We also present some
results which show the benefits of using by benchmarking the com-
putation time required to access the map compared to solving an IK
problem. One thousand folds improvement in efficiency is obtained.
Table 4 shows two types of comparisons. We first check if a randomly
sampled feasible configuration is reachable in . We tested against 1
million samples, and the map was successfully able to verify all solu-
tions. This confirmed that no information was lost while representing
the sampled orientations by an axis and two angles β1, β2. Next, a
random orientation is sampled and verified if an IK solution existed. For
50,000 sampled orientations, we observed about 3% overprediction by
the map. This map is taken as an input in our approach. We will now
discuss an overview of our approach with a block diagram.

7.4. Overview of approach

Fig. 24 shows the block diagram for our approach. We have a two-
layered approach where the first layer quickly explores the workspace
of the robot for generating promising samples. Promising samples are
then passed to the second layer, which finds an exact IK solution to the
problem under constraints (Generate exact solution in the block dia-
gram). The generation of promising samples uses the capability map to

Fig. 21. TCP attached to the flange represented by three unit direction vec-
torsalong X, Y, and Z axes. Nearest voxel to the position of TCP is illustrated by
a cube.

Fig. 22. Cross section of a sphere showing a few sampled orientations along the
Z axis of the flange TCP in a voxel. A principal axis and two angles can represent
these vectors collectively.

Fig. 23. Variation of the manipulability index throughout the robot workspace
is shown. A higher manipulability index is desirable to avoid singularities.
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approximate the solutions without solving IK. This layer can quickly
prune regions of the workspace where solutions may not exist. The
promising samples are passed to the second layer, where IK is solved to
generate an exact solution. If a solution does not exist, then the next
promising sample is chosen. Discussion of layer-1 or generation of
promising samples is done in Section 7.7.1 and layer-2 is discussed in
Section 7.7.2.

In addition, we also exploit the semi-constrained motion of the tool
TCP over the mold. The DOF required by the process is less than the
DOF of the robot. In our case, the process demands the only 5DOF, and
the robot has 7DOF. In such cases, the tool paths are semi-constrained,
and the chances of finding an IK solution increase. Tolerances at the
tool TCP allow us to take advantage of semi-constrained tool paths. The
concept of tolerances is discussed in detail in Section 7.5. We in-
corporate these tolerances and generate the new waypoints and provide
them as an input to the first layer to generate promising samples (see
Fig. 24). The tool geometry is also exploited to assign different tool
center points (TCPs) for each waypoint (Assign tool center point in the
block diagram in Fig. 24). If we use a different TCP for waypoints, the
reorientation of the flange is reduced, which improves the probability
of finding solutions. The tool TCP assignment is discussed in detail in
Section 7.6.

7.5. Tolerances about the TCP

We define the concept of 1-axis and 2-axis tolerances. Fig. 25 il-
lustrates these tolerances. For 1-axis tolerance, we use the example of a
roller tool used for the composite layup process. A TCP is shown at-
tached to the roller at its bottom. The roller must align the unit direc-
tion vector Y (green) axis of the TCP with the corresponding axes of the
waypoint. But due to the cylindrical geometry, it can align the Z-axis
(blue) within some radian angle tolerance. This generates a 2D toler-
ance cone at the TCP. Similarly, some tools can have tolerances about

two unit direction vectors, as well. 2 axis illustration in the figure shows
an example of a probing tool where the objective is to make contact at
the tip of the tool. The orientation of the tool TCP does not really matter
in this case. TCP of the tool generates a 3D tolerance cone.

We need to incorporate the tolerances with the approximate and
exact layers of finding placement solutions. We discuss the method for
incorporating tolerances in IK in detail in Section 7.7.2. We will first
discuss how we can query the capability map and use it with tolerances
to generate promising samples. In the case of tolerances, a set of dis-
crete orientations can be defined within the 2D and 3D tolerance cones.
As the robot reorients the end-effector within the tolerance cones, the
flange traverses the corresponding set of voxels in the capability map.
The flange traverses a 2D arc and a 3D surface while orienting the end-
effector within the 1 and 2 axis tolerance cones. Fig. 25 illustrates this
concept. A 2D arc is traversed when using the roller for composite layup
application. This arc will correspond to a set of voxels in the capability
map. All these voxels are then queried for the corresponding discrete
orientation vector. As the same waypoint can now be approached from
multiple orientations, feasible configuration space increases. As a result
of this, the probability of finding solutions improves.

7.6. Assign tool center point

For simplicity, we consider that the roller will make line contact
with the mold. A TCP is assigned on its surface, which is aligned with a
waypoint on the mold. This TCP will lie at the center along the width of
the roller. We can generate more TCPs along a circle formed by the
intersecting a plane passing through the center of the cylinder and the
cylindrical surface. This circle can be seen on the roller tool surface in
Fig. 26. Finally, we discretize this circle into points located 10∘ apart
from each other. These discretized points, along with their respective
coordinate frames, are seen in Fig. 26. The z-axis of the coordinate
frames at each of the discretized points is pointing in the outward radial
direction, and the x-axis is in the tangential direction.

