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Low cost, high resolution DPIV for measurement of turbulent fluid flow
A. M. Fincham, G. R. Spedding

Abstract An optimized cross-correlation based Imaging
Velocimetry system is described and its performance is
evaluated in numerical and physical experiments. Given
a discrete image array pair, the flow seeding and image
processing parameters are optimized to maximize displace-
ment accuracy, regardless of the computational cost; collec-
tively these techniques are known as Correlation Imaging
Velocimetry (CIV). Order of magnitude improvements over
standard DPIV methods can readily be obtained, allowing high
resolution measurements to be made with low cost standard
resolution cameras. Fundamental limits on the measurable
range of length, velocity and vorticity scales are identified, and
related to those encountered in homogeneous, 3D turbulence.
The current restrictions apply to all imaging velocimetry
measurements; some paths for future research that are likely to
be profitable are identified, together with some that are not.
Extensive use of CIV in this and other laboratories has allowed
direct verification of these optimization principals.

1
Introduction
DPIV (Digital Particle Imaging Velocimetry) methods, pion-
eered by Utami et al. (1984, 1987, 1990, 1991) and Willert and
Gharib (1991) have found widespread acceptance and have
been applied to a variety of fluid mechanics problems (e.g.
Grant 1994). Compared with alternative, laser-based, analog
interrogation systems, DPIV methods, relying as they do on
non-specialized digital electronics, are both economical and
efficient. They are also well-positioned to profit from predict-
able (commercially driven) advances in technology.

Although the limitations and accuracy of various Imaging
Velocimetry (IV) methods have been discussed in certain
instances (most notably by Adrian 1988, 1991; Prasad et al.
1992; Westerweel 1993; Cowen and Monismith 1996), a com-
prehensive and general treatment is lacking. Limits on
accuracy are often constrained by the flow parameters themsel-
ves, indicating the need for a specific IV error analysis
framework.

If DPIV methods are to be successfully applied to turbulence
measurement problems, characterized by 3D motion with
broad ranges of velocity and length scales, then close attention
must be paid to achieving the best possible accuracy, given
a certain sampling resolution. In essence, the question is
addressed; given a flow phenomenon to be measured, and
some specific hardware configuration, what is the maximum
amount of useful information that can be extracted by image
correlation analysis?
There are three objectives in the paper:
(1) To present and specify a set of algorithms and optimiza-

tion techniques, that together, can result in order of
magnitude improvements in spatial resolution and
accuracy over standard methods. The techniques are
collectively known as Correlation Image Velocimetry
(CIV).

(2) To identify both the causes and consequences of the
dominant errors in practical fluid mechanics applications.
The analysis is based on CIV, but the major points are
quite general, applicable to many IV methods.

(3) To outline a quantitative analysis on the feasibility of
measuring fully turbulent fluid flows with IV methods:
what Reynolds numbers can be reached, and at what
cost?

2
Analysis of errors

2.1
Experiments and simulations
A systematic approach was taken to the development of
the CIV system. Individual parameters relating to particles,
lighting, algorithms, and fluid vorticity, were isolated. Exten-
sive optimization allowed their effects on the accuracy of the
technique to be determined.

2.1.1
Simulations
Randomly distributed numerical particles with Gaussian
profiles were projected onto a virtual pixel array (integrating
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the intensity distribution over the area of each pixel), the
centroids of the particles were translated according to known
flow solutions, and the light integration process was repeated.
The resulting image pairs were interrogated, and the measured
velocity field was compared with the actual flow solution to
yield the error as a function of space.

The displacement error was determined as a function of the
particle image size, shape, brightness and seeding density.
Out-of-plane velocity components were simulated, and the
effects of varying the correlation window size, the form of the
correlation function, and the correlation peak fitting tech-
nique, could then be related to both the image and flow
parameters.

The Gaussian particle profile has an intensity distribution,
I(r)\e~(r/2p)2, where r is the distance from the center. 2p had
values corresponding to particles diameters d, of 2, 2.83, 4.9,
6.93, 8.49 and 11.3 pixels, where d is measured at the e~2
intensity level. The number of particles is non-dimensionalized
by the number of pixels in the array to give the number density
N in particles per pixel (ppp). N was varied from 0.022 to
0.333 ppp (the conventional measure of image density is
related to the ppp measure through multiplication by the
number of pixels in the interrogation box).

As fluid dynamicists are seldom interested in measuring
irrotational flows, the analysis is focused on flows with shear.
Solid body rotation used for the experimental tests can be
decomposed into two orthogonal simple shear flows. Conse-
quently, simple uniform shearing flows were chosen for most
of the simulations. The strength of the shearing is described
by the displacement gradient S, which indicates the in-plane
deformation that occurs between images S is related to the
vorticity by the time interval between images Dt. The vorticity
is a constant for the entire field and is given by,
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(1)

where the 1
2

is dropped for the 1D shear case. S was varied from
0.0067 (0.67%) to 0.213 (21%).

2.1.2
Experiments
In order to ensure that the progress of the simulations was
constrained to realistic situations, they were paralleled by
a series of careful experiments involving both real particles in
water, and real particles glued in place on a small turntable.
Promising results from the simulations could thus be verified
in the laboratory. In practice, many of the parameters in a real
CIV experiment, such as lighting, physical particle properties,
image acquisition electronics, and general hardware tinkering,
as well as the interactions of these with the flow itself, are
not easily simulated. The simulated images could be tuned
to match the experiments by ensuring that there was both
a qualitative and quantitative statistical similarity between the
image properties.

The wet experiments were performed in a precisely built
15 cm diameter by 20 cm tall rotating plexiglass cylinder. The
speed of rotation was controlled by a stepper motor, and the
lighting was provided by a 5 W argon ion laser. The camera
(Pulnix TM 745 interline transfer CCD) was mounted under

the tank, parallel to its rotation axis. Typically the tank was
completely filled with distilled water, the particles under test
were added, all air was removed, and the tank was then spun up
to a solid body rotation state. The light sheet pulse was created
either by a pair of cylindrical lenses and a mechanical chopper,
or by using a computer-controlled, oscillating mirror to
provide an effectively instantaneous pulse containing several
high frequency scans. Static particle tests similar to Prasad et
al. (1992) were conducted by gluing white particles onto a black
turntable, and acquiring an image before and after rotation
through a known angle. Images were captured directly into
image memory on an ITI PC-Vision` frame grabber board. As
the exact angular velocity was prescribed beforehand, errors
could be evaluated in a similar way to the simulations, once the
center of rotation was determined.

