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On the Significance of Unsteady Effects in the
Aerodynamic Performance of Flying Animals

G.R. SPEDDING

ABSTRACT. The relative importance of unsteady effects in flapping animal
flight is a frequent topic of discussion, some 35 years following the first
classic studies. Here, we identify contributions both from the kinematics
of the lifting surface and from oscillatory motions arising spontaneously in
the viscous boundary layer. There exists convincing experimental evidence
that the much-used two-dimensional, steady-state, blade-element analysis
is inadequate even for relatively modest values of the frequency parameter,
k = wc/2U = 0.4. This result is actually quite consistent with recent the-
oretical analyses where unsteady and three-dimensional wake corrections
have been computed for k € 1, @ = kAR = O(1) for an unsteady lifting
line with centerline curvature, and for k = O(1) for rigid unswept wings.
Selected results from such (inviscid) models are discussed to illustrate how
the first-order unsteady and three-dimensional corrections can be computed
and shown to be of importance over much of the k range applicable to for-
ward flapping animal flight. Problems involving flow separation, transition
to turbulence, and numerical estimation of the form drag of irregularly
shaped objects are hard, important, and remain open for realistic appli-
cations to animal flight at moderate Reynolds numbers. Some practical
examples are given. It is argued that the usual dichotomy of the unsteady
versus steady-state aerodynamics debate be replaced by a more quantita-
tive approach where the magnitude of such effects is estimated. Certain
outstanding problems and promising research topics and technologies are
identified, many of which are concerned with a satisfactory accounting of
viscous forces in the flow field.

1. Introduction and definitions

The motivation behind this essay stems from research that went into the writ-
ing of a review article (Ref. 1), when it became apparent that there exists a con-
siderable gap between the biological and the aerodynamics/applied-mathematics
literatures when discussing the role of unsteady effects in animal flight. Recent
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progress in modeling and quantitative understanding of unsteady flows appears
to have been largely ignored by the biology community, partly because these
same models may be framed in terms that are either not understandable, or are
of arguable practical significance to the scientist who must deal with phenom-
ena seemingly far removed from the convenient and elegant simplifications of
the theoretician. Here we attempt to identify some of these gaps, and propose
solutions to fill others.

The discussion will be centered on the question: “What is the significance of
unsteady effects in the aerodynamic performance of flying animals?” Each of
the italicized terms must be defined so as to restrict the discussion to less than
encyclopedic size. The aerodynamic performance considerations will be confined
to knowledge of the instantaneous and integrated normal forces on the lifting
surfaces during a single wing-stroke period T. Only flapping flight in still air
will be considered. In the absence of any separate thrust generator, and without
the benefit of continuous rotating machinery, the wings must therefore oscillate
to provide both lift and thrust, and as a consequence there will always be some
time-varying component of the normal forces. The significance of these effects
depends somewhat on the original purpose of the investigator. Since it thus
becomes a moving target, we can replace it with the magnitude, and leave the
general discussion of the modeling enterprise to other forums (Ref. 1).

In an unsteady flow, the fluid velocity # is a function of time somewhere in
the spatial domain of interest,

7= (z,1).

Given the restrictions outlined above, in an incompressible fluid, one is interested
primarily in time-varying velocities (and pressures) at the lifting surface 5,

U, = i,(5,1).

It is not necessary that 5= 5(t), and the effects of separation, vortex shedding,
and transition to turbulence may dramatically alter the fluid flow, without any
motion of the body itself. To simplify somewhat, one can distinguish two sources
of unsteadiness over a lifting surface:

1. Unsteady motion in the viscous boundary layer of an object that is im-
mersed in a steady free stream. The oscillation frequency is a dependent
function of the Reynolds number, Re. Boundary-layer separation, and
possibly reattachment over bluff bodies, is very sensitive to changes in
U, I, and in the geometry of the surface.

2. Terms arising from the existence of a third parameter, independent of
Re, such as a frequency of oscillation of the body, w (cf. Ref. 2, p. 211).