It is common to use different TCPs for different tasks. In this work,
we developed an approach to automatically assign different TCPs along
a path so that the robot can be reachable throughout the path. We vary
the TCP that is used for a waypoint while executing a path. Consider the
analogy to a human operator holding a tool and performing a task. The
operator minimize the orientation change about the wrist, and

Table 4
Table illustrates if a feasible orientation can be verified by the capability map. 1 million joint configurations are randomly sampled. All are verified by the map.
Results on comparing the prediction of the map with an IK solver are provided. 50,000 random orientations are used for this test.

Capability Map Prediction Accuracy

No. of Reachable Samples % Reachable by Map No. of Random Samples % Reachable by Map % Reachable by IK % Over-prediction
1 Million 100 50,000 33.42 32.4 3.05

Fig. 24. Architecture of the robot placement algorithm illustrating the different
blocks used.

Fig. 25. 1 and 2 axis tolerances are shown. The Z axis of the TCP of the roller
tool traces a 2D cone and Z axis of the TCP of the probing tool traces a 3D cone.
Voxels traced by the flange corresponding to the orientations in the 2D and 3D
cones are shown [61].
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unknowingly change the TCPs that come in contact with the workpiece.
If we can minimize the orientation changes at the flange TCP, the robot
reachability will increase. Fig. 27 shows two different paths executed by
the flange. A shows the path which uses a single TCP throughout the
path, and we can see that the flange has drastic orientation changes. B
shows the case where the flange performs a smoother motion. The
probability of the robot meeting constraints in such a case is higher. We
need to find a TCP for each waypoint such that any collision between
the tool and the mold is also avoided. We solve the problem given by
the Eq. (6) in order to find the right sequence of TCPs along the path.
More details about our work in this area can be found in [8].

=

sq OriCost sq tool

s t CollisionCost

arg min( ( , , ))

. . 0

opt
sq

v

(6)

Where sq is the sequence of TCPs, OriCost is the orientation change
cost of the flange, the tool is a spherical approximation of the tool used
for collision checks, and v is the EDT map of the mold. We solve this
problem by using a state space search. We will now describe the steps in
the algorithm used.

1. Node selection and edge creation: A directed acyclic graph is formed of
nodes and children nodes. The edges represent the relationship be-
tween the parent and child nodes. In our case, each sampled TCP of
the tool at a position waypoint is represented using a node. The
edges connect each parent node at a position waypoint with all the
children nodes at the next consecutive waypoint, and they are di-
rected in the same direction (see Fig. 28). Here, the total number of
nodes in the graph is equal to the number of nodes at each waypoint
× the number of waypoints. And the number of directed edges
connecting the nodes in the graph is equal to (the number of nodes at
each waypoint)2 × (the number of waypoints-1).
For a point-contact tool, different orientations of the tool represent
the nodes at a waypoint. But for the roller tool along with different
orientations of the tool, we can change the location of the TCP origin
over the tool contact line (see the orange arc in Fig. 26). This allows
us to have the ability to perturb the TCP position along with reor-
ienting them. It makes the graph generation computationally ex-
pensive, but it allows us to have better setup placement using the
best TCP for a waypoint.

2. Cost Representation: Each of the edges has an associated cost for
traveling from the parent node to the child node of the edge. In our
case, if a collision is occurring between the tool and the mold at the
child node, we assign the edge at a very high cost. If there is no
collision, the cost is equal to the angle between the unit Z vector bz
of the flange TCP, and a vertical Z-axis is taken as a reference. This
allows us to have the robot end-effector always facing down.
The collision detection between the mold and the tool is determined
using the EDT map. In our case, we approximate the tool surface
using a set of spheres (see Fig. 29). The mold is represented by
voxelising the environment v. The tool collides with the mold if
the closest voxel on the mold is intersecting with a sphere re-
presenting the tool.

3. Initialization and shortest path determination: The shortest path algo-
rithm (e.g., Dijkstra) is initialized with each node of the first

Fig. 26. The three step process showcasing the sampling of the tool surface to generate TCP candidates for the TCP assignment/selection algorithm.

Fig. 27. A) The tool flange orientation change with out the TCP selection al-
gorithm B) the tool flange orientation change (minimal) with the TCP selection
algorithm.

Fig. 28. Illustration of the acyclic directed search graph used for TCP selection
([8]).

Fig. 29. Illustration of the of tool body approximation using spheres and the
mold body approximation using voxels [8].
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position waypoint, and it is terminated once it reaches any node on
the final position waypoint. The path with the lowest cost among all
these shortest paths is the global minimum for the designed graph.
Moreover, if the path exists, the algorithm will guarantee the lowest
cost path with no collision.

7.7. Solution strategy based on successive application of constraints

7.7.1. Layer-1: Generate promising samples
The constraints which are considered in this layer are position, or-

ientation, a tool to mold collision, and singularity. Fig. 30 shows the
discrete Z orientations of a flange for a waypoint. These orientations are
obtained by traversing the TCP using 1 axis tolerance. Each orientation
originates from the center of a voxel. The robot flange needs to position
itself at the center of a voxel. The Z-axis of the flange should align with
an orientation vector. When the discrete orientations are generated
within the tolerance cones, the collision between the end-effector and
the mold is also checked.