2.2
Errors
Provided the particles adequately follow the flow, and are
effectively exposed instantaneously (the time of exposure is
short relative to the frame interval Dt, and so there is no
blurring due to motion), and that there is no optical distortion
or contamination of the scattered light before it reaches the
pixel array, then errors in the measurement of the particle
displacements will depend solely on the accuracy with which
the particle image positions can be determined on the image
sensor itself. Consequently the uncertainties associated with
particle displacements are functions of the pixel sizes and it is
appropriate to express CIV errors in pixels units for all spatial
measurements. If we make the further assumption of a perfect
pixel array, i.e. there are no gaps between pixels, each pixel has
equal gain, and the noise in the DAC (and ADC) is negligible
(this requires good synchronization between the camera pixel
clock and the ADC), then the problem of determining particle
displacements is purely an image processing one, that is well
modeled by the above described simulations.

2.2.1
Particle images
CIV is a general technique that does not rely on the use of
particle images, and in principal, any passive tracer that
provides image texture and follows the flow may be used. The
use of scalar gradients as flow tracers is a complex topic by
itself, and although CIV has been successfully applied to Laser
Induced Fluorescence (LIF) images, even in simple 2D flow
fields the associated error analysis is non-trivial and will not be
discussed further here. Since particles can provide excellent
image contrast and texture in practice, and since their
properties can be specified exactly in simulations, the following
analysis is centered around particle images. Image exposure is
a critical phase of the data acquisition process; being the front
end of the process there is little opportunity to correct for
mistakes made at this stage. Depending on the light scattering
properties of particles, and the optics in use, particle images
can be significantly larger than the physical particles that they
represent. Experimental details of physical particles properties
and lighting systems can be complex, and will not be discussed
here, (cf. Adrian 1991). Instead, attention will be focused on the
properties of the particle images.
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Fig. 1. Error in pixels vs. displacement for simple shear flow,
N\0.55 ppp, d\3 pixels, and S\0.007

Fig. 2. The phase-averaged error of non-integer pixel displacements
is not random, but is a regular (doubly periodic) function of real
displacement. There is also significant fluctuation about the mean
error curve. These results occurred in both simulations and
experiment

To maximize the information content of the images, the
pixel intensities should cover the allowable range (0—255 for
8 bit digitization). This is typically done by examining the
image histograms and making the appropriate adjustments to
the apparatus, or frame-grabber gain and offset. The contrast
should be maximized to provide particle images that are
distinctively brighter than the background, without saturating
the particle profiles. Reflections and glow from dirty water can
seriously reduce the contrast, and it is important to ensure that
light from anything other than the particles does not reach the
image sensor. Proper normalization of the correlation function
can apply equal weighting to all texture in the image, and
the dark background can be just as important as the bright
particles in producing strong correlation peaks. Therefore, any
light from stationary objects, such as the background, or
streaking of the laser sheet, will correlate with itself, resulting
in a tendency towards zero displacement correlation peaks.
Having a distribution of particle sizes can improve perfor-
mance, as each local image pattern box will have a better
chance of being unique.

Image pre-processing can only serve to destroy or rearrange
information as new information clearly cannot be added
after the experiment. Provided the above-mentioned pre-
cautions are taken during the image exposure process, then
there should be no reason to alter the original images prior
to the image correlation analysis. Clearly, whenever there is
systematic, predictable contamination on the images, such as
the presence of towing wires or boundaries, it can be removed
beforehand.

2.2.2
Form of errors
All DPIV methods result in a characteristic variation of
error with displacement. The error in the displacement,
DD\Dmeas[D

a
, is shown as a function of the actual displace-

ment, D
a
, in Fig. 1. The abscissa indicates the phase of the

error, whose signal is periodic in nature, with a random
component superposed on the phase averaged mean, Similar
results are obtained for both the experiments and the simula-
tions. This is due to ‘‘peak-locking’’, an effect to be discussed in
detail in Sect. 3.1.3. It will prove useful to decompose the error
into a periodic mean-bias part, E

."
, and the scatter around

this local mean, E
3.4

. Each vector is binned according to
the fractional part of its actual displacement, so for nbins
covering the range [0, 1] the bin number is given by,
j\nint(nbins](Da[int(Da)). The amplitude of the mean bias
component of the error is determined from the average error of
the n

j
vectors in each bin,
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The true rms error of each bin, is evaluated as,
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are shown in Fig. 2 as a function of the
fractional displacement. To simplify the following analysis, the
error components are averaged over their phase as follows.
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In this way the variances of the error components provide
single measures of their importance in each test. For the
example in Fig. 1, the value of E

."
, E

3.4
and E

536%
are 0.046,

0.020 and 0.051 pixels respectively. Note that E 2
3.4

]E2
."

:E2
536%

even though the amplitude of E
3.4

depends on the
phase, and the relative importance of the contributions of
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Fig. 3. The decoupled pattern correlation box and search radius

1This error results in standard DPIV codes where the position of the
pattern box is fixed in both images. Particles with larger velocities can
leave the fixed pattern box resulting is a bias towards smaller velocities
when there is significant variation of the velocity within the box.

E
."

and E
3.4

to E
536%

is preserved. Decomposition of the error
in this way requires large samples for reasonable statistical
convergence. Samples of over 200 000 vectors were used for
most of the following results, rendering statistical undersamp-
ling errors insignificant.

3
The CIV method
CIV, first introduced in Fincham et al. (1991), has been
developed over the course of several years with the constant
underlying design objective, that the best possible accuracy
and spatial resolution are to be achieved regardless of the
computational cost, ensuring that optimum use is made of
limited resolution data. The continued and fixed emphasis
on accuracy and resolution has yielded surprisingly accurate
reconstructions from only modest CCD arrays, rivaling that of
much more expensive equipment. Moreover, at any foreseeable
resolution, there will always be interest in limiting discretisa-
tion errors, so these considerations will not be made obsolete
by advances in technology.

3.1
Algorithms for improved accuracy
CIV is based on generalized texture mapping functions, and
not on the identification or presence of individual particles,
but rather on the fact that under suitable conditions, groups
of particles or regions of image texture, will retain similar
appearances under small translations and deformations. The
particles can then be tracked as a group using a 2D correlation
function to perform pattern matching as a function of the
displacement D. The actual displacement is determined from the
location of the maximum value of the correlation function in the
image plane, and is always done to sub-pixel accuracy, with
a local curve fit of the correlation data. If the correlations are
performed correctly, the maximum value represents the most
likely displacement of the image in each interrogation window
during the time interval Dt. The correlation algorithm performs
a local computation, and each velocity vector is computed
independently; there is no accumulation of errors across the
field. No assumptions about conservation of mass or particles
are required; it is purely a pattern matching algorithm and is not
constrained by boundaries or complex flow geometry.