The analysis for the former viscous problem is rather complex, and we shall
return to it later. The latter problem has been investigated in inviscid flows for a
broad range of dimensionless frequency parameters, which can be defined based
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on the mean half chord, or on the semispan as

wce

k= o (1)
and 5
w

Q= T (2)

Note that AR = 27_”, so Q = kAR. Dynamical similarity of any two flows now
requires that both Re and k (and 2, when appropriate) be the same. The
parameter k i1s a measure of the ratio of the period of oscillation to the mean flow
transit time, and €2 can be thought of as a measure of the ratio of crosstream to
streamwise vorticity in a three-dimensional flow. We shall use them as a measure
of the unsteadiness in item (2) above.

2. Blade-element analysis

2.1 Method.

The standard example of this approach, which necessarily assumes steady,
two-dimensional flow, is that of Weis-Fogh and Jensen (Refs. 3-5) on the desert
locust, Schistocerca gregaria. They measured the lift and drag coefficients of
isolated wings in the wall boundary-layer of a wind tunnel, and calculated the
local section (Fig. 1) lift and drag forces from equations of the form,

L'(r,t) = %pﬁchS',
D'(rt) = %pf[zcdS'. 3)

Then the time-averaged lift force can be written as

— T R
L= % /0 /0 (L. (r, ) + D.(r )] drdt, (4)

where L/ and D] are the vertical components of the lift and drag. When the
locusts were measured to be supporting their weight, the calculated lift and drag
forces agreed with those measured to within 7%. Since ¢; and ¢4 were steady-
state measurements, the implication was that steady-state aerodynamics were
sufficient to account for the aerodynamic performance, contrary to prevailing
opinions at the time (Ref. 3).

Further simplifications of this argument are possible, so that if local wing
incidence and geometry result in ¢; and ¢4 being spanwise constant, and if w;,
the induced, downwash velocity, is similarly constant, then only expressions for
the wing-beat kinematics and geometry remain inside the integrals of equation

(4):
T — T R
/ Wdt = pC, / / @2(r,t)S' (r)cosy dr dt
0 0 0

— T R
+0C ), /0 /0 @?(r,t)S’ (r)siny dr dt, (5)
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where 9 is a simplified representation of the vector sum of the projected angles
of incidence of the local wing section at r. In hovering flight, the projection
geometry is simplified as a result of the absence of a mean flow, and Weis-Fogh
(Ref. 6) outlined a number of simple wing shapes for which analytic solutions
to equation (5) could be written. The technique has since been applied to the
forward flight of birds, bats, and insects (e.g. Refs. 7-9) The logical argument
then proceeds along similar lines: given the wing-beat kinematics, C; and C
are computed and compared with plausible steady-state values for such an airfoil
section at the Reynolds number in question. Depending on whether these are
exceeded, the initial steady-state hypothesis can be rejected, or supported. Note
that this kind of inductive reasoning cannot confirm the sufficiency, or predomi-
nance, of steady-state mechanisms. It can only be used as grounds for rejecting
such arguments.

2.2 Limitations.

Recently, Dudley and Ellington found that at no forward flight speed, from
maximum to hovering, were the aerodynamics of the bumblebee consistent with
the required time-averaged lift coefficients (Ref. 9). A quick calculation shows
that £ = 0.15 for the locust, and the lowest k for the bumblebee was 0.4 (the
respective values of 2 are 1.64 and 2.65). It is therefore not particularly sur-
prising that unsteady effects are more pronounced for the forward flight of the
bumblebee. A comparison of the projected wingtip traces through the air for the
two species (Figure 2) reveals certain interesting differences in trajectory shape
and stroke plane angle that will not be reflected by a simple frequency param-
eter such as k. However, the most pronounced difference is in the number of
chord lengths traveled by a wing section per wing beat, and the figure suggests
that k could be a satisfactory measure of this (if this were the only difference,
then the two traces would collapse on top of each other). Certain complications
do arise though. For example, the large-amplitude fluctuations recorded in the
instantaneous lift forces acting on a locust in level, unaccelerated flight (Ref. 10)
are difficult to reconcile with the steady-state interpretation. Moreover, since
the locust hindwing, which is responsible for 70% of the total lift (Ref. 5), has
a mean chord length about twice that of the forewing, & = 0.3 for this lifting
surface, approaching the bumblebee value. Should one now conclude that un-
steady effects cannot be neglected here? Is there a numerical value of k where
some cutoff point can be marked? It increasingly appears that the imposition
of a binary steady/unsteady classification onto a continuous phenomenon (the
magnitude of the unsteady forces) cannot do justice to the problem. Such an
approach has its roots in historical necessity, but perhaps does not adequately
reflect the recent progress in unsteady aerodynamical models. The following two
sections explore some of these alternatives.



