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The art of modelling the physical world lies in the appropriate simplification and abstraction of the com-
plete problem. In fluid mechanics, the Navier–Stokes equations provide a model that is valid under most
circumstances germane to animal locomotion, but the complexity of solutions provides strong incentive
for the development of further, more simplified practical models. When the flow organizes itself so that
all shearing motions are collected into localized patches, then various mathematical vortex models have
been very successful in predicting and furthering the physical understanding of many flows, particularly
in aerodynamics. Experimental models have the significant added convenience that the fluid mechanics
can be generated by a real fluid, not a model, provided the appropriate dimensionless groups have similar
values. Then, analogous problems can be encountered in making intelligible but independent descriptions
of the experimental results. Finally, model predictions and experimental results may be compared if, and
only if, numerical estimates of the likely variations in the tested quantities are provided. Examples from
recent experimental measurements of wakes behind a fixed wing and behind a bird in free flight are used
to illustrate these principles.
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1. PROLOGUE

This paper starts with quite general remarks on the philo-
sophical basis for making models. In so doing, certain
aspects of the introductory remarks by Alexander (2003)
will be amplified and placed in sharper relief for the fol-
lowing examples in the particular field of experimental
fluid mechanics. The paper is thus somewhat unusual,
veering between the general and specific. Both are deliber-
ately strongly selected. The general comments are more
broad than usual, and some of the modelling details are
discussed in much more fine grain than is customarily
given outside discipline-specific texts. The purpose of the
paper is to illustrate the relationship between the two, and
also to deliberately illuminate aspects of the modelling
enterprise often omitted or taken for granted. So, this is
not a review, nor even an overview. It is a view of how
models, particularly fluid mechanics models, can be made
and tested. In its selectivity, it is hoped that the material
might be digested and remembered as a whole, and even
that the specific lessons drawn and summarized in the
final section might be acted upon.

2. THE ART OF MODELLING

(a) What kind of model?
A model (of any kind) can only be designed and

implemented if its purpose is specified explicitly and
clearly. This is essential not only for its construction, but
also for testing and evaluation. Let us denote this as the
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objective set, O. Success or failure of a model is then
defined exclusively in terms of O. Here, we will implicitly
assume two quite common purposes in science and engin-
eering:

(i) to further (broaden or deepen) understanding of a
physical phenomenon; and

(ii) to make testable predictions about it.

In general, we look for some model, M, that satisfies

M � P, (2.1)

where P is the physical system of interest. The ‘almost
equal to’ sign is used to denote the fact that, by definition,
M is not equal to P, but according to the original purpose
statement, it acts close enough to it. To be most general,
let P now represent the physical universe, and M the set
of all possible models.

The different types of modelling approach to under-
standing the universe are shown in figure 1. In figure 1a,
M � P, a distressingly common situation exemplified, for
example, by belief in UFOs, astrology, ESP and so on.
Slightly more common is figure 1b where there is partial
overlap between M and P. Most of us are quite comfort-
able in simultaneously having various conceptual models
occupying either part. A quantitative testable model that
specifically aims to apply to P (as stated in O) must appar-
ently occupy some region like figure 1c, where its reach is
constrained by the actual physical universe, P. This seems
reasonable since it is P that we wish to model. The
remaining task appears to be to select the part of P that
appears in M.
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Figure 1. Four different possible relationships between
mathematical (or other) models, M, and the physical
universe, P. There may be (a) no, (b) partial, or (c,d)
complete overlap. Useful models (M ) might be completely
constrained by P, as in (c), but part of the art of modelling
comes in relaxing this constraint and deliberately allowing M
to stray outside P. This can be justified on grounds of
increased simplicity, clarity, elegance or even convenience.
The success or validity of a model is actually judged only in
terms of separately defined objectives, O.

