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2-D wavelet transforms: generalisation of the Hardy space

and application to experimental studies

T. DALLARD and G. R. SPEDDING *

ABSTRACT. — The wavelet transform has recently been extensively used and discussed as a tool for signal
analysis and as a function basis. Most applications have thus far concerned 1-D signals. Here, the wavelet
definition is generalised in L (R?) function space, and its application to two-dimensional signals is discussed.
The different possible wavelet functions to do this are examined. In general, they may be either real or complex,
but the latter are preferred since both phase and amplitude components of the complex transform convey
useful information. The new 2-D wavelet functions Halo and Arc are introduced, together with the straightfor-
ward extension to 2-D of the complex Morlet wavelet, and their behaviour is examined analytically, and on
selected test signals. ’ .

The properties of directional wavelet functions are compared with those of cylindrical ones. The first are
more precise in wavenumber space, but require initial information concerning the input signal. In the absence
of this information, interpretation of the phase is difficult and error-prone. By contrast, the second type of
wavelet is simple to use on data where the direction of the wavenumber vector is known only imprecisely in
advance, or where it may take on different orientations in different spatial locations. This information may
then be used in a second pass, where the transform is with a directional-specific wavelet function.

The implications of these results for the successful application of 2-D wavelet transforms to experimental
fluid mechanics data is discussed. A specific application to fluid turbulence is described where, it is shown
that, in an acoustically-forced mixing layer, phase defects are the sites of local scale transitions. This can be
modified by changing the pattern of forcing. These conclusions, requiring the local scale decomposition and
phase information around the defects, would have been hard, if not impossible, to come by in any other way.

1. Introduction

The wavelet transform has been successfully used in the analysis of signals in divers
fields such as telecommunications [Meyer, 1990], and machine vision [Mallat, 1989 4]. It
has the advantage over conventional Fourier analysis in that information is localised in
both physical and wavenumber space. The idea of localising the information from the
Fourier transform in physical space dates back to the early work of Gabor [1945], where
the basis function is localised inside -a gaussian envelope. Inspired by the apparent
existence of such a decomposition in early retinal information processing in higher
vertebrates, Gabor functions form the basis of much work in pattern recognition research
[Daugman, 1988]. This windowed Fourier transform has a constant window width,
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108 T. DALLARD AND G. R. SPEDDING

regardless of the wavenumber, and so has largely been supplanted by the wavelet
transform, developed by Grossman & Morlet [1984]. One single parameter, a, determines
the wavenumber, and a second parameter, b, specifies the spatial location. A common
analogy is made between these two parameters and the optics and stage motion, respec-
tively, of a microscope. Morlet hag also observed how the wavelet transform presents
information similar to the musicidn’s stave, which specifies both the frequency of the
note, and the time at which it is played.

These properties have been exploited in many fields: pioneering examples in mathemat-
ics [Meyer, 1987; Jaffard & Meyer, 1987], electrocardiography [Tuteur, 1987], geophysics
[Larsonneur & Morlet, 1987], fluid mechanics [Liandrat & Moret-Bailly, 1990], and
fractal analysis [Arneodo et al. 1988, Argoul ef al. 1988, 1990] are all testimony to the
broad potential of this technique. A mathematical introduction has recently appeared by
Daubechies [1992], and Farge [1992] has provided a most useful review of the application
of the wavelet decomposition to turbulence in fluids.

With some notable exceptions, most of the examples and applications have thus far
been restricted to 1-D signals (consult [Grossmann et al., 1987] for an overview). Applica-
tions of 2-D transforms to psycho-physiology, computer vision and image processing
have been discussed by Mallat [19894, b], and the extension of the Morlet wavelet to
two dimensions and its application to 2-D fluid turbulence data has been discussed by
Farge et al. [1989]. Murenzi [1987, 1989] has considered the mathematical generalisation
of the 1-D transform to the n-D case, and Antoine et al. [1992] have recently compared
properties of existing 2-D wavelets. This paper presents in some detail the extension of
the wavelet transform techniques to 2-D, including some of the existing work together
with a new wavelet function, which is shown to have comparatively favourable properties
when applied to certain classes of 2-D signals.

2. The wavelet basis

Mathematically, the wavelet transform is equivalent to using a family of functions
other than the usual:

(8Wkerz:T—>exp(ik.r) on L(R?)
(or (g)pcr:x—>exp(i®.x) on L(RY))

as a projection basis for the function on L (R?) (or L (R')). The new family is generated
by a wavelet function g (r):

1 r—b»
M (ga,b)(a,b)ex’f‘xlzz"—'“‘;~g(—)
a a
It will also be convenient on occasion to define
1 ‘r—b
2) (ga,b)(a,b)ek"‘xRZ:l'_’—-g(—>,
a a
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2.D WAVELET TRANSFORMS 109

J‘J' ga,b|2 (r)dr=J‘[|g|2 (l') dl',
” g,,,.,|<r>dr=”|g|(r)dr.