The performance analysis is based upon the cross-correla-
tion method, but many of the arguments apply equally to
auto-correlation technique. The auto-correlation suffers from
both a decreased signal-to-noise ratio, and a reduced dynamic
range. The cross-correlation should therefore be used when-
ever both the fluid mechanics and economics permit. With the
advent of frame buffer-equipped, progressive scanning, inter-
line and full frame transfer CCD cameras, capable of capturing
two images only a few micro seconds apart, auto-correlation
methods need only be used in very high pixel velocity flow
situations, or when high resolution photographic image
recording is being employed.

3.1.1
De-coupled box size/search radius
One of the most important features differentiating CIV from
standard DPIV is the de-coupling of the sampling box from its
fixed location in image d1 to any arbitrary location in image

d2, Fig. 3. This general block matching approach is not
new and extensive examples and discussions of its use can
be found in both the image processing and fluid mechanics
literature (Jain and Jain 1981; Gilge 1990; Fuh and Maragos
1991; Utami and Blackwelder 1991; and Huang et al. 1993).
This process completely eliminates the velocity bias error1
first described by Adrian (1986, 1992), and extensively
analyzed and corrected for by Westerweel (1993). It greatly
improves the signal to noise ratio in the presence of large
displacements, significantly extending the dynamic range of
the velocity measurement. More importantly, it allows the
use of relatively small sampling boxes, which significantly
increases the available spatial resolution and reduces the
errors encountered when measuring vortical flows. The
following describes this process in more detail.

Two images are captured a time interval Dt apart. Image
d1 is subdivided into small pattern boxes of size Bx by
By pixels. During the time interval Dt, the motion of the fluid
containing the particles imaged in each of the pattern boxes is
restricted by the maximum possible flow velocity. If Dt is short
compared to the out-of-plane velocity convective time, d/w,
where w is the out-of-plane velocity component and d is the
light sheet thickness, then most of the particle images con-
tained in a pattern box of image d1 centered at image
coordinates (x, y), will appear in image d2 within a search box
of size S

x
\2u

.!9
Dt]B

x
, by S

y
\2v

.!9
Dt]B

y
pixels, where

Mu
.!9

, v
.!9

N are the estimated maximum in-plane flow vel-
ocities in pixels per second. Further, considering the effects of
velocity gradients in x, if both Dt and Bx are small enough to
restrict the maximum in-box deformation,

DB\K
Lul
Lx K

.!9

BxDt

where Bx can be replaced by d for the out of plane gradients,
to some fraction of the particle image diameter d, then the
group of particle images within each box will retain a similar
geometric relationship to one another, and effectively undergo
a simple translation.

452



Fig. 4. The peak-locking mechanism causes a bias towards the nearest
high data point. The letters a—d are also indicated in Fig. 2

The cross-correlation function c (i, j ), between a box in
image d1 and the same sized shifted box in image d2 is
computed for i in the range;

G[
Sx[Bx

2
, ]

Sx[Bx
2 H

and, j in the range;
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Sy[By

2
,]

Sy[By
2 H

where (i, j ) represents the relative shift, and covers all possible
locations of the sample box within the search box in image d2.
Provided there is no larger random correlation, the indices
of the maximum value of the correlation, c

.!9
(ic

.!9
, jc

.!9
) will

correspond to the mean integer shifted position of the particles
within the box during the time interval Dt. c(i, j ) is computed
for each of the pattern boxes in image d1.

3.1.2
Normalization by variance
Most DPIV systems use FFT’s to perform correlations between
matching regions in each image pair. However, as errors can be
quite sensitive to the choice of pattern box size and shape,
systems based on FFT algorithms, that, for purposes of rapid
computation, impose constraints such as m\n\even, etc.,
cannot easily be optimized or adapt correctly to changing flow
structure. Explicitly performing the correlations in real space
gives complete flexibility in the choice of pattern-box sizes
and shapes. Extensive tests involving different forms of the
correlation function and its normalization were conducted.
A variance normalization proved to be the most accurate and
robust to the loss of particles between images, results in
agreement with those of Burt et al. (1982).

The variance normalized correlation or covariance c(i, j ) is
defined as

c(i, j )\

+Bx
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+By
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[ +Bx

k/1
+By

l/1
(Ia(k, l)[IM a)2 +Bx
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(6)

where I
a
(1, 1), I

b
(1, 1), represent the pixel intensities at the

corner, of a pattern box of size B
x

by B
y
, centered at image

coordinates (x, y), in images d1 and d2 respectively. The
quantities IM a and IM b represent the mean intensity in the sample
box of image d1 and the current test box in image d2;
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This type of normalization can give equal weighting to each
pixel in the interrogation window, such that the background
is just as important as the particle images. It is a pattern
matching algorithm, and it is very important that all image
intensity variance, or texture motion be associated with fluid
motion.

3.1.3
Peak fitting
The search procedure of Sect. 3.1.1 for locating the maximum
of c(i, j ) gives the nearest integer displacement. This coarse
approximation must now be refined to give the best sub-pixel
estimates. The accuracy with which the true correlation peak
displacement can be estimated entirely determines the max-
imum accuracy and practical utility of all IV methods,
including CIV.

Recall the general form of the error as a function of
displacement, shown in Figs. 1 and 2. The relative error in
estimating a continuous function from its discretely-sampled
approximation is strongly dependent on the information
distribution about it. If the discrete data have reflective
symmetry about the true peak location, then the error in peak
location is minimized. In all other cases, the non uniform
information distribution with respect to the true peak location
leads to a bias that pulls the peak estimate towards the closest
high data point. The amplitude of this bias error is strongest
when the asymmetry is most pronounced, at true pixel shifts of
1/4 or 3/4, as shown in Fig. 4.

We term this phenomenon peak-locking and note two
points: 1. The peak-locking error can be large compared with
the other random components. 2. Since it has a semi-regular
shape, it ought to be possible to remove it. Unfortunately, it is
not possible to simply subtract the periodic, phase-averaged
component of Fig. 2 from all computed correlation shifts,
because the amplitude and phase depend on the image quality
and local fluid shear. Attention has turned instead to improv-
ing the peak-fitting algorithm.