AERODYNAMICS OF FLYING ANIMALS 405

3. An unsteady three-dimensional
lifting line with centerline curvature

Cheng and Murillo developed an asymptotic analysis of an inviscid, incom-
pressible, potential flow about a high-aspect-ratio (AR = 2b/co > 1; ¢p is the
centerline reference chord), planar lifting surface that oscillated at reduced fre-
quencies Q = O(1) (since k = /AR, k < 1) (Ref. 11). The theory is linear,
so small disturbances from a planar wake and wing configuration are assumed.
Chopra (Ref. 12) and Katz and Weihs (Ref. 13) have shown that corrections for
large amplitude motion can be small, provided that k is small, and that trans-
verse motions are of the same order as ¢g. The results can thus tentatively be
applied to the oscillatory propulsion of wings and tails of real animals, where the
domain 2 = O(1) is very common. Karpouzian et al. carried out an extensive
performance analysis of this model, and the propulsive efficiency,

v

"= gy (6)

where (T) and (P) are the time-averaged thrust and power, was reported for a
range of geometric and kinematic parameters, for realistic values of the thrust
coefficient (Cr) - realistic in the sense that sufficient thrust must be generated
to more than overcome the expected parasite drag on the lifting surface (Ref.
14). Comparisons of 7 and K (the average sweep) were made for fixed (Cr), by
varying the local proportional feathering parameter (in the sense of Lighthill, Ref.
15; see Ref. 14 for details). Two families of lunate planforms, varying AR and
K, are shown in Figure 3. Figure 4 shows n(K) for three different values of (Cr).
Note that 7 falls with increasing (Cr), and there appears to be an optimum sweep
which increases with increasing (Cr). For (Cr) = 0.6, the dashed line shows the
leading-order terms only, equivalent to the two-dimensional quasi-steady strip
theory. The three-dimensional and unsteady corrections are responsible for a
significant reduction in 7, &~ 9% at the optimum K = 0.7. This result is for Q =
1.5 (k = 0.15). The full three-dimensional, unsteady result does not show the
asymptotically increasing 7 with K implied by the two-dimensional calculation.

The three-dimensional unsteady theory allows comparisons to be made of
different planform geometries, and Figure 5 shows a comparison of the perfor-
mance of the lunate shape (parabolic centerline) with a V-shape, for (Cr) = 0.6
and 2 = 1.0. The efficiencies for the lower solid curve are lower than for the
equivalent case (again, the lower solid curve) in Figure 4, since €2 is lower. At
high K, the V-shape appears more efficient, but this advantage disappears, both
with decreasing K and when small changes in the major pitch-axis location and
its transverse displacement are allowed. Note that there now appears to be an
optimum K, and further increases in the heaving amplitude of the major pitch
axis reduce this to zero. Such performance measurements enabled hydrodynamic
arguments to be advanced for the apparent preference of the crescent-moon fin
shape over the V-shape at moderate sweep angles, and for the large sweep angles
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frequently found in V-shaped fins.

4. Other unsteady methods

Two further examples will serve to demonstrate how a more quantitative
estimate of the magnitude of first-order unsteady terms in animal flight can be

made.

4.1 A three-dimensional unsteady lifting line for planar wings and
k= 0O(1).

Phlips developed a three-dimensional unsteady lifting-line theory for planar,
rigid, unswept wings of high AR. It is based on a simplified model of the vortex
wake, divided into near- and far-wake regions (Ref. 16). Transverse vortices
are shed at the extremes of the wing stroke, where they roll up, and they are
represented by a single line-vortex. Streamwise vortices are shed at the trailing
edge and they are assumed to remain in the path traced by the wings. In the far-
wake, they collect into trailing vortex lines. This model simplifies the calculation
of wake-induced velocities on the flapping wing, and the normal force on the wing
was calculated assuming a linear ¢;(a). These assumptions effectively restrict
the analysis to moderate values of k. When the wing-beat amplitude ¢ exceeded
approximately 60°, significant departures from the steady-state calculations were
reported, particularly for £ > 1. The effect of the induced velocity field in the
unsteady calculation was to increase the value of the mean lift coefficient (=
20% for ¢ = 7/2, k = 2), but the mean thrust coefficients were reduced slightly,
so that the efficiency 7 fell with increasing k. In such a theory, spanwise flow
along the wing and flow separation are ignored, but the clear implication is that
unsteady terms cannot be neglected for k£ > 1.