In fact, a useful model need not be constrained by P,
and can be drawn from the larger pool of available models
shown in figure 1d. Certain features can be deliberate dis-
tortions of reality. Here, an analogy may be drawn with
painting in Chinese Zen Buddhism, where the omission
of matter is as important as the presence of it, and where
sparse economy of line and shade is valued highly.1 So it is
with most successful mathematical models of the physical
universe. Economy, simplicity and clarity of represen-
tation can supersede the requirement for fidelity. The
complete omission of some can be justified in the name
of increased elegance, convenience, simplicity, and so the
remaining features are exaggerated in importance. Even
these can be deliberately modified, apparently to taste.

How then, can we distinguish useful mathematical
models of physics if physics itself cannot be used as a cri-
terion for judging them? The short answer is a reminder
that the performance of the model need be justified only
in terms of its purpose, O, and then, to be considered a
scientific model, it must be testable (Popper 1959). Then,
and only then, do we have a closed loop in which a model
is set up and evaluated, refined and re-evaluated. Strictly
speaking, at no time need the model refer to factors out-
side O. A mathematical model can cheerfully disregard
aspects of physical reality that are judged to be either
superfluous or simply inconvenient. The rigorous selec-
tion of material in M serves to keep the model tractable,
and to make it useful with respect to O. This is the neces-
sary and sufficient condition.

Here, one might usefully draw a distinction between
modelling and simulation. The latter typically incorpor-
ates as many realistic elements as required to satisfy O. If
the model fails the test, then more elements are added to
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Figure 2. The response of a fluid element to shear stress in
one direction. The initially cubical volume is subject to
shearing motion so that the top face moves horizontally
(relative to the bottom) by a distance �u�t.

increase the degree of realism, or the assumptions in exist-
ing components are made more realistic and usually more
complex. Such is not necessarily the case in general mod-
elling. Elements can be quite creatively and wilfully
unrealistic, provided the overall objective is served. Some
corollaries of this rather startling situation can cause con-
fusion or even alarm. For example, the fact that a math-
ematical or physical model is at the outset verifiably
incorrect (in terms of strict physical accuracy) need not
necessarily prohibit or inhibit its use. An example will be
found in § 4.

3. MATHEMATICAL�PHYSICAL (M � P) MODELS

Here, we will illustrate and explain the principles and
selected details of the model equations that form the foun-
dations of modern fluid mechanics in general, and aero-
dynamics in particular.

(a) Physical properties of a fluid element
An essential component of fluids modelling is the fluid

element, shown in figure 2. The fluid element is an
imaginary object of size �x, �y, �z, where there are
enough molecules inside the volume so that it may be con-
sidered a continuum, but the volume is sufficiently small
so that all physical properties are uniform within it. If the
fluid element is subjected to a shearing motion due to a
uniform gradient of u in y, the fluid is deformed as shown
in the heavy lines of figure 2. This is, after all, the defi-
nition of a fluid: a substance that will assume the shape
of a container into which it is introduced. If we imagine
that the shearing motion is applied in one direction only,
by something (neighbouring fluid elements or a solid
surface) moving with speed �u at the top with respect to
zero at the bottom, and over a time �t, then simple trigon-
ometry relates change in strain angle, �, with the strain in
x, �u�t, by

�u�t = �y sin ��. (3.1)

For small ��, sin�� � ��, and equation (3.1) can be
rearranged to give
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��

�t
=

�u
�y

. (3.2)

For small increments, the strain rate, d�/dt = du/dy, and
for Newtonian fluids, the shear stress in the x direction
owing to gradients in y for the particular case of figure 2 is
the product of a constant viscosity, �, with the strain rate

�yx = �
du
dy

. (3.3)

The fluid viscosity, �, represents the comparative resist-
ance to deformation. The higher the value of �, the
smaller the strain rate for a given stress. It is analogous,
in some respects, to the shear modulus for a solid, but it
multiplies the strain rate, not the strain. If � is high, a
significant amount of energy is required to overcome
internal resistance to deformation (internal friction) within
some fixed time interval. Fluids are, in general, charac-
terized by their extremely low resistance to deformation,
and it is simply a matter of how long it takes to occur.