The literature contains many examples of interpolating or
peak-fitting functions, (Willert and Gharib 1991; Prasad et al.
1992; Westerweel 1993; Lourenco and Krothapalli 1995; Cowen
and Monismith, 1996), but little agreement as to the best one.
The contradictor results indicate that although the cause of the
peak-locking has been identified by Westerweel, no adequate,
general solution is imminent. Amongst common alternatives,
we have tested and discarded all center of brightness or
centroiding techniques, which are sensitive to arbitrary choices
in the cut-off threshold, produce large random errors that
depend on the correlation peak characteristics, and show
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Fig. 5. Distribution of measured fractional displacements for a
simple shear flow, using some different peak-fitting functions. The
tendency toward integer displacements can be very strong

Fig. 6a, b. Error as a function of seeding density. a S\0.027;
b S\0.107

strong peak-locking for smaller particles (Prasad et al. 1992).
Biquadratic, or higher polynomials result in very large peak-
locking errors and should not be used. Various spline
approximations perform better, but are sensitive to small
errors in the data and still suffer from strong peak-locking
tendencies. Symmetric or asymmetric Gaussians can perform
quite well under favorable conditions, but their dependence on
the fit weighting functions can make the results inconsistent,
showing inverse peak-locking in some cases. The thin-shell,
smoothed spline functions described by Spedding and Rignot
(1993) although far from perfect, were chosen for this analysis
as they show no disposition towards the Gaussian particle
image profiles, and the smoothing parameter, o, can be
adjusted to effectively randomize the phase of E

."
, decreasing

the susceptibility to peak-locking errors. A comparison of
some different peak-fitting functions is shown in Fig. 5, which
shows the distribution of the fractional part of the measured
displacement for a simple shear flow. A perfect peak fit would
give equal probability for all fractional displacements, but
a tendency towards integer displacements is observed in all
cases. Both the smoothing spline and the Gaussian perform
acceptably under the same conditions. Care should be taken in
interpreting these results as they say nothing about the true
errors associated with the different fits, and large random
errors can easily scramble the phase of the bias-error, making
peak-locking undetectable. Figure 5 is provided solely to
illustrate the peak-locking phenomenon and to demonstrate
the use of displacement distribution function analysis for its
detection in real data.

The presence of the peak-locking phenomenon is relatively
independent of the correlation algorithm used and will appear
(in some form) in any type of IV technique where sub-pixel
determination of the displacement vector is attempted. The
effects are especially visible when measurement of vorticity is
attempted, showing up as ripples on the vorticity field that can
exceed the real vorticity in amplitude. Although the smoothing
spline fit compares favorably, there is no a priori reason to
expect it to be an optimum choice, as the imposed functional
form for the correlation distribution has no physical basis.

Current research indicates that significantly better assump-
tions can be made, and will be the subject of a separate paper.

3.2
Basic optimization for simple shearing flows

3.2.1
Optimum particle image size, number density & the
effects of shear
As the CIV method relies on image texture and contrast, each
particle image size will have associated with it an optimum
seeding density N

015
. Stronger shear may require higher

seeding densities to account for the variation of velocity with-
in the sample box, further complicating the optimization
problem.

To simplify the analysis we focus on mono-dispersive
particle seedings and investigate N

015
(d). Figure 6b shows the

decomposed error in pixels vs. the particle number density N,
for a moderate deformation, S, of 0.107, and a particle diameter
d of 4.9 pixels. The true errors are very large for low particle
seeding densities. They reach a minimum but slowly increase
as image texture is drowned by the large number of particles.
The error is clearly dominated by E

3.4
for all N. For the lower

shear of 0.027 with the same particle diameter, Fig. 6a, E
536%

is smaller and shows a minimum around N\0.05 ppp. The
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Fig. 7. Optimum seeding density vs. particle diameter, for strong
and weak shear

Fig. 8a–c. Error vs. particle diameter using the optimum N values
from Fig. 7. a S\0.027; b S\0.107; c S\0.213 (note: change of scale
in E)

increase in error with N is now determined by E
."

, while
E
3.4

shows a sharp decline then remains fairly constant for
N greater than 0.1 ppp.

Using the simulation data base, the optimum seeding
density was determined for each particle diameter for different
shears. Same results are shown in Fig. 7, where it is clear that
for weak shearing, the seeding density is not very critical, while
for stronger shear, smaller particles require larger number
densities. The optimum seeding densities reported here are
significantly larger than those reported by other researchers
Willert and Gharib (1991) and Westerweel (1993). This
reflects the need to maximize the information content of the
relatively small pattern boxes, in agreement with results of
Utami and Blackwelder (1991). In essence, any untextured
background can be thought of as wasted signal. It should be
noted that in practice, these high seeding densities can be
difficult to achieve, issues related to the effective transparency
of the fluid and the physical properties of the particles
themselves often place the first limits on usable seeding
densities.

Using the optimum seeding density, N
015

, for each value of d,
the independent effect of variation of d and S on the error can
be seen in Fig. 8a—c. The lowest error is achieved for d:6
pixels, for all S3[0.02, 0.22], over an order of magnitude
variation in S. Nontheless in the high shear case (Fig. 8c) it is
evident that the consequences of using too small a particle are
quite severe. As the local shear is increased, fluid elements
are increasingly deformed over the time interval Dt. If the
deformation within the sample box, DB\SB/2, becomes of
order d, the particle image pattern pairs have a sharply reduced
degree of overlap, and the correlation amplitude decreases. For
the conditions, of these tests, such a cutoff can be predicted
when d\2 pixels for S\0.213, consistent with the sharp rise in
error in Fig. 8c. Once again in Fig. 8, E

3.4
dominates at higher

shearing rates. Results based on simple models for E
."

, and
E
3.4

Prasad et al. (1992) show similar trends but indicate an
optimum particle diameter between 2 and 3 pixels. Their
results, based on centroidal fitting of a perfect 1D Gaussian
require multiplication by a factor J2 for comparison as they

square the correlation function. They have not accounted for
the presence of shear, and assume E

."
]0 for d[2.5. These

factors are likely to increase the optimum value of d, moving it
reasonably close to the one reported here.