4.2 Local circulation method.

The local circulation method and its application to dragonfly flight have been
described by Azuma and co-workers (Ref. 17) (LCM I), and subsequently re-
fined by Azuma and Watanabe (Ref. 18) (LCM II). It combines the approach
of a blade-element analysis of wing sections with a more realistic and complete
analysis of the modifying effects of the unsteady wake. The wing planform and
initial circulation distribution is approximated by the superposition of a series of
elliptical load distributions of diminishing size, each operating in the appropriate
local shear flow, based on a thorough kinematic analysis of the animal in flight.
The wake model consists of the trailing and transverse (in LCM II) vortices fixed
by the path of the wingtip and trailing edge; an iterative procedure is applied
for the wake corrections to the circulation distribution. Nonlinear, empirical
ci{a) curves were used to compute the forces and moments on the wings at each
blade element. Since the computations are quite lengthy, the wake-attenuation
coefficients were actually calculated only at 0.75R.

The LCM I method was applied to the slow climbing flight of a dragonfly,
for which k and 2, as defined here, were approximately 1.6 and 16, respectively.
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Both wings operated well away from the linear ¢;(a) range for a substantial
portion of the wing stroke. First-order unsteady effects were accounted for and
shown to be significant improvements over actuator disk-based estimates of con-
stant downwash over the span, but no other special high-lift mechanisms requir-
ing large-scale separated flows were required to balance the forces in the analysis.
The conclusions were similar for the LCM 11 study of the free flight of a dragonfly
in a wind tunnel (0.2 < k € 1.2; 3.2 < 2 < 12). The comparison of LCM II with
a standard blade-element calculation (constant w;) at the highest flight speed,
U = 3.2 m/sec, and consequently lowest k and Q (= 0.2 and 3.2, respectively)
revealed much smaller (around 20%) differences in the vertical forces than in the
thrust (factors of 2-3), both for the instantaneous, and time-averaged values.
Note that neither correction can be considered negligible.

5. Practical issues: laboratory examples

Thus far, a number of theoretical analyses have been shown to be capable
of making quantitative predictions of the sign and magnitude of the unsteady
terms for an oscillating lifting surface, at frequencies (but not necessarily am-
plitudes) close to those found in natural flight. Two examples from laboratory
investigations of two-dimensional unsteady flows, where instantaneous force mea-
surements were made simultaneously with flow visualization, will indicate the
potential significance of unsteady forces, together with the strong influence of
viscous effects in the form of large-scale separation bubbles.

5.1 Translational acceleration.

Gursal and Ho measured the instantaneous lift forces on a NACA 0012 aerofoil
at a constant angle of attack (o = 20°) in an unsteady free stream (Ref. 19).
The instantaneous streamlines of Figure 6a show the growth and later removal of
a separation bubble, based on the original streak photographs. The cycle begins
at the start of the deceleration of the mean flow, which is sinusoidal with the
form U/Uyx = 1+ Rcoswt; in Figure 6, R = 0.70. The shear layer is already
separated, but reattaches downstream. As the deceleration continues, up until
t/T = 0.5, the bubble grows while remaining attached to the upper aerofoil
surface. When the free stream begins to accelerate once again, the separation
vortex is convected away downstream. Values of the instantaneous lift coefficient,
C(t) = L(t)/3pSU(t)?, (Fig. 6b) at the point of minimum free-stream velocity
can reach 14. In interpreting these results, it should be noted that the magnitude
of the lift force itself follows, in general, the amplitude of the free-stream velocity
U, and is lowest when U is at its minimum. It is the lift coefficient, normalized
by U(t)?, that is high, far from its usual steady-state values at the same U.
These high lift coefficients cannot be attributed to added mass effects since the
peak Cr occurs when dU/dt = 0; moreover, the average acceleration is zero.
Instead the high Cr must be a result of the strong pressure gradients normal to
the wing owing to the vortex itself. Indeed, at this Re = 5 x 10%, 20° is beyond
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the static stall angle, and in a steady mean flow, the surface pressures are still
dominated by unsteady motions in the boundary layer.