Many biofluids do not behave much like equation (3.3).
However, for the particular case of locomotion, the fluid
in which the animal is immersed is usually either water
(fresh or sea) or air, and both of these are quite well mod-
elled by equation (3.3).

(b) Newtonian fluids
(i) The physical basis for the equations of motion of a

moving fluid
As eloquently explained by Pennycuick (1992), New-

ton’s laws are quite sufficient to explain most phenomena
encountered in biomechanics. We may therefore begin
with the fluid element model and its result in equation
(3.3). Newton’s second law can be taken as unproblematic

F = ma, (3.4)

and it states that, for a moving object, the force, F, experi-
enced by that object is a product of its mass, m, and accel-
eration, a. This expression can be written more
informatively as,

F =
d
dt

(mV ), (3.5)

where F and V are vector quantities and the equivalence
of force as rate of change of momentum is clear. When
this equation is applied to a fluid modelled as in figure 2,
we arrive at an equation describing how forces are bal-
anced in a continuous fluid

�
DV
Dt

= ��p � �g � ��2V. (3.6)

Physical interpretation can be made for each term. On the
left-hand side, DV/Dt is the local time derivative of the
vector velocity, V, so it is an acceleration, with direction.
It is multiplied by the density, which is mass per unit vol-
ume, and so combined they represent the local force over
a unit volume of fluid—conceptually the same volume as
introduced in figure 2. The first term on the right-hand
side is the spatial gradient in pressure. The leading minus
sign states that positive pressure gradients oppose the
acceleration—when the pressure in a given direction
increases, the fluid element travelling in that direction
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decelerates. Frequently, the remaining two terms are com-
paratively small, when a simple physical interpretation of
the reduced equation

F = �
DV
Dt

= ��p, (3.7)

is that fluid accelerations, and hence forces, can be gener-
ated and opposed only by pressure gradients.

Back at the full equation (3.6), the middle term on the
right-hand side is the local gravitational force. If neither
g nor � change very much over the problem domain (this
is usually true), then this force component is constant
everywhere and can be ignored. The last term gives the
contribution of viscous forces. The Laplacian operator,
�2, is a measure of the variation in spatial gradients and
is multiplied by the local velocity vector. Note how the
viscous force acts in opposition to the pressure gradients.
While negative pressure gradients cause accelerations of
fluid elements, viscosity slows them down.

Equation (3.6) is called the momentum equation, and
follows directly from application of Newton’s second law
(equation (3.4)) to a continuous, incompressible fluid.
Just by itself, it does not provide sufficient information on
which of the myriad possible combinations of �, V, p, g
and � satisfying equation (3.6) will be physical solutions
that can occur (M � P, recalling the notation of § 2). Two
further well-known physical principles can be invoked,
adding additional constraints to the possible solutions.
These are the laws of conservation of mass and conser-
vation of energy. Together with equation (3.6) they com-
prise the renowned Navier–Stokes (NS) equations. Their
physical foundation is so solid (Newton’s second
law � conservation laws) that their physical correctness or
applicability is rarely in doubt, provided equation (3.3)
can be shown to be reasonable.

Although the vector notation of equation (3.6) may
seem to make it inaccessible and hard to relate to physical
problems, it is not so hard to expand out to components
in Cartesian coordinate systems and cubical fluid elements
like figure 2. Here is the x-momentum equation, for
example (dropping the gravity term):

�
Du
Dt

= �
∂p
∂x �

∂�xx
∂x �

∂�yx
∂y �

∂�zx
∂z . (3.8)

The �ij components are just the shear stresses decomposed
in the principle directions, and the complete expression
for �yx

�yx = �xy = � �∂u
∂y �

∂v
∂x�, (3.9)

can be compared with the (only slightly) more simple case
of deformation exactly parallel to x given in figure 2 and
leading to equation (3.3).