The form of the correlation peak is closely related to the
shape and size of the particle images (Westerweel 1993), and as
the particle diameter increases so does the correlation peak
width. A better resolved correlation peak reduces E

."
for
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Fig. 9a–c. Error vs. box size. a S\0.027; b S\0.107; c S\0.213
(note: change of scale in E)

larger d, as seen in Fig. 8 (note: in Fig. 8c the slight increase
in E

."
for large d is due to leakage from the large amplitude

rms component, which cannot be so easily isolated.)
The requirement for increasing d with increasing S

creates a dilemma for the experimentalist trying to measure
highly vortical flows, for strong vorticity is usually associ-
ated with small scales, yet apparently we need large particles
to measure them. In practice, large particle images can be
attained without interfering with the flow, either by using
highly reflective particles whose image is diffraction limited,
or by defocusing smaller particles (Browand and Plocher
1985).

3.2.2
Effects of box size
Particle size and seeding densities must be determined before
the experiment is performed. For a given flow, S depends only
on the choice of Dt and can be adjusted either during the
experiment, or possibly afterwards if many redundant frames
are captured. By contrast, the sample box dimensions Bx and
By can always be optimized at leisure after the experiment.
They can be chosen so as to preserve square fluid elements in
cases where the camera pixels are not square, or, in flows with
strong anisotropy, rectangular boxes can be chosen to provide
spatial resolution in the direction it is needed while maintain-
ing a reasonable total area for each box. Smaller box sizes
provide better spatial resolution, but as they contain less
information will result in larger random errors. Figure 9a—c
shows the effect of changing the box size B, for S\0.027,
0.107 and 0.213 respectively. For weak shear, Fig. 9a, there is
a gradual decrease in E

536%
with increasing box size, due to the

reduction in E
3.4

with the increased information content of the
larger boxes. E

."
remains unchanged and eventually limits

the accuracy.
For S\0.107, E

3.4
starts to dominate and there is a reduction

of E
."

due to the effects of the shear scrambling the phase of
the error. E

536%
shows a minimum for B\18 pixels. For even

stronger shear, S\0.213, there is total domination by E
3.4

and
the larger boxes perform quite badly as the deformation at the
edge of the boxes DB, approaches the particle diameter d. Here
the increased error associated with the reduced information
content of the smaller boxes is still better than allowing
significant distortion within the box. In the presence of shear,
smaller boxes increase the mean correlation value, a trend that
can be used to find the optimum box size for experimental
data. Box sizes as small as 5]5 pixels have been used
successfully under optimal experimental conditions.

In strongly vortical flows, the deformation of the sample
box by the in-plane velocity gradients is one of the limits
on sub-pixel location of the correlation peak. By using the
strain rates computed from a first pass computation of the
velocity field, to deform the sample box in image d2 before
correlation on a second pass, better matching can be obtained
for strongly deformed regions, as analyzed by Fuh and
Maragos (1991) and Huang et al. (1993). This is simply
an extension from simple translation of the box, to translation
plus deformation. Higher order deformations can also be
made, analogous to the series expansion approach of
Tokumaru and Dimotakis (1993).

3.3
Computation of vorticity

3.3.1
Automated error detection
There is no guarantee that the peak associated with the largest
correlation value represents the true displacement of the fluid
in the sample box. Especially when the correlations are weak,
there is always some chance of a random pattern correlation
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Fig. 10. Reconstructed azimuthally-averaged velocity profile for
Burger’s vortex, conditions as in Fig. 11

giving vectors that are grossly incorrect, or false. These
F-vectors will be unrelated to the flow, and should stand out
when compared with their neighbors. The probability of
random correlations increase for smaller boxes, as they contain
less information and are less likely to be unique in the search
neighborhood.

A vector correcting routine was developed to post-process
the displacement information obtained from the correlation
algorithm. The routine compares each vector with its neigh-
bors, computing the relative deviations in both magnitude and
direction. The most deviant neighbor is discarded (to allow for
adjacent bad vectors), and a single F-factor is computed, and
normalized with the deviation statistics from the entire field,
which are based on the dot-products of adjacent vectors. Based
on a statistically derived threshold, the vector is classified as
false. The image correlation for the false vector is recomputed,
but the correlation peak corresponding to the F-vector is
suppressed in the correlation plane, and the next highest peak
is fit, returning a new vector. The process is iterated on the
entire field with the statistics being updated after each pass.
A lower limit of the correlation value is set for the actual
rejection of a perpetually false vector, typically about 30% of
the maximum value. Each corrected vector is tagged, and the
corrected vector field is output. Still, the procedure is not
perfect, and a small number (1—5%) of the F-vectors can slip
through the screening process. Westerweel (1994) analyses in
detail a number of similar procedures.

The final judgment as to what constitutes a bad vector is
actually quite a sophisticated estimate, incorporating fluid
mechanical constraints that are not so easy to program. A final
stage involving manual inspection of every vector field by
experienced fluid dynamists familiar with the flow being
studied is necessary.

3.3.2
Re-interpolation, filtering and computation of derivatives
One of the attractions of the CIV-type methods is that the
velocity field is apparently evaluated on a regular grid. In fact,
displacements computed at each sampling box location, (x, y),
are more closely representative of the velocity at the location
halfway between (x, y), and the final location of the box,
(x]Dx, y]Dy). Failure to correct for this results in a system-
atic error in the computation of the spatial derivatives. After
the convective correlation, the now irregular grid of velocity
data is fit with the same smoothing spline used in the peak
fit. The spatial derivatives are computed analytically from
the coefficients of the spline functions, thus avoiding errors
associated with finite differencing schemes. Provided the ratio
of the characteristic length scales in the flow to the original grid
spacing (referred to as L/d in Spedding and Rignot 1993),
is large, the rms errors associated with the reinterpolation
process will be small.

Pattern boxes can be overlapped to provide a denser coverage
of data. Although the overlapping does not increase the true
spatial resolution, which is set by B and the light sheet thickness
d by independently evaluating the velocity at scale B for an
increased number of nodes, new samples of the original
information can be obtained. Each different selection of particles
will produce a slightly different correlation peak, allowing
random grid scale fluctuation errors associated with E

3.4

to be averaged out by an appropriate spectral filtering tech-
nique. The filtering can be done on both the velocity data
and its spatial derivatives, or the derivatives can be computed
after filtering by re-splining the filtered velocity data. The filter
used is typically a 2D fourth order Butterworth low pass filter,
where the cut-off wave-number is set to the sample box size.