The following analysis deals only with continuous wavelet functions (a and b vary
continuously on R** x R?), and without regard to orthogonality. Daubechies [1988] and
Meyer [1987] have analysed the discrete wavelet and orthogonal basis functions in some
detail.

so that

rather than

3. Two-dimensional wavelet transform

Notation
o L(R?): space of measurable and square integrable 2-D complex functions f(x, ).
o Ffk) =Ff(k)= El—jj-f(r)e‘“"'dr : Fourier transform of f.
T

e f*: the complex conjugate of f.
e W f=fy: wavelet transform of the function f.

3.1. GENERALIZATIONS OF THE 1-D TRANSFORM

The wavelet transform of the function f(r) in (a,b) is the inner product of f with g, ,:
N 1 «[TD
3 fw(a,b)= f(r)-ga,b(r)dr—;;- J®.g p dr.

From Parseval’s theorem, this may be written as:

4 fw(a,b)= ﬂf (k). g* (ak) ™ dk.

This provides a simple algorithm to compute the wavelet transform, based on the Fourier
transform in (4), since it is much simpler to perform a multiplication in Fourier space,
rather than a convolution in physical space.

3.2. THE NOTION OF HARDY SPACE

For the 1-D wavelet, G & M [1984] introduced the notion of the Hardy function,
where, for every real signal s(f), a unique complex function S (7) is defined so that:

o S(®)=0 for ®<0 (definition of a Hardy function)
e s()=R[S(]
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110 T. DALLARD AND G. R. SPEDDING

#! is termed the Hardy space, and g is chosen in 5. S can be defined with the Hilbert
operator:

&) Hl:s>(iF 1eF)s
with € f(®)=(sgn (v)) f(®), and so,
©) S=s—iH!s.

From Parseval’s Theorem, it is easy to show that:

Q) Wls= %W‘ S.

The interest of this formalism is to define for s, a phase and an amplitude, i.e. the
argument and the modulus of S. As g belongs to #!, g is complex, and so #s.

So, the phase and the amplitude are both defined for #'s directly connected to s
through the restriction of #°! on #. But there is no obvious solution to generalize in a
unique way the space #! and the operator H! in L (R?). The requirement is to redefine
the operator ¢ to bisect R? into two parts, n' and n?, such that if ken' then —ken?,
and, /
ef(k)=f(k) if ken!,

®) efk)=—f&) if ken?

Now the 1-D formalism may be applied to the 2-D situation with the same results
(cf. (5), (6), (N)):
Q) Se#? <« Sk)=0 for ken?
H =iF leF
F@®)=f®)—iH?>f(@x) so Fex? and W2f=%“//f2F
It remains to define n' and n2. For a directional wavelet, the definition is obvious: if k,
is the direction of the wavelet, then

n

N

s ken! < k.k,>0 or (k,ky)=

/ ken? = k.k,<0 or (k,k0)=—g

However, if we choose a cylindrical wavelet, it is no longer obvious how to define n!
and 2. Strictly speaking, the best choice will depend on the signal to be studied, and in
most practical applications, the functions are not cylindrical: f(r). So instead, n! and =2
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2-D WAVELET TRANSFORMS 111

may be defined as two half-planes, with the border (which includes (0, 0)) in the direction
where the Fourier transform of the signal has the smallest values (Fig. 1a, b).

K
y Ky

2 cut2
st

\!

cuts

(a) (b)
Fig. — The partition of k-space into n! and n®. (¢) Appropriate (cut 1) and inappropriate (cut 2) choices.
(b) Function for which there is no choice of appropriate partition.

This arbitrary choice has nevertheless proven to be quite a useful one, and the definition
agrees with a kind of intuitive notion of the phase and amplitude of a real function. Since
F&)=f*(—k), one may assume that there exist two unconnected domains, symmetrically
distributed in k, where | f | is not negligible. Each of these domains is itself sufficient to
define /. An appropriate partition of k-space into n' and n? must not intersect either
domain, as illustrated schematically in Figs 1a and b. A more precise justification for
this statement will be given in section 5.

The two domains define two functions F; and F,:F,=F% and RF,= ‘RFZ— 12 f.
Henceforth we choose to call 2 F, the Hardy function associated with f.

2.3. THE REVERSE TRANSFORM

Note that it is possible to reverse the wavelet transform. There is one condition on g

for this:
2
JIIg(k)l dk< + o

[¢f. M 1987, 1989]. For the cylindrical wavelet (g (k)= g (k)), it is easy to show that:

(14) f@)= j i f ffw(a b)g( £ ") dadb,

with C,=2n J | g (k) |/k dk.
a=0
Remark: This result is established for #f on 3, but # W f#f.
However,

W AW f=01/2) W ' wF=(1/2)F,
and ¥ is the bijection of s# onto # ().