We randomly generate a large number of samples in f . For every
sample, the waypoints on all the paths are transformed in the robot
workspace. We can then check if all the waypoints are within the
boundaries of the robot. Appropriate transformation can be applied to
the position and orientation of the discrete Z orientations in the toler-
ance cones. The orientations for which the tool collides with the mold
are marked in the underlying data structure and will never be used to
query the capability map. Fig. 31 shows a mold with the tool at three
orientations within the tolerance cone. Orientations in which tool

collides are marked in red. The tolerance cone size is adjusted based on
this collision data, and the tool never collides with the mold until the Z-
axis of tool TCP is within the tolerance cone. Exact IK evaluation will
include the collision of the robot with the environment.

All the voxels in the map are either reachable or unreachable. The
map captures the robot workspace boundaries. This will guarantee
that the waypoints will never violate the position constraint. Even
though the waypoints will be reachable in position, there will be vio-
lations in the orientation. For a tolerance cone, a voxel is queried for the
corresponding orientation vector. If it is within the cone represented by
an axis and two angles β1, β2, then the waypoint is marked to be
reachable. The total number of waypoints violating orientation con-
straint are computed for a sample in this manner. The generation of
these random samples is computationally inexpensive even though a
large number of orientations are present due to available tolerances. In
order to filter good placement samples, we provide the following two
scores to each sample. The number of waypoint violations and an
overall reachability score. Fig. 30 shows a number of orientations for
the flange within a tolerance cone. The overall reachability for this
tolerance cone will be the number of collision-free orientations reach-
able in the capability map. Overall reachability score over all the
waypoints is the total number of orientations reachable in all the tol-
erances cones combined. The two scores are different as a waypoint is
reachable even if one orientation in its tolerance cone is reachable. A
sample can have higher overall reachability, but one waypoint is not
reachable. So our objective is to have samples that have zero waypoint
violations and high overall reachability.

High overall reachability implies that a number of orientations are
feasible for the given waypoint, which will improve the probability of
the existence of a solution. The randomly generated samples are then
sorted based on these scores and selected for further refinement. A state
space search is conducted in the feasible workspace f using a pro-
mising sample. If the number of waypoint violations is not zero, we can
minimize these violations and maximize the overall reachability using a
state space search. In our implementation, we used a simple gradient
descent technique where feasible neighboring states of the sample are
explored. If a potentially better sample is present, we modify the cur-
rent sample. We iterate until a local minimum is reached.

In addition, we can also formulate a multi-objective function for
maximizing a performance measure along with overall reachability.
Kinematic and dynamic manipulability are two popular measures in
use. These measures are stored while computing . Manipulability over
a waypoint can be estimated by considering the manipulability in the
set of voxels made within the tolerance cone. The promising sample
(x ,init where x is a pose of the mold with respect to the corresponding
robot base) generated by this approach, is then passed to layer-2 for
checking if an exact solution (IK) exists.

During the computation of the map , we also compute the Jacobian
of the robot at the sampled configuration. The Jacobian not only pro-
vides a means to compute the performance indices, but the maximum
achievable velocity vector can also be computed. MVR (manipulator
velocity ratio) is based on this concept. A set of the magnitude and
direction of such velocity vectors is stored for a given voxel. A similar
approach is followed for storing the force-moment vector. This gives us
an upper bound on the velocity, which can be achieved by the robot.
Given a manufacturing process constraint of velocity and force, our
algorithm can guarantee that a solution will not exist if the robot is not
capable of meeting the requirements. The algorithm will also guarantee
that all the waypoints are within the robot workspace boundary as the
boundary is explicitly identified in the map .

7.7.2. Layer-2: Generate exact solution
Finding an exact solution involves solving a non-linear optimization

problem in the configuration space for every waypoint in a path. We
propose a path-constrained trajectory planner that will evaluate
reachability over the paths by enforcing the constraints. All the

Fig. 30. Discrete orientations for the flange are sampled for a tolerance cone
corresponding to a waypoint on a mold. The roller TCP is rotated at discrete
angles defined within tolerances to get these orientations.

Fig. 31. Three orientations for the roller are shown within a tolerance cone.
The orientations in which the roller can collide are discarded.
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waypoints are transformed with respect to the base of the robot. An
optimization problem given by the Eq. (7) is solved to find the joint
configuration i

k for the ith transformed waypoint in the kth path.

w T robotarg min( ( , , , , ))i
k

guess i
k R

M (7)
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(8)

Here, returns the error in the pose of the roller TCP attached to
the robot and the waypoint. The TCP used for the waypoint in con-
sideration is obtained from the TCP assignment routine. is found by
using the expression e′*W*e, where e′ is the transpose of vector e. Error
vector e is a 4 × 1 vector constituting the following components. Three
components of the error in position and one component of error in Y
orientation. Let bx, by, bz be the unit direction vectors of the TCP and
wx, wy, wz be the unit direction vectors of the waypoint on the surface
of the mold. Thus error in the orientation of the Y-axis is given by

by wy1 ,T where by′ is the transpose of vector by. We need to account
for tolerances while computing the orientation error. As described
earlier, the Y axes of the TCP of the roller must align exactly with the
corresponding axes of the waypoint. There is some tolerance in the
angle which the unit Z-direction vector of the roller TCP can make with
the Z-axis of the waypoint. Eq. (8) takes care of the tolerance in Z-axis
alignment, where toleranceangle is the radian angle between the two-
unit Z-direction vectors.