5.2 Rotational acceleration.

The considerable modifying influence of viscous effects and separated flows can
also be observed in the celebrated Weis-Fogh clap and fling mechanism (Refs. 6,
20-23) where flow separation occurs at the sharp leading edges of opening wing
pairs at a wide range of Reynolds numbers (documented from 20 to 10*). The
isovorticity contours of Figure 7 (from data in Ref. 23) show that at Re = 3x 103
the distribution of vorticity can be quite complicated. In the early stages of mo-
tion the flow is always asymmetric, the outer edge of the vortex core can be
rather disorganized (the core itself can be turbulent), and secondary vortices
are generated at the lower wing surface and tips during the latter stages. The
relative magnitude of some of these effects may be quite sensitive to changes
in the wing opening time-history, but both quantitative flow visualization and
simultaneous force measurements indicate that large time-averaged lift coeffi-
cients, (Cr) = 7 — 8, can be achieved over a half-stroke (Fig. 8) (Ref. 23). The
highest instantaneous lift forces are recorded toward the middle of the opening
cycle, when the wing angular velocity is almost constant, implying that it is the
vortex-induced lift that is responsible for the high Cr values. This separated
flow has also been resolved in a direct numerical solution of the Navier-Stokes
equations (Ref. 25) for the lower Re = 30.

6. Flow separation, transition to turbulence

Although one can make the case that many first-order unsteady effects may be
adequately treated in certain models for oscillating animal wings at reasonable
values of k and 2, the same models cannot treat the separated flows such as
those discussed in the previous section. Here, selected issues of separation and
transitional flow in steady flows are surveyed.

6.1 Airfoil properties for Re ~ 10* to 10°.

Lissaman has clearly noted how the performance of airfoils around the Rey-
nolds number range of 10* to 10° may be dominated by the presence or absence
of separation or by subsequent reattachment of the fluid over the lifting surface
(Ref. 26). The presence of roughness, small fluctuations in the free-stream veloc-
ity or pressure gradients, the geometry of the lifting surface itself, and even the
previous state of the boundary layer can have a significant effect on the airfoil
performance. Cheng and Smith have analyzed the effect on separation of airfoil
thickness and Re (Ref. 27). One aspect that can also have ramifications in the
time-varying nature of the flow is illustrated in Figure 9, where considerable
hysteresis is observed for ¢;(a) of a thick and thin airfoil section at Re = 10°.
Over a range of a, which itself depends on both the geometry and Re, the lift
is not single-valued. This can give rise to strong fluctuations in the lift as the
flow oscillates between the various possible values. Lee and Cheng have iden-
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tified bifurcations in the steady-state solutions of the boundary-layer equations
for laminar flow over thin obstacles, suggesting that these could correspond to
the lift hysteresis phenomenon (Ref. 30).

6.2 Transition.

Transition to turbulence may occur in the attached boundary layer, or more
likely in the separated free-shear layer, which is less stable. Reattachment is
greatly facilitated when the separated region is turbulent, a result of increased
momentum transfer and entrainment of fluid from the free stream. Reattach-
ment of laminar separation bubbles is not common below a critical value of Re,
often quoted as Recrit = 7 x 10%. This would correspond to the Re for a 10-cm
chord in a 10-m/sec airflow at 20°C - in other words, in a regime of some impor-
tance to birds and bats. These complications translate directly to tremendous
uncertainties in estimating the form drag of wings and bodies, or of Dp,, and
Dpar, in the literature (Refs. 31, 32), where the drag coefficients Cp par and
Cp pro, measured for the bodies and wings of birds in wind tunnels appear to
decrease across the critical Reynolds number range. The changes in wing pro-
file and planform geometry with flight speed U in free flight further complicate
matters.