Spectral filtering of non-periodic data causes contamination
by wrap-around through left/right and top/bottom borders.
The effect can be significantly reduced with the ‘flip-filter’
where the data field is replicated by reflection at each border,
and once again at the corners, to smoothly fill the eight
surrounding squares before applying the filter. Following
inversion, only the central rectangle, corresponding to the
original grid, is retained. Most contamination is confined to
the edges of the expanded data set, and is removed in the
un-flipping process. If additional information is available
about the velocity field and its spatial gradients, different
cut-off-wave-numbers can be used for the different velocity
components, or directions.

3.3.3
Reconstruction of Burgers‘ vortex
In order to examine the actual dynamic range of the vorticity
measurement, and to determine the smallest resolvable scales,
it is necessary to introduce an independent length scale.
Burgers’ vortex, is a closed form solution of the Navier—Stokes
equations with a Gaussian vorticity distribution defined by
u

z
\Ce~(r2/r20 ), where r

0
is the core radius and C represents the

strength of the vortex, and was simulated in a way similar to
that of the simple shearing flows. The azimuthally-averaged
tangential velocity profile, u

t
(D r D) of the un-filtered CIV image

data for Burgers vortex with r
0
\50 pixels, Dt\1 s, and

C\u
.!9

\2S\0.25 (for consistency with the 1D simple-shear
flow analysis, the 2 in Eqn. (1) is reintroduced) is shown in
Fig. 10 along with the Burgers’ solution and the true rms
deviations. Both the image and processing parameters were
chosen based on the optimization arguments of the previous
sections, so B\15 pixels, N\0.1 ppp and d\6.93 pixels. By
allowing only a 1 pixel overlap in the correlation window,
enough statistics were obtained to decompose the error into
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Fig. 11. Decomposed error vs. radius for Burger’s vortex, r
0
\50,

C\0.25, B\15 pixels and d\6.93 pixels. Solid symbols are before
resplining and filtering the velocity field data. The cut-off wavenumber
corresponds to 12.5 pixels

Fig. 12. Vorticity profile from the splined, unfiltered data. Conditions
as Fig. 11. (insert shows details of vortex tails)

Fig. 13. Vorticity profile for splined and filtered data. Conditions as in
Fig. 11

its mean bias and rms parts as a function of radius. The
decomposed displacement errors are shown in Fig. 11. The
greatest error occurs in the core where E

3.4
dominates, while

E
."

shows itself in the weakly sheared tails, consistent with the
analysis of Sect. 3.2.1. Also shown are the effects of the spectral
flip-filter, where the cut-off wavelength is set to 12.5 pixels.
Here we observe a 50% reduction of the errors in the core, due
mainly to the quenching of E

3.4
. In the tails, E

."
remains

relatively unchanged so there is little overall change in E
536%

.
The splined, un-filtered vorticity distribution, u(D r D), is

shown in Fig. 12 along with the Burgers’ solution and the
associated rms error in vorticity. There is a clear underestima-
tion of the peak vorticity along with oscillations associated
with peak-locking, that are more visible in the detailed view of
the vortex tail. The true rms error in vorticity is over 30% in
the core and exceeds the measured vorticity at r\80 pixels.
The underestimation in the core is associated with the spatial
averaging effect of the correlation window where the gradients
are large. Application of the spline and spectral filter greatly
improves the situation (Fig. 13). Core errors are now below
4%, and the error remains less than the measurement out to

r\110 pixels. Nonetheless, closer inspection shows the
amplitude of the peak-locking oscillations in the tails is
basically unchanged, and E

."
has withstood the filtering

process. As the wavelength of these mean-bias error oscilla-
tions is unrelated to any of the processing options (it is
determined solely by the local vorticity and pix/cm conversion)
it is not possible to filter this out in a general manner without
seriously distorting the vortex structure. A suitable filter
strategy must be spatially-localized, adapting to the local
vorticity magnitude, and in principle can be performed on
a wavelet basis.

4
Application to turbulence

4.1
Actual errors

4.1.1
Velocity
The experimentalist is usually concerned with the actual
percentage rms error in the velocity measurement, and not
the pixel errors. The actual error in velocity E

7%-
is given by

E
7%-

\E
536%

/ DD D. E
536%

is independent of the displacement DD D,
depending primarily on the flow parameters S and w, so as
E
7%-

\1/DD D, one ought to maximize DD D for any experiment,
given certain additional constraints. Displacements greater
than the box size result in velocities averaged over distances
greater than the grid spacing, and so reduce the effective spatial
resolution. As the deformation gradient, S, is related to the
vorticity by S\uDt, increasing Dt will increase S. Figures
8 and 9 show that increasing S will increase E

536%
, significantly

increasing the percentage rms errors for all displacements. In
flows with large, non uniform accelerations, Dt must be chosen
such that Dt (dv/dt)@v.

A more fundamental limit in D (hence Dt) is caused by
out-of-plane velocity components removing particles from the
light sheet during Dt. For an out-of-plane velocity, w, the
fraction of particles leaving a light sheet of thickness d in a time
Dt is wDt/d. Out-of-plane motion was simulated by randomly
removing and adding particles between image pairs. Figure 14
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Fig. 14. Effects of out-of-plane motion on the error components.
Also shown is the increase in false vectors, all of which were
automatically corrected before splining and computation of errors

shows the decomposed errors in D vs. the percentage of
particles leaving the light sheet in the interval Dt. As more and
more particles are removed from the light sheet and replaced
by new ones, an increasing number of vectors are lost to
random correlations (also indicated in Fig. 14). The vector
correcting algorithm described in Sect. 3.3 proved capable
of automatically locating and correcting all the F-vectors in
Fig. 14, even when their number densities approached 30%, as
is the case for the cross flow corresponding to a 50% loss of
particles in Fig. 14. The sharp rise in the number of F-vectors
that occurs when 30% of the particles leave the light sheet,
is also accompanied by an increase in the error, which is
evaluated after vector correction and filtering here. As the
robustness of the vector-corrector depends significantly on the
flow conditions, a conservative limit of 30% is placed on the
maximum tolerable out-of-plane loss of particles.

Applying the 30% criterion to an anisotropic 3D flow, where
Dw@ D:Du@ D and setting the light sheet thickness d\B to
preserve cubic fluid elements, the maximum sustainable
displacement, D

.!9
\u

.!9
Dt, for w

.!9
Dt/B\0.3, is, D

.!9
\B/3.