Θguess is an initial guess passed to the algorithm. We pass the joint
configuration of the previous waypoint in the path as an initial guess.
g h( ) and ( )i

k
i
k are the inequality constraints enforced.

lb ubandi
k

i
k are the corresponding lower and upper bounds. We will

now discuss smooth constraint violation functions that we propose to
compute the hessian and gradient for the non-linear optimization pro-
blem. Following is the list of constraints enforced and the corre-
sponding functions used.

1. Configuration Space Constraints: The joint angles, joint velocities, and
joint torques of the robot are limited within the upper and lower
bounds. Equations , , andlb ub lb ub lb ub
enforce these inequalities.

2. Instantaneous Velocity Constraint: We need to ensure that the robot
must meet the minimum desired velocity while executing the paths.
For a waypoint w ,i

k we can apply a rigid body transformation to find
the corresponding robot flange pose fi

k. An instantaneous velocity
vector vi

k can be defined directed from fi
k to +fi

k
1. vi

k is comprised of
position and orientation velocities. i

k should be such that the robot
can achieve the instantaneous velocity required at the waypoint wi

k.
A Jacobian matrix is used to express the differential kinematics of
the robot. We can define the instantaneous velocity constraint at any
configuration by the equation vlb i

k
ub

† . † is the Moore-
Penrose pseudoinverse.

3. Transition Velocity Constraint: Instantaneous velocity constraint does
not ensure if the joint velocity is sufficient enough to transition from

i
k

1 to i
k. We introduce a transition constraint for this purpose. Let

ti
k be the time taken by the robot to transition from wi

k
1 to wi

k. As the
velocity required by the process is provided, we can find the time
taken for a small segment of the path traced in between these
waypoints. Using this t ,i

k we can give the equation for transition
constraint as:

j n t, ( )/i
j

i
j j

i
k

1 (9)

Here, j is the magnitude of the maximum velocity of the jth joint in
the configuration. n is the DOF of the robot.

4. Continuity Constraint:We need to avoid any large joint angle changes

while executing the paths. The Jacobian matrix can be used for two
close configurations are similar. We use pearson’s correlation coef-
ficient [16] between the Jacobian matrices at consecutive config-
urations i

k
1 and i

k to enforce the continuity constraint given by
the equation correlation ( , )i i1 .

5. Force Constraint: The robot must apply the desired force on the path
which is being executed. The Jacobian matrix establishes the re-
lationship between the joint torque vector τ and the force moment
vector F at the end-effector. Assuming the inertial effects to be
negligible under constant velocity, we use the Jacobian matrix to
enforce the constraint on the joint configuration of the robot. The
force constraint can be given by the equation Flb

T
ub.

6. Collision Constraint: We model the robot and the roller tool using a
set of spheres. This approach is inspired by the work done in [84].
An EDT map is computed for the environment for faster collision
detection. We then enforce the constraint given by the Eq. (10) over
all the representative spheres.

Spheres clearance d r, ( ) 0 (10)

where clearance is the minimum clearance between the rigid bodies.
d is the minimum distance of the corresponding sphere, and r is the
radius.

7. Singularity: Manipulability index σ [95,96] is used to keep the robot
away from singularities. We can analytically compute this index at
any given configuration using the equation det J J( , )T . We use the
equation + 0 to enforce the singularity constraint at any
configuration.

A solution, if exists, may not be found by the optimization algorithm
solving the Eq. (7) if all the constraints are enforced at once. In our
approach, we apply the position, orientation, and continuity constraint
first to guide the end-effector in the region where position and or-
ientation constraint is guaranteed to be satisfied. Continuity constraint
is more relaxed as it directs the algorithm to find a solution in position
and orientation regions, which is closer to the previous solution. Sin-
gularity constraint, on the other hand, will truncate the region to avoid
singular solutions. So continuity and singularity constraints are applied
along with position and orientation.

We then apply velocity and force constraints. The constraint which
imposes the most restrictions is the collision constraint. Due to complex
geometries, the tool is likely to collide with the mold. So we enforce the
collision constraint in the end, which will have the smallest feasible
region. We show how such an approach can be better in terms of suc-
cess rate and computation time in the results section. However, even
after using a successive application of constraints strategy, it is not
guaranteed to find a solution if it exists. It is highly dependent on the
initial guess used in the optimization algorithm. If the initial guess is
closer to a region where all the constraints except one are being sa-
tisfied, the algorithm can get stuck in the local minima.