7. Progress and open problems in theory and measurement

In the lower Reynolds number range of insect flight (Re < 10%), quantitative
measurements of airfoil properties are not common (Refs. 26, 28). The unsteady
flow will likely be dominated by large-scale laminar separation bubbles, and
little is yet known of the qualitative details (see Ref. 33 for an authoritative
discussion, Ref. 34 for some low Re airfoil experiments, and Ref. 35 for a summary
of some live wind-tunnel experiments). However, the lower Re time-dependent
problem is becoming amenable to direct numerical simulation following dramatic
improvements in computer hardware and software performance (and price, in the
former case). Recently, for example, Gustafson and Leben (Ref. 36) applied a
multigrid Navier-Stokes code to a plunging and pitching two-dimensional flat-
plate configuration, as investigated experimentally by Freymuth (Ref. 37) and
the strongly separated flow and vortex-wake signatures were reproduced with
good qualitative agreement.

The full two- and three-dimensional Navier-Stokes equations have also been
solved in discrete lattice-gas automata models, that have become increasingly so-
phisticated, and “correct,” in the sense of preserving invariants and isotropies of
the continuous Navier-Stokes equations (c.f. Refs. 38-42). Because they use sim-
ple local neighborhood update, or collision, rules, the cellular-automaton model
lends itself very well to parallelization on SIMD machines (single instruction
multiple data — where a single operation is performed simultaneously on a large
number of parallel processors on data local to each processor). Special Navier-
Stokes computers have even been developed (Refs. 43, 44), although they have
yet to find routine use in even moderate Reynolds number fluid flow problems.
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Nonetheless, the approach is an exciting one, well-suited for time-dependent
problems with complex boundaries, and also well-positioned to capitalize on
predicted progress in massively parallel computing.

The inclusion of a satisfactory turbulence model into current, more conven-
tional DNS schemes will serve to extend their useful Re range (c.f. Peskin, this
volume). Computational issues in viscous-inviscid modeling of unsteady airfoil
flows have been reviewed by McCroskey (Refs. 45, 46), and a comprehensive sum-
mary of state-of-the-art computational methods in viscous aerodynamics can be
found in Reference 47. Although higher Re flows remain out of reach of current
DNS techniques, there has also been significant progress in vortex methods in
unsteady separated flows (c.f. Refs. 48, 49 for early work, and Refs. 50, 51 for
clear reviews). Computational efficiency and considerable analytical convenience
arise from the consideration of pointwise concentrations (or clouds, or patches) of
vorticity within an inviscid flow field. The further study of the vortex dynamics
of complex wakes and bodies, and their interactions, promises to be productive,
with clear potential for animal flight studies.

Returning to the original discussion of unsteady, inviscid analytical models,
quantitative estimates of the magnitude of the unsteady and three-dimensional
effects can be made for a large portion of the k range of interest in animal flight.
Although these estimates do not include flow separation and other viscous effects,
they still represent improvements over the steady-state assumption, and many
of the models could be extended further.

Because k falls with increasing U, linear unsteady model approximations be-
come more readily applicable. Nonetheless, Dyqr and Dyy, constitute a larger
fraction of the total drag, and uncertainties in their estimation can become ma-
jor sources of error in performance estimates for the whole animal. There is
much to be learned concerning the origin, prediction, and control of separation
at Re < 108, even in steady flows. Indeed, one must include a caveat that it is by
no means obvious how, or even whether, lessons from the steady-state separation
problem will transfer to the unsteady case.

8. Conclusions

It has been argued that the classic steady/unsteady debate should be re-
placed by a more quantitative discussion concerning the likely magnitude of the
unsteady effects, which can often at least be roughly estimated for a given k.
Such a shift would simply reflect the increasing sophistication and power of the
analytical techniques and computational resources that have become available
since the genesis of the discussion in the 1950’s. On the other hand, there are
many outstanding problems that remain unvolved, many deriving ultimately
from separation in viscous boundary layers and the appearance of fluid turbu-
lence in the higher Reynolds number domains. Some of these problems constitute
formidable, and by the same token, exciting challenges.
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FIGURE 1. Notation for local section analysis of a flapping wing.
The wing is divided into strips with area S’ at distance r from the
root. Given the local angle of attack, «, together with 3, and ¢, the
local velocity @ can be estimated at y. This may, or may not, include
local corrections for the induced downwash, w;.