For a fixed d, larger particle seeding densities, or larger pattern
box sizes, will allow slightly greater out-of-plane motions. In
a fully 3D flow, the maximum sustainable F-vector count
typically provides the first constraint on D

.!9
, before consider-

ations of in-plane spatial resolution. In quasi-2D flows where
Dw D@MDu D, Dv DN, the only limit on D

.!9
, other than the reduced

spatial resolution that occurs when D
.!9

[B, is that eventually
the local shear will rearrange the particles beyond recognition
by simply translating codes. As the minimum percentage error
occurs for the largest displacements it is important to optimize
for this. However, due to the rapid rise in the number of
F-vectors, the consequence of allowing too large a displace-
ments in single pass translating codes applied to 3D flow is
total loss of the measurement.

4.1.2
Vorticity
The percentage error in vorticity, Du@/Du D\DS@/DS D is indepen-
dent of DD D. Closer examination of the vorticity profiles in

Figs. 12 and 13 indicates that there is an increase in Du@
associated with large Du D but also a background level of
uncertainty below which Du@ does not fall. This implies an
optimum value of Du D where the percentage error in vorticity is
a minimum, about Du D\0.2 s~1, or S\0.1 for the unfiltered
vorticity profile in Fig. 12. If possible, Dt should be chosen
so as to keep S within this range for the vortical structures
of interest. A smaller box size reduces DS@ in the core, but
increases DS@ in the tails, implying that B should be a function
of S, a process that can be implemented in a multiple pass code.
The final judgment as to the choice of Dt, and hence S, depends
on the objective of the experiment and flow under study, i.e. is
it more important to reconstruct the vortex cores, or to resolve
weakly vortical motions in the far field?

The range of S can be extended by acquiring three images
at times, t, t]Dt, and t]nDt, choosing Dt and n such that
S remains optimal in the core for images 1 & 2, and when
S approaches DS@ in the tails, images 1 and 3 are used, returning
the local S to its optimal value. The errors introduced by
the difference in time of evaluation of the vectors in the near
and far fields can be avoided by using a 4 image acquisition,
t[nDt, t, t]Dt, and t](n]1)Dt, allowing the average time of
the measurement to be the same for all vectors.

4.2
Measurable range of scales, velocities & vorticities

4.2.1
Velocity

The bandwidth of the velocity measurement is set by the
ratio of D

.!9
to the smallest tolerable displacement, D

.*/
.

D
.*/

depends on the acceptable error in the low speed regions.
DD@ can be limited to about 0.05 pixels, and a value of
D

.*/
\0.5 pixels gives a 10% error. D

.!9
depends on the box

size, B. In isotropic 3D flows where d+B, this will about 0.3B,
or D

.!9
\6 pixels for B\18, providing an effective velocity

bandwidth of 12. For a given B, increased velocity bandwidth
can be gained at the expense of spatial resolution by increasing
the light sheet thickness d. Larger displacements can be
attained, but additional errors associated with shear parallel to
the light sheet will be incurred.

4.2.2
Scales
The highest in-plane spatial resolution is ultimately limited by
the sample box dimensions, B. Once the first approximation
to the velocity field is known, one may reduce the sample box
size and recompute the correlations in a small neighborhood
around the previously measured mean displacement. This can
be thought of as a multi-grid scheme in which two or three
passes with decreasing box-sizes are made. The limit depends
on the requirement that each box contains some image texture,
so high particle seeding densities are required. When B is
reduced below its optimum value, determined from Fig. 8, we
begin to sacrifice accuracy, or velocity bandwidth, for spatial
resolution. Ideally, the box size varies locally with S (as noted
in the previous section), allowing an extension of the range
of scales, with little compromise in the velocity bandwidth.
Burgers’s vortex simulations indicate adequate reconstruction
of the vorticity field, provided BOr

0
, so, conservatively,
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Fig. 15. Reconstructed vorticity profile for Burger’s vortex, C\0.5,
B\15, r

0
\20 pixels

B should be less than half the size of the smallest scale of
interest.

The largest resolvable scales are limited by the smallest
linear dimension of the sensor array n. The range of
measurable scales is then n/2B, which is about 15 for a typical
5122 sensor with B\18 pixels, but can be as much as 42, for
B\6 pixels.

4.2.3
Vorticity
The bandwidth in vorticity measurements is S

.!9
/S

.*/
, where

S
.!9

and S
.*/

represent the largest and smallest values for
which DS@

.!9
/S

.!9
and DS@

.*/
/S

.*/
are below some acceptable

threshold. The fundamental maximum limits on S are due to
the angle of rotation of the fluid element (in this steady flow),
and the ability to obtain an adequate correlation peak with
a simple translation code. For Burger’s vortex, S\1 corres-
ponds to a rotation of 1 radian, where the curvature of the
particle path lines start to be important in determining the
velocity. Limiting S to 0.25 reduces the error to less than 1%
and the corresponding uncertainty DS@

.!9
in the reconstruc-

ted, filtered vorticity field produces an acceptable value
for DS@

.!9
/S

.!9
of 10%, giving a maximum tolerable shear

S
.!9

\0.25 (Fig. 15). The error in measurement of weak
vorticity is governed mainly by peak-locking errors, generating
background oscillations with amplitudes of DS@

.*/
\0.001

(Figs. 12, 13, 15), requiring S
.*/

\0.01 for a 10% error. The
useful dynamic range is therefore about 25.

4.3
Can DPIV measure high Re turbulence?

4.3.1
The dynamic range of turbulence
The preceding length, velocity and vorticity range arguments
can be related to those encountered in a real turbulent flow,
through scaling which we briefly review and develop here.
Assume high Reynolds number, isotropic, homogeneous

turbulence, with integral quantities U@ and L, and turbulent
energy spectrum E(k). For a fully developed inertial range,
as described by Kolmogorov (1941), the energy spectrum is
determined entirely by the energy dissipation E and has the
form

E(k)\C
K
E2/3 k~5/3, where C

K
+1.5.

If the large scales are assumed to transfer all of their energy in
a single eddy turnover time, then the dissipation, E can be
approximated by, E+U@3/L. The velocity u, that is associated
with an eddy of scale l, and wavenumber kl , where kl\2n/l is
given by

1
2

u2\
kl~Dk

:
kl]Dt

E(kl) dk (7)

For a simple eddy Dk+k/2 (see Tennekes and Lumley 1972,
p. 258), and,

u2:2E(kl)kl\2C
K

U @2
L2/3

k~2/3
l (8)

The range of scales can then be related to the range of velocities
by

A
u
U @B

2
:

2C
K

(2n)2/3 A
l
LB

2/3
:0.88 A

l
LB

2/3

or,
u
U @

:A
l
LB

1/3
(9)

and,
ul
u

L

+

u/l
U@/L

:A
L
lB

2/3
(10)

So three decades of inertial range wave-number will corres-
pond to two decades of vorticity and one decade in velocity.