EUROPEAN JOURNAL OF MECHANICS, B/FLUIDS, VOL. 12, N° 1, 1993



T. DALLARD AND G. R. SPEDDING

3.4, CONDITIONS FOR THE WAVELET

In summary, attention will be confined to those wavelets which satisfy the following
conditions:

” g®[*dr<+o0

C, <+
Y] geH

The second condition is called the admissibilty condition and it requires that
Jg () dr=g(0)=0 (which is also equivalent to. (17), if we suppose that its derivatives

are limited).

In practice, g is centred around (0,0), (to be like a window) with an average equal to
zero. The condition (17) ensures that the transform of a real function is complex.

4. Examples of useful 2-D wavelets

Morler2D: The first wavelet is a generalisation in R? of the wavelet defined in [G &
M, 1984] in R. The result is a directional wavepacket, termed here the Morler2D wavelet:

; ri?
g, r— k0T e— %

with k, fixed and (e,, ko)=0a (Fig. 2 and 3). This wavelet is directional-specific, and its
Fourier transform selects wave-vectors with both a preferred wavenumber and orientation,

S0,
. 2
bty - 18P,

Note that conditions (16) and (17) are not strictly satisfied, but they are almost satisfied
for large enough |ko| (|Ko|=5.5 as in [G & M, 1984]). As discussed already, the cut
between n! and #? in this case is naturally defined as the line orthogonal to k.

Arc and Halo. — 1t is frequently the case in dealing with real 2-D data, that a single
preferred direction for k is either not known a priori, or does not exist, as there are non-
negligible contributions from wave-vectors with a number of different orientations.
Unless the objective is to specifically single out certain k orientations, the analysis and
interpretation of the transformed data is tedious and difficult. The Arc and Halo wavelets
are deliberate attempts to construct useful wavelet functions without any directional
specificity.
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2-D WAVELET TRANSFORMS 113

®
Fig. 2. — Real part of the Morler2D wavelet. (a) Cross section at y=0 and a=0.
(b) Isometric projection in [x, y].

First, define the real wavelet Halo, from (19), but without any direction:

i 2
£ 0=, () =exp( - (KIS},

As g, (—k)=g, (k), g, is real. With this wavelet, wave-vectors with one well-defined
wavenumber are selected, regardless of their direction (compare Fig. 4a and b). The
attraction of a complex wavelet function, owing to the useful decomposition of the
transformed signal into its modulus and argument components has already been pointed
out, and so the Arc wavelet function is an attempt to combine the lack of directional
properties of Halo in a basis which remains a Hardy function.

To form the complex wavelet Arc, R? is partitioned into n! and =2, (3.2 and (12)),
where g, (k) is defined as (Fig. 4¢):

kent; g.(k)=g k) keny; g (k)=0

The real and imaginary parts of this function are shown in Figures Sa, 5b and 6, and
clearly the following holds: Rg,=(1/2) g,.
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®)

@ ®

Fig. 4. — The Fourier transforms of 2D wavelets.
(a) Morlet2D, (b) Halo, and (c) Arc.
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®)

Fig. 5. — Real part of the Arc wavelet.
(a) Cross section at y=0 and a=0. (b) Isometric projection in [x, y].

Fig. 6. — Imaginary part of Arc in [x, y].
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116 T. DALLARD AND G. R. SPEDDING

5. Properties of 2-D wavelets on monochromatic signals

A brief analysis of the behaviour of Arc, Halo and Morler2D illustrates some of the
characteristics of the response of these functions. Suppose we have a function, f(r), which
behaves like A cos (k, .r), with k; en’, in the local neighbourhood r;. Then its WT for b
around r, is,

fw(a,b)= % ”g”* (ak) ¢ P [8 (k—k,)+ 3 (k+k,)] dk.

If ges#,

fw(a,b)= -é*(akl)eikl'bs

N>

and so the following observations may be made:

o | fw(a,b)|=A/2|g(a k,)|, which is a function of a only. The difference between a
directional wavelet, such as Morlet2D, and a cylindrical one, such as Arc, may be clearly
seen by inspection of the |§(a k,)| term. In the former case the maximum value of the
WT is obtained when ak, =k, but whenever a|k, |=|k, | for the Arc wavelet. One need
only vary a in the latter case to find the resonance with an input signal, whereas the
range of both a and o must be explored for the directional case.

e arg(fw(a,b))=k,.b (The FT of our wavelets is real). The equiphase lines show the
direction of the dominant wave-vector. This property is especially important for the non-
directional wavelet like Arc, where the phase of the transform, for any resonance value,
immediately gives the direction of the wave-vector. The wavenumber can also be verified
by looking at two consecutives equiphases separated by 2.