In the second layer, we solve a non-linear optimization problem
given by the Eq. (11). is the aggregated pose error over all the
waypoints for a given workpiece placement. x represents the pose of
the mold with respect to the robot base in consideration. xinit is the
promising sample generated by layer-1, which can be passed as an in-
itial seed to the algorithm. However, the evaluation of is compu-
tationally expensive. The function essentially solves for IK problem
we described earlier under constraints. Every constraint evaluation
function will require evaluation of the forward kinematics, Jacobian, its
inverse, and collision detection. These evaluations are expensive, which
causes the overall time to be higher. In our previous work in [61], we
show the computation time taken for a workpiece used in composite
layup using this approach is high. Hence for this work, we propose a
different routine for bringing the time taken to find a solution within
reasonable values. The exact evaluation of reachability will be used
only to see if a trajectory can be generated using xinit. As soon as the
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trajectory fails at a couple of points, we terminate the evaluation and
use another sample generated by layer-1. In practicality, layer-1 runs in
parallel generating promising samples, and they get evaluated by layer-
2. We propose an anytime algorithm that will keep generating solutions
until some time-bound or the user has found a placement that is con-
venient to be used. The only drawback of this approach compared to
using a non-linear optimization to perturb the workpiece pose in the
neighborhood is that a solution that would have existed can be missed.
For instance, if the promising sample required a small fine-tuning in
order to make the trajectory feasible, using a state space search or
optimization routine can be useful. One can couple a state space search
as well. Although generating promising samples is computationally
inexpensive and for complex workpieces, our proposed approach works
well.

x x x robotarg min( ( , , , ))R
M

x
init (11)

7.8. Using the algorithm to place the robots

7.8.1. Draping robot placement
The tool path followed by the draping robot is more complex

compared to either of the grasping robots. The tool paths are on the
mold and can have higher curvatures involved. The collision between
the roller and the mold is another challenge. Draping robots must also
apply the necessary force while executing the paths at prescribed ve-
locity. All the constraints described earlier will be applied when gen-
erating trajectories for the draping robot. We first place the draping
robot in the cell. The world frame is coincident with the draping robot.
We then find the transformation WTM using our approach.

7.8.2. Grasping robot placement
The placement of the grasping robots is different from the draping

robot placement. The grasping robots need to apply a force that has
very small magnitude and can be neglected during trajectory genera-
tion. This force is primarily required to keep the ply under some tension
in certain regions. The paths do not make contact with the mold and are
geometrically simpler. Most of the paths that are required to reposition
or regrasp the gripper are straight lines. Another major difference exists
due to the fact that is grasping robots are always under impedance
control. The trajectory of the grasping robot will be altered in the vi-
cinity of the initial trajectories in order to take care of contingency. A
feasible placement must enable the robot to reach the grasp locations
computed by the grasp planner. In addition, we need to increase the
probability of the grasping robot being able to execute modified tra-
jectories.

Our algorithm discretizes the space around grasping locations using
a three-dimensional array of cubes called voxels. We then define a
neighborhood , which will encompass the regions where a modified
trajectory could exist. is essentially a set of voxels around the mold
under consideration. Fig. 32 illustrates a mold with voxelized space
around it. The voxels in are shown in red. A repositioning or re-
grasping tool path can be mapped to the corresponding voxels. So for
every grasping path, there is a discrete set of waypoints along the path.
These waypoints are mapped to the centers of their corresponding
voxels. Fig. 32 shows the computed tool path for the gripper mapped to
the corresponding voxels illustrated with white lines. We can then use
these waypoints and use our approach to find the suitable placement of
the robot. The figure also shows a possible modification to this tool
path, which can be required due to an online correction. We must en-
sure that the chances of generating feasible trajectories for such mod-
ifications are high.

Placements are found such that reachability is maximized in posi-
tion and orientation over . We account for this overall reachability
over in layer-1 of the algorithm, where then generate an approx-
imate solution. If all the voxels in are within the workspace of the
robot, will be reachable in position. In order to estimate the reach-
ability over orientation, a set of orientations is sampled in each voxel.
These orientations are sampled within a 3D cone called an approach
cone. Such approach cones are assigned to every voxel. An approach
cone will have a mean unit direction vector and sample orientations
around it within some angle. Fig. 32 illustrates this concept. The voxels
in are plotted in red, and their corresponding approach cones are
plotted in blue. We use the map to estimate if the position and or-
ientation are reachable. So we need to transform all the orientations in
the approach cones to the flange. Fig. 32 shows the voxels (red) and
approach cones (green) where the flange frame needs to be reachable.
Once a promising sample is found, having maximum reachability in
these approach cones, it is passed to layer-2.

7.9. Computational results

Six molds were used to test the algorithm. Five molds are identical
to the ones used to test the grasp planner. Fig. 33 shows the CAD models
of these workpieces. A sixth mold F was introduced to test our algo-
rithm against large workpieces having a vertical tool path. Mold D is
also used for physical experiments. The mold was machined from a
block created by adhering MDF (medium density fiberboard) plies to-
gether. The geometry of the mold is inspired by an industrial compo-
nent of a medium scale geometry. As the overall mold is
820 × 570 × 75 mm, it is beyond the reachability of the current robots
being used. Two patches of plies can be used to layup on the entire
mold. The dimensions of molds A, B, C, D, and E are the same as
mentioned in the computational results of the grasp planner. Dimen-
sions of mold F are 300 × 350 × 500 mm. The Cartesian velocity and
force constraints imposed by the process are 40 mm-s 1 and 40 N, re-
spectively.