The main point is that although these equations may at
first appear formidable, they are in fact quite simple in
formulation, and frequently a physical interpretation of
individual terms is possible.

(ii) Complexity of solutions and simulation
On reflection, it may seem extraordinary that such sim-

ple model equations can describe so many fluid flows,
which we know from experience can be complicated and
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unpredictable. And this is the problem. For, despite their
elegance and simplicity, the Navier–Stokes equations can
have solutions that are enormously intricate. Very few
closed-form (analytical) solutions are known, and these
are for special cases (simple geometries, low speeds and
special symmetries) that are so simple that they have very
restricted application.

The partial differential equations can indeed be inte-
grated numerically to provide solutions for the velocity
components u, v and w, together with the pointwise quan-
tities, pressure, p, and density, �, as a function of x, y and
z. There are three points about this approach (DNS), as
noted in general in § 1. First, as the solutions are intricate
and complex, then the numerical solutions must be per-
formed with great care, and become very much more com-
plicated to perform as the geometry becomes more
complex, and as the Reynolds number (discussed in
§ 3b(iii)) increases. Second, to have sufficient resolution
in space and in time, the DNS of a very large range of
practical problems is not feasible on any currently avail-
able computer, and is prohibitively expensive for many
more. Third, even if plausible solutions are arrived at, we
have not necessarily learned anything by merely con-
firming that the NS model works for this fluid flow—this
is the model we prescribed in the first place! Repeated
runs of the working solution may well allow an exploration
of parameter space that cannot easily be accomplished any
other way, but increased physical insight will not necessar-
ily follow.

(iii) Dimensional analysis
Dimensional analysis of the Navier–Stokes equations

reveals one further important point. The Buckingham–	
theorem states that systems of dimensionally homo-
geneous equations (e.g. if one term represents a force,
then all terms must have dimensions of force) can be
recast in terms of dimensionless groups (	 products)
whose number is

N	 = NV � ND, (3.10)

where NV is the number of independent variables and ND

is the number of fundamental dimensions.2 For a body of
characteristic size, D, moving at speed V, then, ignoring
the possible contribution from variations in g, the inde-
pendent variables in equation (3.6) are D, V, � and �. As
in most fluid mechanics problems, the fundamental
dimensions are those of length, L, time, T and mass, M.
Thus, N	 = 4–3, and one dimensionless group can be used
to rescale the equations. The most fundamental of the
various dimensionless numbers encountered in fluid
mechanics is the Reynolds number, Re, which can be writ-
ten directly in terms of the independent variables listed:

Re =
�VD

�
. (3.11)

As the equations can be rescaled in this form, then flows
where Re is the same are guaranteed to be dynamically
similar. The balance of forces will be identical. The bal-
ance of forces expressed by equation (3.11) is the ratio of
inertial to viscous forces. Geometrically similar bodies of
size D immersed in a uniform flow of speed V have ident-
ical solutions of the equations of motion if Re has the same
value. This is a necessary and sufficient condition. The

Phil. Trans. R. Soc. Lond. B (2003)

+

–

Γ

(a)

(b)

Figure 3. (a) When a streamlined shape such as an aerofoil
at low angle of attack is placed in a uniform steady flow,
then strong velocity gradients are confined to a thin
boundary layer close to the solid surface. (b) Conceptually,
the effect of aerofoil can be modelled as two thin vortex
sheets, which are immersed in otherwise irrotational
(vorticity-free) fluid. Finally the system can be represented
by a single point vortex with strength 
.

practical and theoretical implications of this result are very
wide ranging. Here, we can immediately note that it sug-
gests a procedure for theoretical and physical modelling,
where values of all or any of the independent variables, D
and V governing the body size and motion, and also � and
� describing the physical characteristics of the fluid, can
be manipulated at will. If Re is the same, then so is the
flow.