Once the orientation of the dominant wave-vectors in the data are known, one may
deliberately choose to use a direction-specific wavelet (such as Morlet2D), at these angles,
in order to increase the selectivity and precision of the analysis. This is not so interesting
for ‘clean’ test functions, where the various k; are superposed without noise, and the
transform of such a function will thus have identical values of both g, and g,, at a;=k/k;.
However with real experimental data, it may be significant. Consider the behaviour of
the cylindrical wavelet at the scale a;, where it will resonate with all components of the
noise at wavenumber k;, while g, will resonate only with the k; component. In these
cases, where q; is known in advance, the extra selectivity of the Morler2D-type wavelet
may be an advantage. This will be demonstrated on test functions in section 7.

Ifg¢ A,
fw(@b)=A.g*(ak,).cos (k,.b).

This is the form of the result with Halo, or any other real cylindrical wavelet. First, one
cannot define a phase for the function. Second, because the transform is a function of
both variables a and b, it becomes difficult to distinguish, on the one hand, behaviour
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2-D WAVELET TRANSFORMS 117

corresponding to spatial changes of scale, g, and on the other hand, the spatial variation
of cos (k, . b) corresponding to the wave-vector at this a, i. e. the role of b.

It is for this reason that we use only wavelets in J#, so as to take full advantage of
the fundamental WT property of duality in spectral and physical spaces.

Having introduced the properties of the wavelet function on monochromatic signals,
the earlier remarks on the appropriate partitioning of wavenumber space (§3.2) may be
justified more explicitly. The notion of Hardy space may be retained without difficulty
in the extension of the Morlet-type wavelet to its directional equivalent in 2-D, as in
Morlet2D. For the cylindrical wavelet, one must make a choice in partitioning wavenum-
ber space, defining »# according to the line of partition. Consider the example:

f(x)=cos[k; .rl+cos[k; .r],

with ki =k, +8kn and k; =k, —8kn (n.k,=0). Suppose dk/k, <1, then the Fourier
transform of fis (Fig. 7),

f(k)=%[8(k—-kf)+8(k+kf)+8(k~k1‘)+5(k+k1‘)].

The phase of the wavelet transform should specify the direction of k,, having the form:
petPk peR. If the wavenumber space is partitioned with the solid line (cutl) of

ky

Fig. 7. — The partition of k-space into n! and n? for a signal with two closely-spaced components in k.
Figure 7, where the intersection is far from the localised wave-vectors, one obtains:

fu(a,b)=g*(ak,) e 1:W + 5k2(

If, however, a cut is made through the wavenumber domains of interest (cut 2, Fig. 7),
fw is,

fwla,b)=g*(ak,)cos (k,.b)+8k(
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118 T. DALLARD AND G. R. SPEDDING

The partition of a cylindrical real wavelet (such as Halo) to obtain a complex one (such
as Arc), must be made with care if we wish to retain the correct phase information.

6. Resolution

Let us make some final remarks on the accuracy in physical and Fourier space.
Suppose the function f{(r) is decomposed on the basis: (3,,),, c.g2: T — 3 (r—r,). Here one
has maximum possible accuracy in physical space, but no accuracy in Fourier space. On
the other hand, with the basis, (e"“l"),(1 <r2, the reverse is true. The decomposition on
the family of functions generated by a wavelet represents some point in between these
two extremes, with finite, but not optimal, accuracy in both spaces with fy (a,b) being
the component on g, ,,. Mallat [M, 1989] has effectively used this property in compiling
cascades of wavelet transforms, increasing in a, for the 1-D WT multifrequency channel
decomposition of images. As a increases, the resolution decreases in physical space and
increases in Fourier space. This is simple to understand by reference to (3) and (4).
Consider g, p,, where a, and k; are related by a; =|ko |/|k; |. Let 2 be the size of the
window around (0,9) defined by g, and let 2p be the size of the window around k,
defind by g. From (3),

Ir by |

| |'l'*'_-.-'-. < |r—b,|SAay,
.'FI

and from (4),

lak—ko|<p < |k—k1|§a£
1

Then fy(a,,b;) contains information from f on (r=b,, k=k,) with |Ar|=a, A and
| Ak |=p/a,. Alternatively, one could obtain this result using the uncertainty relation,

1 .
0,.0, =< 5’ where o, and o, are the covariances of f and f.