Fig. 32. Voxels in a neighborhood of the grasp tool paths are shown as red
cubes. Approach cones (blue) for the gripper TCP and the corresponding ap-
proach cones (green) for the flange are illustrated. (For interpretation of the
references to color in this figure legend, the reader is referred to the web ver-
sion of this article.) Fig. 33. Workpieces or molds used for testing the part placement algorithm.
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We are primarily interested in the computation time and success
rate of finding a solution. The computations are performed using
MATLAB and C++. Path-constrained trajectory was generated using
C++ implementation. Generated placement is called as a sample while
presenting the results. The algorithm is benchmarked against two
baseline approaches. Baseline approach-1 generates some initial
random samples in the workspace without using the precomputed
capability map . We then use our algorithm in layer-2 for exact eva-
luation of this sample. The sample is declared as a solution if a trajec-
tory can be successfully generated. Baseline approach-2, on the other
hand, uses the exact evaluation algorithm as an objective function to
evaluate overall reachability across all the waypoints. A non-linear
optimization problem given by the Eq. (11) is solved to find a feasible
placement. We run the baseline and our approaches using 50 initial
samples.

Table 5 summarizes the average computation time in seconds and
the success rate for finding a solution for 50 random initial samples. In
the case of baseline approach-1, we terminate any further evaluation of
inverse kinematics if solutions are not obtained for at most two way-
points for a sample. The time per one sample is an average over all the
50 samples. However, we do not use a successive application of con-
straints strategy for solving IK. All the constraints are enforced at once.
We have also computed the average time taken to generate one feasible
solution on the basis of the success rate and the time taken per one
sample.

Similar results are provided for baseline approach-2. However, as
we are solving a non-linear optimization problem and for the objective
function to be continuous, we cannot terminate IK if solutions are not
obtained over at most two points. This drastically increases the com-
putation time as a single call for exact evaluation reachability over all
waypoints is expensive. The algorithm makes several such calls to
evaluate the gradient and hessian in order to generate iterates. The high
computation time for generating a single solution is thus justified. If a
solution exists in the vicinity of the random sample, the time taken is
substantially lower compared to the average computation time per
sample. It is because of the workpiece being at the boundaries of the
workspace; several iterations are required until the optimization algo-
rithm converges to a local minimum. In most of the cases, a solution is
not present in this local minima. This explains the high standard de-
viation in the data presented in Table 5 for baseline approach-2.

We can generate a promising sample using our approach in layer-1.
In our previous work in [61], we used the promising sample and solved
the non-linear optimization problem. Significant reduction in the
computation time and improvement in success rate was observed as the
non-linear optimization algorithm started with promising initial guess
within the workspace and away from the singularity. The molds used in
this work are bigger in size and more complex. As they have to be re-
stricted on a horizontal surface, the feasible space reduces. Table 5 also
shows that one is better off generating random samples until a solution
is found. As a result, our approach is based on testing a promising
sample using the exact evaluation function. If a trajectory exists, it is
declared as a solution; otherwise, a new promising sample is picked for

evaluation. The results for our approach are summarized in Table 6.
These results are presented for the placement of a draping robot. Layer-
1 comprises a generation of a random sample using and then max-
imizing overall reachability within tolerance cones and performance
measure, if any. The average computation time for a sample is pre-
sented for both stages. A successive application of constraints strategy is
used to enforce constraints while computing the inverse kinematics.
Even in this case, we terminate further evaluation of IK if solutions fail
intermittently. We can observe that the number of successful samples
out of 50 promising samples are higher for our approach. Despite, more
success rate, the computation time for layer-2 or exact evaluation is
lower. This is due to the fact that the constraints are applied succes-
sively instead of being enforced at once. The table also shows the im-
provement in computation time obtained against baseline approach 1
and 2.

Table 7 shows the benefits of using a successive application of
constraints strategy while solving IK. We have evaluated the average
computation time and success rate using three sequences of applying
constraints for 50 different placements. All constraints will be enforced
in constraint sequence-1. Constraint sequence-2 enforces all constraints
except collision. In constraint sequence-3, position, orientation, singu-
larity, and continuity are enforced first. The obtained joint configura-
tion is used as an initial guess, and IK is re-solved with velocity and
force constraints. If a collision occurs, the updated joint configuration is
used as an initial guess, and the IK is resolved with collision enforced.
IK is solved for all the waypoints in a path while computing these re-
sults. Table 7 shows that constraint sequence-2 provides significant
improvement in the success rate for finding solutions and some im-
provement in computation time per sample. Constraint sequence-3,
however, gives a significant improvement in computation time as well
as success rate compared to all constraints enforced. So we use con-
straint sequence-3 for our computations.