(c) Practical aerodynamics
(i) Mathematical and physical simplifications

Progress in practical aerodynamics cannot await sol-
utions, numerical or otherwise, of the NS equations.
Rather, success was achieved through a series of dramatic
simplifications, quite radical in scope and elegant in con-
ception—certainly a worthy analogue of the ‘vast empti-
ness, nothing holy’ description of Zen painting! The
historical development of modern aerodynamic analysis
can be traced enjoyably in Anderson (1997). Only the
principles will be sketched in outline here, as many text-
books (again, Anderson (1984), would be a good choice)
cover the material in detail.

The first simplification comes from the realization that
when a streamlined body is placed in a uniform flow field,
most of the changes in velocity occur in a thin layer close
to the body, as illustrated in figure 3a. At the solid body
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surface, the flow must be stationary, as fluid molecules are
brought to a halt by contact with the surface. Recalling
the conceptual fluid element of figure 2, the comparative
inability of a fluid to resist shear deformations results in
strong shearing motions in the fluid elements immediately
next to this stationary layer, as the outer layers are
required to match the speed of the mean flow. The inter-
mediate region where the adjustment occurs is narrow and
contains all of the shearing motion. In most of the fluid,
nothing happens. The dynamics of the interaction of the
boundary layer with the solid body are sufficient to
account for all the forces exerted by the fluid on the body,
and hence by the body on the fluid.

The second dramatic series of simplifications
accompanied the representation of local shear by math-
ematical objects known as vortex elements, and on the
development of the circulatory theory of lift generation,
where the forces acting on the aerofoil can be formulated
directly according to the strength of the vortex sheet rep-
resentation, shown in figure 3b. In flows where shearing is
confined to local regions, these regions can be represented
by collections of vortex lines, or thin sheets which are
embedded in an otherwise irrotational flow. In the two-
dimensional aerofoil example of figure 3, the action of the
aerofoil is modelled by the action of two thin, opposite-
signed vortex sheets. In turn, these can be replaced by a
single point vortex, with circulation, 
, whose magnitude
is proportional to the strength of the shear in the boundary
layers. For small angles of attack, �, increasing � increases
the downward deflection of the airstream, whose effect can
be modelled as an increase in 
. For small �, when the
flow follows the aerofoil shape quite closely, remaining
attached to the upper surface, all of the shear stresses occur
inside the boundary layer, and the vertical component of
the resultant force (per unit span) is

L� = �V
. (3.12)

This is a stunning simplification of the full equations of
motion of the fluid, giving (correctly) the magnitude of an
important force component (weight of aircraft � load that
can be supported in steady level flight) as a function of
only three variables. The actual value of 
, and its distri-
bution over the span of a finite wing is a slightly more
complicated calculation, but for certain assumed profiles
of 
( y), simple analytical expressions can be derived for
induced drag owing to lift, Di. The force components are
usually normalized with respect to the freestream
dynamic pressure

q = 1
2�V 2,

and S, a reference wing planform area, and so the force
coefficients are expressed as,

CL =
L
qS

CD =
D
qS

, (3.13)

where the second expression for CD is left general, rather
than specific for Di, the only component we have noted
thus far.

Recalling the result from the dimensional analysis in
§ 3b, that dynamical similarity is assured for constant
values of the Reynolds number, Re, then it is clear for a
given aerofoil shape, the force coefficients can be functions
of only two parameters
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CL, CD = f(Re, �). (3.14)

Again, this is a most extraordinary simplification of great
practical significance. The lifting performance and fuel
economy of an aerofoil depend on only two control para-
meters. Practical engineering tests are thus reduced to a
finite number and the results can be considered complete
for each shape.

Thin aerofoil theory, where wing sections can be
replaced by vortex sheets, also allows an analytical predic-
tion for how the performance should vary with �. The lift
coefficient per unit span, cL, is

cL = 2�, (3.15)

again, an extraordinarily simple expression. Apparently cL

increases without limit as � increases. However, at some
finite � (such as 10 degrees), the initial assumptions of the
analysis are violated, the flow separates from the upper sur-
face of the aerofoil, and in practice, the lift drops sharply.