Reprinted with permission from “The aerodynamics of flight. The mechanics of animal
locomotion” by G.R. Spedding, Adv. Comp. Physiol., Vol. 11, pp. 51-111, Springer-Verlag,
Figure 3.
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FIGURE 2. The traces of the wingtip through the air of the locust
(from Fig. 1114 (Ref. 5, solid curve)), and of the bumblebee in fast
forward flight (from Fig. 16 in Ref. 16, dashed curve), rescaled by
horizontal distance traveled during the stroke period. During this
time, a section of locust forewing travels through about 15 chord
lengths, while that of the bumblebee moves through about 6. Note
that the wing-stroke amplitude ¢ of the bumblebee is higher than the
locust’s, and that the wings beat mostly above the horizontal plane at
the wing root, z = 0. Consequently, the half-angle between the wings
at the top of their cycle can be estimated to be only 23°, whereas it is
39° for the locust forewing. The locust hindwing trace is qualitatively
similar but the stroke amplitude, ¢, = 110°.
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FIGURE 3. Two families of crescent-shaped lifting surfaces generated
by varying the aspect ratio AR at a fixed sweep angle K, (top row),
and by varying K for fixed AR = 10 (bottom row). The variations

in K with AR = 10 correspond to the shapes discussed in Figures 4
and 5.

Reprinted from “Lunate-tail swimming propulsion. Part 2 performance analysis” by G.
Karpouzian et al, J. Fluid Mech., volume 210, 1990, pp. 329-351, Figure 5.



416 G. R. SPEDDING

0.9
Cp=0.3

KCPh= o.g e

0.8
7
0.7~
06}
Q=15
AR =10
| ] | 1 | |
ol 02 04 06 0.8 {0

FIGURE 4. Propulsive efficiency 7 as a function of K, for three dif-
ferent values of (Cr), for the parabolic centerline (solid curves). The
dashed line corresponds to the leading-order terms alone, equivalent
to the two-dimensional, quasi-steady strip theory.

Reprinted from “Lunate-tail swimming propulsion. Part 2 performance analysis” by G.
Karpouzian et al, J. Fluid Mech., volume 210, 1990, pp. 329-351, Figure 6.

Porabolic
- = — — V-shape

K

FIGURE 5. Performance of parabolic (solid curve) and V-shaped
(dashed) centerlines. In the upper solid curve, 24 # 0, corresponding
to transverse displacements of the major pitch axis.

Reprinted from “Lunate-tail swimming propulsion. Part 2 performance analysis” by G.
Karpouzian et al, J. Fluid Mech., volume 210, 1990, pp. 329-351, Figure 10.



AERODYNAMICS OF FLYING ANIMALS 417

C(t)

[Ny — T
000 020 G 40 060 0 80 100

FIGURE 6. (a) Estimated instantaneous streamlines over a NACA
0012 airfoil investigated by Gursal and Ho (Ref. 19) at fixed o = 20°
in an unsteady free stream (k = 0.70), drawn by tracing tangents
to particle streak photographs supplied by the authors. (b) Phase-
averaged instantaneous lift coefficients for different values of k.
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e. F7f 92

FIGURE 7. Contours of constant vorticity w around a wing-pair
opening by rotation along the common trailing edge. The contour
interval is the same in all cases, corresponding to éw = 0.025/sec.
The uncertainty in w is approximately 1 contour level. The w values
were interpolated from irregularly spaced particle velocities onto a
rectangular mesh by a two-dimensional patched, smoothing thin-shell

anlina The law verv rlnce ta the wines cannnt he resnlved clearlv.
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FIGURE 8. High instantaneous lift coefficients can be realized over
much of the opening cycle. Agreement with a separation-vortex model
(Ref. 24) is reasonable, and includes the plateau at a =~ 0.4«.

Reprinted from “The generation of circulation and lift in a rigid two-dimensional fling” by
G. R. Spedding and Maxworthy, J. Fluid Mech., 185, 247-272.
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Ficure 9. Lift ilysteresis in airfoils of different thickness at Re =
105. From Reference 29 based on data in Reference 28.

Reprinted with permission from “The aerodynamics of flight. The mechanics of animal
locomotion” by G.R. Spedding, Adv. Comp. Physiol., Vol. 11, pp. 51-111, Springer-Verlag,
Figure 8.
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