In general, from a practical, experimentalists perspective, it is of interest to know how
precisely one can detect the discontinuities 3 (r—r,;) and 8 (k—k,) in their own spaces,
from their transforms. Both could be present together in experimental data for example
as a monochromatic signal with discontinuities (§ 7.1); consequently, the resolution in
both spaces is of concern. As fiy is a function of (a, b), rather than of (k, b), it is
preferable to consider the uncertainty in a-space instead of wavenumber space. So (23)
may be written as: ‘

|ak, —ko|<|ak,—Kko|Sp = |a—a,|< L 1a1 < Ag ="+
ki ko
Similarly, from (22), and considering the variable b,
|Ab* |=a, A.

EUROPEAN JOURNAL OF MECHANICS, B/FLUIDS, VOL. 12, N° 1, 1993



2-D WAVELET TRANSFORMS

In these variables, both uncertainties increase as a increases (as we shall see in
section 7.1). Equivalently, the ratios

FAn | |Aa. |
— =R and -ﬁ;v"—=£
a a, ko

are independent of the scale a.

In the light of these remarks, it is natural to enquire whether the wavelet functions
considered here provide the best possible resolution. Consider a small generalisation of
the Morlet2D wavelet, for which A and p may be easily defined:

(26) g()=exp (iko.r— ﬂ),

0’2

with

_ 2
é(k)=czexp<—02—|k 2ko| )

(For Morlet2D, c=1 and k;=5.5). A.=0 and p=1/o, so,

14bs | _ s o (ky | Ab, )= o ko,

L. 3 N

a,

Although o and &, might be tuned to adapt to improved signal reso'lution, (ky|Ab,
cannot be reduced without limit owing to the conditions (16) and (17),

27,2
g‘(0)=czexp<— °2k°)zo,

which, practically speaking, require that o k,>5. Even if it were possible to decrease
ok, and, consequently, (k,|Ab, ), | Aa, |/a, would be correspondingly increased, as can
be seen, either from the relations above, or from consideration of the uncertainty
principle.

7. Wavelet transforms of test functions

The performance of each of the wavelet functions on selected test signals illustrates
certain of the properties of the function. The test signals have been chosen to emphasize
and isolate those characteristics which may be of interest in real applications. The Arc
wavelet requires that a choice be made for partitioning wavenumber space into n! and
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n?, and this choice itself may be made contingent on the distribution of information

there, but, for simplicity, in all the Arc tests below we define n*:y>0 and n?:y<0.
7.1. NOISE-FREE WAVE PATTERNS (CARRE)

The first test signal (Fig.8) divides [x, y] into four quadrants with two wavenumbers
and three orientations.

f(x,y)=cos[k.r]

Fig. 8. — Test function Carré. £, =0.5, k,=0.2.

with:

® k=k (e cosB+e, sinp)

® k=k, for y>0 and k=k, for y<0

o f=m/2 for x>0; Bp=mn/4 for x<0, y>0; B= —=/3 for x<0, y<O0.

Note that B is defined for a coordinate system whose origin is in the top left corner of
the test signal. Each quadrant is associated with a different wave-vector k, there is no
overlap between the distributions of k, and the signal has no random or coherent noise
in it. The interest is to demonstrate the localisation properties of the transform in physical
and wavenumber space. Figures 9a and b show the equiphases of the WT of f, using
g.(Arc) for the values of a at the resonances associated with k; and k,. As the Arc
wavelet is cylindrical, one immediately has information on both the direction of the four
wave-vectors and their domains. In the space representation of the phase of the transform,
the threshold cut has been introduced so that the phase is only plotted when,

Wf|>m+M—m)cut,
with,
m=min | ¥ (a,.)], M=max|#f(a,.)], 0Zcu=l

The localisation of the modulus of the transform in g and b (=y, with x fixed) are
shown in Figures 10a and b respectively. For the points A(x<0, y>(0) and
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X X
(@) (b

Fig. 9. — Argument of the Arc transform of Carré.
(@) a=11,cut=60%. (b) a=27, cut=60%.

100

a=]1

1.00
a=27 }
Y=- 60 030
B
0.60
040 S & ot 040
0.20 0.20
0.00
100. 80. 60. 40. 2. 0 200, 120, 40
@) m
(@ ®

120. 200.

Fig. 10. — Modulus of the Arc transform of Carré. (@) [* ,(a,b),] at b,=x= —60 and b,=y= +60.

®)[* ,(ab),|at b,=—60, for a=11 and a=27.