Placement of the grasping robots involves the need for solving IK as
only reachability must be ensured during the process. We use the
capability map to find promising samples where maximum approach
cones in the discrete voxels are reachable. We then use Ik to verify is the
grasp locations, and tool paths generated by the grasp planner are
reachable to find feasible placements. Table 8 shows these computation
times for different layers.

8. Experimental results

8.1. Physical experiment

We conducted physical experiments using mold shown in Fig. 34.
The figure also shows the draped region and virtual partition on the
mold used in our experiments.

Fig. 35 shows the different simulation stages of grasp planning.
Vertical motion of the mold with respect to the robots is allowed while
computing placement, which offers more reachability. Thus, the mold is
elevated in the physical setup. We first conveniently place the mold on
the table, and the robot placements are determined. The physical setup

Table 5
Average computation times (seconds) and success rate for baseline approaches based on 50 random initial samples used.

Average computation time (seconds) and number of successful solutions

Baseline Approach 1 Baseline Approach 2
Mold No. of

Points
No. of successful
samples

Avg. time to evaluate 1
sample

Time to generate 1
solution

No. of successful
samples

Avg. time to evaluate 1
sample

Std. Dev Time to generate 1
solution

A 524 1 2.45 122.43 20 1371.62 1329.71 3429.05
B 486 4 1.95 24.43 5 3237.86 1775.43 32378.60
C 470 1 1.42 71.14 40 364.67 738.13 455.83
D 479 3 2.72 45.38 18 1309.60 924.29 3637.78
E 357 7 1.86 13.29 40 62.62 97.70 78.28
F 413 3 0.93 15.43 15 1696.22 1983.71 5654.06
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is shown in Fig. 2. We set the temperature of the air to 45∘ C, force
applied to 35 N, end-effector stiffness along the X, Y, and Z axes to
3000,3000,2000 N-m 1 respectively, and the velocity of the robot to 15
mm-s 1. Fig. 35 also shows the stages during the layup process. The
grasping robots perform regrasps and reposition the end-effector ac-
cording to the plans generated by our algorithm. We assume that some
form of automation will exist to feed the pre-cut plies to the cell. In our
experiments, an operator aligns the sheet with mold edges and feeds the
edges of the sheet to the grippers.

There is some uncertainty between the simulated and the actual ply
state. If the grasping robots do not react to the excess tension in the ply,
the layup process may have defects. The grasping robots are therefore
set in a compliance mode. By that, we mean that the robots are under
impedance control mode, and if tension builds during execution, the
robots comply and reposition the end-effector along the direction of the
tension. This can prevent defects from forming during execution.
Fig. 36 illustrates the difference between a layup performed under
compliance and without compliance. We observe a high-cost ply state

when robots do not comply and defects are present in the layup. On the
other hand, compliance mode leads to reduced defects.

Even under compliance mode, there are small defects like a wrinkle
that appears. The system analyzes this defect and calls for human in-
tervention. The operation is halted and a human repairs the defect after
which the operation can be continued. The grasping robots maintain
their locations under compliance mode. The operator can adjust these
locations if required while intervening. The grasping robots resume
from new locations. Fig. 35 illustrates such a defect that was generated
and was repaired by the human operator before proceeding with the
next layer. No visual defects were present in the completed layup after
human intervention. Completed layup using 15 plies is shown in
Fig. 37. Table 9 also lists the time taken by each operation during the
process. Some of the operations are to be done only once for a mold.
Human intervention time includes the time taken by the operator to
place the sheet and average time taken to repair defects throughout the
process. We can see that the overall human input required for the
process can be reduced by a significant amount for medium scale pro-
duction. For instance, manufacturing 100 parts will result in a 88%
reduction in human input. These results show that the process is

Table 6
Average computation times (seconds) and the success rate for our approach. Percentage improvement in computation time compared to baseline
approaches are also presented.

Table 7
Average computation time and success rate for different sequences of applying
constraints while solving inverse kinematics.

Table 8
Average computation time for grasping robot placements.

Average computation time for grasping robot placements

Grasping Robot - 1 Grasping Robot - 2
Mold Generation of promising sample Maximize overall reachability Exact evaluation Generation of promising sample Maximize overall reachability Exact evaluation
A 0.04 0.02 9.60 0.04 0.04 8.26
C 0.03 0.01 8.15 0.04 0.01 7.88
D 0.05 0.02 11.88 0.04 0.02 11.39

Fig. 34. Drape simulated over the mold used for physical experiments. Virtual
partitions and the sequence of regions for this mold is also illustrated.
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feasible to be automated and used for commercial purposes. The la-
minate was also inspected for defects. Resin distribution studies were
done to tune the parameters of the process in our previous work in
[59,62]. The work also demonstrates physical experiments on other
smaller molds. In this work, we perform a visual inspection for air
pockets and defects and primarily present the conformity and fiber
alignment results from the laser scanner and apodius system, respec-
tively (Fig. 38).