(ii) When do models work?
Much has been written about when and whether equa-

tions such as equations (3.12)–(3.15) can be applied to
the indubitably more complex situation of animal flight
(e.g. Ellington 1984) or swimming, and we will not add
to those words here. The purpose rather is to point out
how far these simple algebraic expressions have come,
from the original nonlinear partial differential NS equa-
tions (equation (3.6)). To get here, we had to make vari-
ous model assumptions at different degrees of detail. The
NS equations are already a model, requiring equation
(3.3) to hold. The mathematical theorems and advances
in practical aerodynamics by Lanchester, Prandtl,
Helmholtz, Kutta and Joukowsky that propelled us
through equations (3.12)–(3.15) add further layers of
assumptions, based on physical reasoning, experimental
observation and mathematical necessity. These are the
powerful tools of aerodynamics that can be brought to
bear on practical problems. They work very well, when
the key simplifications work—when the flow can be mod-
elled by a collection of vortex lines or sheets, immersed in
an otherwise uniform irrotational flow. Much of the art of
fluid mechanics experimentation is in enforcing or ident-
ifying similar concentrations of vortex lines, or their
absence. In so doing, it is important to avoid the temp-
tation for purportedly independent experimental tests to
share the same fundamental assumptions of the models
under scrutiny. For example, if the shedding of vortex
rings is predicted behind some self-propelling device then
they will be searched for and extracted from the mass of
complicated swirling patterns in the flow. But what else is
there? And does it matter?

4. COMPARING EXPERIMENT WITH THEORY

There are some principles concerning the comparison of
experiment with theory that frequently go unremarked.
Here, we pause to note them in a brief summary of a recent
paper on the subject (Spedding & Pennycuick 2001).

(a) Uncertainty analysis
Much of science and engineering can be reduced (Zen-

like) to the comparison of numbers. In particular we wish
to determine the truth or falsehood of the proposition
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Figure 4. An actuator disc model for weight support in a
flying bird. The bird itself is completely replaced by an
imaginary disc of area Sd = b 2/4, which acts like a lossless
deflector, imparting sufficient downward momentum to the
incoming air to support the weight, W.

xi = xj . (4.1)

If xi and xj are real, as is usually the case for physical quan-
tities, then the probability of their having exactly the same
value is vanishingly small, and so an unqualified answer
is unobtainable. If, and only if, there are quantitative esti-
mates of the expected variation in xi and xj , can the truth
of the alternative proposition

xi ± �xi = xj ± �xj (4.2)

be tested. The point is obvious, but not trivial, and
becomes essential when more complicated cases involving
more than one parameter are involved. What follows is a
summary of how to compare numbers that are functions
of more than one variable. Let y be a continuous function
of n independent variables, x1, x2, …, xn

y = f(x1, x2, ..., xn). (4.3)

When the xi variables are given small increments, then the
change in y can be calculated exactly from

�y = f(x1 � �x1, x2 � �x2, ..., xn � �xn)
� f(x1, x2, ..., xn) = � f. (4.4)

In practice, it may not be clear how the �xi terms should
be added so as to arrive at a reasonable estimation of their
combined or individual effect, and we look for an analyti-
cal expression for �f. A Taylor series expansion of equ-
ation (4.4) can be written

� f =
∂f

∂x1
�x1 �

∂f
∂x2

�x2 � ... �
∂f

∂xn
�xn � �1�xm1

� �2�xm2 � ... � �n�xmn , (4.5)

where the �i are small coefficients for higher-order terms
whose magnitudes approach zero as �xi approaches zero.
Thus, for small �xi ,