B(x<0, y<0), fixed in different domains, we represent:

Wf (‘15 XaorB: YAor B) l = functionA orB (a)

WS (anorB> Xaorps V) | =function, ,, 5 (»)

and both of these functions have been normalised with M. The first shows how at lower
values of a (higher k), the localisation in a is improved, as discussed in the previous
section. In Figure 10b the smaller slope at the edge of |#7f| for larger a shows the

decrease in resolution in physical space with increasing scale (a).
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7.2. WAVE PATTERNS WITH NOISE (BAND)

Here, a linear congruential pseudo-random number generator with uniform deviates is
used to add high amplitude, incoherent noise to a spatially-limited uniform sinusoid.
Noise of amplitude N (the random numbers lie between — N/2 and N/2) is superimposed
on the function:

(28) f(x,y)=cos[k, .r]

(@ )

Fig. 11. — Construction of test function Band. (@) Monochromatic signal, without noise, k=0.4, p=n/4.
(b) Signal + noise with amplitude N= 10.

for —y,<y<y, xeR. Figures 11 a and b show the original band signal, with an orienta-
tion B=m/4, and then the superposition of this signal with the noise of ten times the
signal amplitude. How does the Arc wavelet perform in attempts to separate the signal
from the noise in both physical and wavenumber space?

Figures 12a and b show the equiphase lines of the Arc transform for the resonance
at k, first with no threshold, and then with a cut at 0.4 times the amplitude of the
modulus of the transform ([ wf |). The direction, B, the wavenumber, &, and the band
domain are recovered with reasonable accuracy. Since high amplitude noise covers the
entire domain, it is less straightforward for a simple threshold cut to delineate the exact
border of the band.

In order to form a quick numerical estimate of the relative amplitudes of the transforms
of the signal and noise components, the modulus of the transform in transects around
(0,0) was compared for noise alone and for the global signal in Figures 13 and 14. These
figures also demonstrate the localising properties of the transform in physical and
wavenumber space.

First, Figures 13a and 14a plot = % f (a,x=V, y=y;) ), where the y, are discrete values
of y, —100<y<100, and | #" is normalised by M. The resonance at the small scales
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Fig. 12. — Argument of the Arc transform of Band.
(a) a= 14, no cut. (b) a= 14, cut=40%.
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Fig. 13. — Modulus of the Arc transform of the noise component of Band.
(a) At x=0, for a number of transects at — 100 <y <100. (b) At x=0, a=14.
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Fig. 14. — Modulus of the Arc transform of Band.

(a) At x=0, for —100<y<100. (b) At x=0, a=14.
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due to the noise is quite clearly separated from the peak at a,. Second, Figures 135 and
145 show the localisation of | #f (a,, x=0,y)|, on the spatial domain Oy. In both cases,
one may define the capacity of resolution between noise and the wave at a point by:
|(# y =W )W +W,)|, where #°| is the mean value of |#f| around a (Fig.13a) or
Oy (Fig. 13b) for noise alone, and #7, is the mean value for the signal plus noise
(Fig. 14). The mean values were 0.47 in physical space and 0.48 in Fourier space with g,

This example may be used to compare the cylindrical and directional wavelets of Arc
and Morlet2D (§4). The results discussed thus far in Figures 12-14 have been with the
cylindrical Arc wavelet. Figures 15 and 16 show the Morlet2D results, for different

(©

Fig. 15. — Argument of Morlet2D transform of Band for a= 14, cut=40%.
(a) a=mn/4. (b) a=m/3

directions of k, at q,. Compare first of all, Figure 15a for Morlet2D, with Figure 12b
for Arc, under the same conditions, and where the wavelet direction exactly corresponds
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to the direction of the signal (o= B =n/4). The spatial resolution is significantly improved,
and the selectivity is clearly greater. This is hardly surprising since the number of
conditions for resonance at g, have been reduced to only those with the correct orienta-
tion. Consequently, as the direction of Morlet2D deviates from this angle (x=rm/3,0), in
Figures 15b and 15¢, the information from the band itself is lost, as the equiphase lines
correspond to the k, component of the noise. That the signal to noise ratio of the
Morler2D transformed data is superior to that of a non-directional wavelet, such as Arc,
when the correct direction is known, is apparent also from Figures 16a and & (cf.

0.80
050 w2 e
/-_/
0.40
0.20
" \/\/
0.00

(a) ®

Fig. 16. — Modulus of Morlet2D transform on Band (a=n/4).
(a) At x=0, for —100<y<100. (b) At x=0, a=14.

Fig. 14 a,b). The capacity of resolution, as defined previously, now may be estimated at
0.85 in physical space, and 0.79 in Fourier space, for g}. However, unless one has prior
knowledge of the direction of the dominant wavevector, this advantage completely
disappears.

This suggest the following sequence of steps for the most accurate localisation (in both
spaces) of an input signal: first, use 4Arc to determine the domain and directions of the
dominant wavevectors, and then, if one wishes to separate them, do so with Morlet2D
at the appropriate k.