4.3.2
Fundamental limits
Limits will arise in any IV method, if one attempts to preserve
cubic fluid elements by requiring, dOld/2+B, where the
dissipation scale ld , represents the smallest scales of interest
and d is the light sheet thickness. The maximum velocity,
U\U@, is associated with a physical displacement, D

.!9
\UDtOd/3, (from the analysis of Sect. 4.1.1) where the factor
of 3 is a hard limit, that at best could be pushed to 2, allow-
ing only a 50% signal recovery (note: for holographic, or
other 3D measurement systems, it can be 1). Consequently,
Dt

.!9
\d/3U. The maximum vorticity in the flow will

be associated with scales of size l
d

and velocity u
d
, so

u
T.!9

\2u
d
/l

d
, and the maximum shear, S

T.!9
\u

d
Dt/l

d
.

Likewise, the vorticity associated with the integral scale
structures corresponds to the minimum shear of interest,
S
T.*/

\UDt/L. Substituting for Dt,

S
T.!9

\udd/3Uld , and S
T.*/

\d/3L (11)

In order to properly resolve the small scales we require, 2BOl
d
,

so, S
T.!9

Ou
d
d/6UB. Finally for cubic fluid elements, d\B, and,

S
T.!9

Ou/6U, and S
T.*/

Old/3L (12)

indicate the upper and lower limits on the deformations to be
encountered in such a flow.
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Fig. 16. The fundamental limits of IV-methods can be expressed
as constant values of maximum and minimum measurable shear,
(S

.!9
, S

.*/
) as explained in the text. With increasing Rej , the range of

shear in fully developed inertial-range turbulence expands in a cone.
For Rej\50 there is no inertial-range. The intersection of the two
domains is the theoretically-realizable set of all planar IV turbulence
measurements. The full range of S

T
is measurable up to Rej:200. The

strongest vortices can still be accurately measured for Rej:5000

The full range of scales present can be expressed in terms of
the Taylor microscale Reynolds number, Rej ,

L
g
:15~3/4 Re3/2j , (Hinze 1975) (13)

where g is the Kolmogorov microscale. Assuming l
d
\10g

(Monin and Yaglom, 1975), S
T.*/

and S
T.!9

can be expressed
as a function of Rej using Eq. (9), and are plotted in Fig. 16.
Recalling the limits on accurately measurable S developed in
Sect. 4.2.3, S

.*/
\0.01, and S

.!9
\0.25, it becomes clear that

although we currently have required dynamic range in velocity
for Rej\3000, the associated shear is well below the experi-
mentally desirable threshold for accurate determination, and
the optimum shear value of S\0.1 cannot be achieved. The full
entropy field can only be resolved for Rej\200, and the limit
comes from the mean-bias/peak-locking errors that restrict the
accuracy of determining the correlation peak location, and not
from the deformation of the sample box by shear.

4.3.3
What can be done
The conclusion that high Re, 3D turbulent flows cannot be
accurately measured by current IV methods is a little depress-
ing, but leads us to inquire how future research efforts should
be concentrated. Given the constraints, the only solution is to
reduce the errors associated with measuring small velocity
gradients (improve subpixel accuracy), i.e. to lower the
S
.*/

line in Fig. 16.
Figure 16 is correct provided one insists on measuring all

significant scales of motion (luckily, we need not necessarily
resolve the dissipation scales down to g, as required in DNS).
By relaxing the constraint that dOl

d
/2, (i.e. allowing d[B) it is

possible to increase Dt hence, S
T.*/

and S
T.!9

, making better

use of the available vorticity bandwidth, but the now-rectangu-
lar fluid elements will contain errors incurred in averaging
their projected velocity components. It is possible however,
to relax dOl

d
/2, and then, zoom out, keeping B+d[l

d
/2,

accepting the effects of averaging smaller scales within the
box, and resolving scales from 2d up. This approach does not
come without cost, as the increased Dt will eventually drive
S
T.!9

above S
.!9

, physically corresponding to the highly
vortical motions of size ld scrambling the particle images
beyond recognition.

Measurements corresponding to Rej+100 have been
made for turbulent channel flow (Liu et al. 1991), where high
resolution 4@@]5@@ sheet film allowed simultaneous capture of
over 2 orders in scales with a single camera. If present, strong
anisotropy of the flow field can be exploited, allowing multiple
cameras to simultaneously resolved large and small scales,
avoiding the extra cost of high resolution imaging sensors, as
in the stratified flow experiments of Fincham et al. (1996) and
Spedding et al. (1996a, b). By coupling a multiple camera
system with some variable light sheet thickness optics, it would
be possible to extend measurements into the Rej+103 range,
using the approach discussed at the end of Sect. 4.2.1 along
with currently existing algorithms.

5
Summary and conclusions
The CIV technique differs significantly from standard DPIV
methods in several ways that together are responsible for order
of magnitude improvements in accuracy and/or resolution on
a given discretized image. Nevertheless, as does DPIV, CIV
relies on image correlations, and most of the conclusions from
the forgoing error analysis have quite broad applications
amongst IV methods.

Fundamental limitations on the capability of current
IV methods to accurately measure turbulent flows have
been identified. Future progress depends entirely on
continued improvements in the resolution of very small
displacements, by increasingly sophisticated algorithms.
But what is the theoretical limit? How accurate can an
interpolative peak-fitting scheme be? It can be expected
to depend on the information content of the original image
which is

Ii\2m]n]2p

for p-bit digitization on an m]n pixel array, assuming fully
independent pixels. Such an image is not compressible. On
similar grounds, one can express the information content of
the estimated velocity field on an M]N grid as

Iv\2M]N]
(u

.!9
[u

.*/
)

Du@
,

(where Du@ represents the uncertainty in u)

for both velocity components. If the information transmission
ratio I

v
/I

i
\1, all of the image information has been converted

to velocity field estimates. Inserting some characteristic values
gives Iv/Ii\0.01, suggesting considerable theoretical room
for improvement. Because advances in technology leading
to improved image sensor characteristics only reduce E

3.4
,

and not E
."

, which is insensitive to changes in B, the most
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cost-effective way to climb up the Re($) curve is to improve
algorithm accuracy, whose most serious limitation is caused by
peak-locking errors. Our current efforts are therefore focused
here. Once this hurdle is cleared it is expected that significant
improvement in I

v
/I

i
can be obtained.
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