8.2. Conformity analysis

In order to ensure that the ply is conformed well to the mold and no
air pockets are present, we conducted a conformity analysis on the
mold. A point cloud is generated using hexagon absolute arm integrated
with a laser scanner. This point cloud is compared to the reference point
cloud, which represents the surface of the mold offset with the thickness
of the laminate, respectively (Fig. 38). The deviation is within toler-
ance. The laminate with 15 sheets was scanned and maximum deviation
was found to be 0.6 mm. The tight concave regions are usually difficult
to layup as air does not get completely pushed out. The curing process
applies vacuum pressure on the lamina, which removes the voids pre-
sent.

8.3. Fiber alignment

We inspect the fiber alignment in the ply using the Apodius 2D
sensor. The sensor is attached to the robot flange, and trajectories are
generated so that the robot can scan the different regions of interest on
the mold. Fig. 39 shows the draping robot with apodius sensor. The
sensor analyzes the image and computes the deviation of fibers. We
input a reference orientation to the software, and all the fiber angles are
compared against this reference. A reference orientation is specified by
the design engineer. In our case, our goal was to orient the fibers par-
allel to the edges of the mold. The distribution of fibers with respect to
this reference is obtained using the software. Respective alignments for
different points on the mold are collected and analyzed for defects. The
fibers did not deviate at the concave regions of the mold during layup.
Fiber angles were found to be within 0.1∘ angle. The process parameters
were appropriate and did not cause any damage to the fibers in the
right concave regions.

8.4. Visual inspection

The automated layup quality was comparable with hand layup. Air
pockets or bridging were not observed.

Fig. 35. Simulated ply states in the different stages of backward tracking search are illustrated. Instances of the layup process, the repositioning and regrasping
motions performed by the grasping robots are also shown in the figure. Human interference is required to fix the wrinkle generated.
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8.5. Discussions

There is uncertainty in the state of the sheet due to environmental
factors and material properties. It is challenging to capture these un-
certainties in the physics-based simulations. The grasp plans generated
needed some modifications as the sheet was coming in contact with the
mold. Translating two grasp points corresponding to stage-2 and stage-
1 shown in Fig. 35 by 20–30 mm solved the problem. Using a high
fidelity simulation and machine learning models to tune the grasp
planner parameters can lead to improved solutions. Drape simulation
parameters like the bending and shear energy constants also cause in-
accuracies in the simulation. A more sophisticated method to tune these
parameters by performing experiments and using machine learning can

produce better grasp plans. End-effector dimensions (e.g. roller width)
influence the layup quality and sophisticated research is needed to
identify correct dimensions for a given mold geometry. Trials were
conducted to find suitable roller dimensions before the layup was
perfected. Same grasp plans were used for all the trial runs which shows
how using incorrect roller dimensions can introduce defects. Commonly
observed defects during the trials were wrinkles, bridging, air pockets,
and misalignment. Although, once the grasp plans and parameters are
tuned, the process is consistent and several plies can be stacked without
observable defects.

9. Conclusions

We addressed the following two major planning challenges towards
automation of the composite prepreg layup process: (a) generation of
grasp plans and (b) robot placement and path-constrained trajectory
generation. We presented a state-space search assisted by physics-based
simulations to automate the grasp planning process. This approach
successfully generated grasp plans for parts with varying level of
complexity. The use of heuristic we developed in this work enabled us
to significantly reduce computation time compared to exhaustive
search. We developed an approach based on successive application of
constraints to solve the robot placement problem. This approach can
handle large parts with complex tool paths. The approach also reduces
the computation time taken to place the robots for complex part and
increases the probability of finding a solution.

In the future, we plan to develop the algorithm which can transfer

Fig. 36. Physics based simulation has some uncertainty in predicting the real
ply state. A high cost ply state is obtained as a result of absence of grasping
robot compliance (feedback control) which leads to defects in the layup. The
defects can be prevented by using compliance mode for the grasping robots.

Fig. 37. The completed layup shown on the mold.

Table 9
Time taken by different operations in the entire layup process.

Time
(minutes)

Frequency of
operation

Total time
(minutes)

Expert Input 14 1 14
Planning time 6.6 1 6.6
Trial run 9.4 2 18.8
Grasp plan modification 3 1 3
Layup 8.5 15 127.5
Human Intervention 1.2 15 18

187.9

Fig. 38. Conformity analysis using hexagon absolute arm. The color map
showing the deviation of the ply with the mold surface is shown. (For inter-
pretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Fig. 39. Apodius 2D sensor attached to the robot flange. Image captured by the
sensor at a region of interest. Image is analyzed for determining fiber angle
deviation.
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the knowledge between the grasp planner and robot placement algo-
rithm. The grasp planner will be improved by taking the draping tool
paths into account. The current version of the algorithm decouples the
draping and grasping tool paths. The grasp planner generates tool paths
that may not be feasible to execute by the robots. Such cases would
require an exchange of information between the two searches, and
some notion of robot trajectory feasibility will be incorporated in the
grasp plans. The robot placement algorithm will be extended to the case
where the robots are fixed, and the mold must be placed in the cell.
Currently, the placements of the robots are deconflicted by the user,
assuming that the robots must be placed around the mold.
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