7.3. WAVE PATTERNS WITH DEFECTS AND NOISE (DEFECT)

The last test function (Fig. 17 a) is a monochromatic signal with a defect [Berry, 1980]
at (0,0):

F

(29) J, )= —

F with F(x,y)=(x+ity)e'krr,

with 1=0.8, =7x/2 and k=0.4. To this function we add two types of noise: the random
noise as introduced in Band, and a subharmonic, — A (cos((k/2)y), considered as an
example of coherent noise, and noise is simply defined as a signal without interest.
Qualitatively, one cannot deduce the existence of the signal at all in the composite
signal + noise of Figure 17b, when both noise components have such high amplitudes
(N=10). Although the Fourier transform would allow their separation in wavenumber
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0+ >
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X X
>
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@ ®

Fig. 17. — Construction of test function Defect. (@) Monochromatic signal, k=0.4 with defect in (0,0).
(b) Signal + random noise with amplitude N =10 and subharmonic with amplitude A = 10.

space, there would be no localisation in physical space, and the existence and location
of the defect would be impossible to determine. It is in precisely such instances that one
might expect to see the advantages of the wavelet analysis.

Figures 18 a-18 ¢ show the argument of the Arc transform on the Defect test signal,
for increasing values of a. The first (184) corresponds to a=8, which is below any
coherent scales in the signal, apart from those generated at random by the first noise
component. No regularity is present in the equiphase lines and the modulus of the
transform is everywhere small. If @, =14 is chosen exactly at the resonance of the signal,
the location of the defect is given very clearly, with only small perturbations in the phase
lines due to the noise. Finally, at a,,=28, corresponding to the subharmonic, the
wavenumber and orientation of this noise component are isolated.

It is worth re-emphasising that the wavelet transform has enabled the detection, not
only of the wavenumber of the camouflaged signal, but also the defect and its exact
location. It is of some interest to be able to directly observe a phase that has an intrinsic
definition because such a defect has a phase discontinuity origin. This would be impossible
with any real wavelet, such as Halo, because there is no phase information, and it would
only be possible with a directional wavelet, such as Morlet2D, if cither the direction
information were provided in advance, or an exhaustive search of all possible orientations
were conducted. Should this information be available (following a first pass with Arc,
for example), then Figure 19 a, b show that the separation in wavenumber space between
the original and the subharmonic, and between both of these and the noise, is slightly
superior for Morlet2D than Arc, but the improvement in the former is slight as the two
wavenumbers have the same orientation.
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Fig. 18. — Argument of the Arc transform of Defect.
(a) a=8, (b) a=14, (c) a=28.
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Fig. 19. — Modulus of wavelet transforms of Defect (at x=0, — 160 <y <160).
(a) Arc wavelet. (b) Morlet2D, with a=0.
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8. Application to fluid turbulence experiment

An application of the Arc wavelet transform to experimental data from a mixing layer
demonstrates the new ability to quantify localised scale information that has hitherto
been inaccessible via conventional means. Here, the lack of directional selectivity of Arc
is considered a significant advantage in interpretation. In a mixing layer many periods
of a wavevector are extended in space and the phase of the Arc transform gives useful
information concerning the location of defects in the signal.

8 . SCALE TRANSITIONS AT DEFECT SITES IN A MIXING LAYER

In the mixing layer experiment, two unidirectional, parallel streams are separated by a
thin plate, terminated as in Figure 20. The intensely turbulent region, which forms

Fig. 20. — Sketch of the mixing layer experiment.

downstream from the plate termination, serves as a (somewhat) idealised model for a
variety of shear flows occuring in nature and in technological applications. The important
feature of these flows is that the homogeneous dimension in the z-direction is usually
several orders of magnitude greater than the vorticity thickness (y-dimension of the
boundary layers). Such flows are inherently unstable—the vorticity within the original
boundary layers is first reorganized into concentrations of vorticity aligned roughly in
the z-direction. Figure 21 is a two-level contour plot of the velocity field (x-component
velocity fluctuation, u') of these vortices as a function of span and time. However,
symmetry in the z-direction is broken by the occurrence of defects in vortex structure
[Browand & Troutt, 1980; Browand & Prost-Domasky, 1990]. Coullet et al. [1989],
termed such structure defect mediated turbulence. In the wind tunnel, such defects can
be produced by acoustic forcing (the defect in 115 was produced by forcing, although
they do arise naturally).

The data covered in this overview consist of the two-dimensional sets of values of
¥ (z,t) acquired over an interval of span and time at two different downstream stations.
The first station is 0.6 wavelengths downstream from the origin, and the second is
located 3.6 wavelengths downstream. The wavelet transform of #'(z,7) will be
fw(z, t, In(a)), defined in the parallelepiped having horizontal dimensions representing
the spatial dimensions (z, f), and vertical axis equal to the logarithm of the scale
variable a.
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@ ®)

Fig. 21. — Contour plot of «’ at the measured downstream positions:
(a) without defect, and (b) with defect.

(@)

Fig. 22. — At Rx/A,=0.6: () | fw (2 t,In(a))|
(with red contour at 12%). (b) fw (2, ¢, In (a)).

Figure 22 a shows |fy | at the first downstream station. The contour described in red
represents 12% of | fiy |max 2t the first station. The prominent red band defines a particular
scale a (or wave length, A=1.143g) which dominates the scene. There is, however, a
hole in the band near the center of the domain, and this represents a diminished amplitude
in the vicinity of the defect. The defect can be clearly seen in the 2-D phase portrait at
the value of a in the centre of this band (Fig. 22 b). At the farther downstream station,
an interesting evolution is evident in Figure 23 a. The defect is the site of an explosive
growth of larger scales. The process of scale growth is centered at a scale which is a
factor of two greater than the initial scale (as the additional contour in Figure 23 b shows,
at 61% of the | fy|ma.x at the first station), but there is a large bandwidth about this
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®)

Fig. 23. - | fw(z, t, In(a))| at R x/A,=1.8, with no forcing of the subharmonic:
(a) Red contour at 12%. (b) White contour at 61%.

value. Physically, the defect seems to act as the seed which promotes a local vortex
amalgamation or pairing of vortices. A process which was originally presumed to occur
nearly uniformly across the span [C et al. 1989] is seen here to take on a distinctly three
dimensional character.

Forcing the flow in a slightly different format emphasises the local scale transition.
The acoustic disturbances which are amplified by the shear layer are very small-on the
order of 10™* of a typical flow velocity. If now the subharmonic is locally forced by
modulating the width of the acoustic pulses, the response shown in Figure 24 a obtains
at the same downstream station. The region of large scale growth extends over a broader
region of space. The interior contour in Figure 24 b also suggests that growth is centered
more narrowly about the scale 2 A.

Finally, a more global forcing of the subharmonic deemphasises the local aspect of
the scale transition (Fig. 25), which now takes place rather uniformly over the entire
plane. There is a region of diminished amplitude at scale corresponding to 2\ slightly
downstream of the original defect. The lowered amplitude signifies the beginnings of a
new defect region, as can be seen from the phase contours in Figure 25 b. Of course, the
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®)

Fig. 24. - | fy(z, t, In(a))} at R x/A;=1.8, with local forcing of the subharmonic.
(a) Red contour at 12%. (b) White contour at 61%.

analysis can be made in a quantitative fashion, and localised measures of the energy
density allow the relative effects to be measured in detail. A comprehensive quantitative
analysis appears in Dallard & Browand [1992].

This evidence illustrates the delicate balance between local defect-induced transition,
and global transition. Either situation can be promoted by small amounts of appropriate
forcing. There are many problems which require the thorough mixing of two fluid
streams, and more efficient mixing might well result from a proper combination of the
types of forcings discussed here.

9. Conclusions

The investigation and derivation of new 2-D wavelet functions, and their relationship
to those already discussed in the literature has been described. Presently, the most
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Fig. 25. — At Rx/A,=1.8, with global forcing of the subhar-
monic: (@) | fw(z &, In(a))] (Red contour at 12%). (b)
Jw(z, ¢, In(a)).

®)

generally useful of these wavelets is Arc, which has the following desirable characteristics:

e the wavelet is complex, and therefore carries information on both the phase and
amplitude of the input signal. :

e it is cylindrical, and thus has no directional selectivity; any wavevectors with k, will
thus be detected in a signal, regardless of orientation.

These properties have been discussed analytically, and their behaviour has been demon-
strated on test functions involving spatially separated wavevectors with different orienta-
tion and wavenumber (Carré), spatially-limited monochromatic signals with specific
orientation in the presence of high amplitude, incoherent noise (Band), and monochro-
matic signals with phase discontinuities in the presence of high amplitude coherent and
incoherent noise (Defect). This latter case seems especially relevant to the many cases
where defects play a significant réle in the system dynamics. Convection rolls in Rayleigh-
Bénard flows, and instabilities in two dimensional mixing layers are two cases in point
from the field of fluid dynamics. An example application involving this latter flow shows
how the wavelet analysis enabled the contribution of a physically localised phenomenon
(phase defects) in 3-D scale transitions to be identified. Both of the characteristics of
Arc listed above as desirable were in fact essential for this analysis.

It is quite likely that the dual Fourier and physical space localisation properties of the
2-D wavelet transform may play a fundamental role in fluid turbulence investigations [F
et al., 1989; L & B, 1990], where the relationship between spectral theories and physical
phenomena has never been completely clear. Just as the Fourier transform has acted as
a common language between theory and experiment, the wavelet analysis provides a
common basis for comparison, but now more easy to interpret in physical space. Indeed,
it has been argued [L & B, 1990] that the compact wavelet basis provides a more natural
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decomposition of a turbulent fluid flow, corresponding to the dynamics of coherent,
localised vortex structures.
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