� f =
∂f

∂x1
�x1 �

∂f
∂x2

�x2 � ... �
∂f

∂xn
�xn (4.6)

is the total differential of f, and it gives the variation in
f for small variations in one or more of its independent
parameters. These variations can come from the inevitable
nonzero uncertainties of experimental measurements, or
they can represent a natural variation in the value of the
parameter itself, when equation (4.6) acts as a compact
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Figure 5. Total mechanical power, P, required for powered
flight at speed V for a teal with weight, W = 2.3 N, and wing
span, b = 0.58 m. P is normalized by its value at the
minimum power speed, V0. The familiar P(V ) curve is
accompanied by upper and lower bounds represented by
dashed lines, calculated from realistic values of measurement
uncertainties. The imagined data points in grey circles
might, by themselves, suggest a flat or odd-shaped power
curve. As they all lie within reasonable uncertainty limits,
however, no such inference can be made. Data and
calculations from Spedding & Pennycuick (2001).

representation for a sensitivity analysis. If the purpose of
the calculation is to estimate uncertainties from experi-
mental measurements, or from theoretical predictions
based on empirical numerical estimates, then as the way
in which the signed �xi values add is not known, the most
likely uncertainty is calculated as

� f = �� ∂f
∂x1

�x1�2

� � ∂f
∂x2

�x2�2

� ... � � ∂f
∂xn

�xn�2�1
2
. (4.7)

� f is the magnitude of the resultant vector whose inde-
pendent orthogonal components are the �xi values. Typi-
cally, the �xi values come from single or multiple sample
uncertainties of experimentally determined xi values, and
the function f is then differentiated, variable by variable,
for each term. The procedure is frequently rather simple,
depending somewhat on the form of f. In § 4b(i), an
example where f is a real model function is used.

(b) An example from a bird flight model
(i) The actuator disc

The actuator disc model is perhaps a biomechanical
model par excellence. As shown in figure 4, the flying ani-
mal is simply replaced as though the effect of its beating
wings can be modelled by the action of a circular disc,
which operates like a giant turning vane. Its sole function
is to deflect air downwards, imparting a vertical velocity
component to the uniform, initially horizontal flow. The
equivalence of rate of change of momentum in the fluid
with force has already been identified as an expression of
Newton’s laws in equation (3.5), and as the fluid is acce-
lerating downward, the reaction force is upward. More
detailed arguments concerning the physical basis for actu-
ator disc models of various kinds can be found in standard
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Figure 6. Vertical cross sections through the wake of a fixed rectangular wing of aspect ratio, AR = 3.4, fineness ratio,
FR = c/h = 8.3 and Re = 2.9 × 104. The panels are identified in {row, column} order. Each panel is of size �X/c = 3.85,
�Y/c = 2.36, where c = 5.07 cm is the chord length. The {x, y} coordinate system for the plane, with z perpendicular to it, is
adopted for consistency with the notation of figure 2. The colour maps are from a 56 × 37 grid, and so each element is almost
square with resolution �x/c, �y/c = {0.07, 0.065}. The aerofoil trailing edge is just upstream, beyond the left margin. The three
rows from top to bottom represent different angles of attack, � = 2.3, 11.6 and 20.1°. The three columns show the disturbance
velocity field, u(x, y) (in a reference frame moving with the mean flow speed, U = 8.6 m s�1), the cross stream or spanwise
vorticity, �z(x, y), and the time-averaged spanwise vorticity from 20 independent frames. The u and �z fields are shown on
stepwise colour bars whose resolution reflects the uncertainty in the numerical values. There are 24 steps in u, and 10 in �z.
The colour bars are scaled to local extrema at each �, where: umin = [–2.7, –7.7, –12.6 m s–1], |�z|max = [± 710, 880, 1270 s�1]
and |�z|max = [210, 895, 895 s�1].

aerodynamic texts (also Ellington 1984). Interestingly,
almost regardless of the starting point of the analysis, one
arrives at an expression for the induced power require-
ment as

Pi =
2kW 2

�Vb2, (4.8)

where the animal moving through a fluid of density, �, at
speed V, appears as a point mass with effective weight W,
and wing/fin semispan b. By inspection, Pi is proportional
to the weight, and inversely proportional to the mass flux
through the disc of area Sd = (b/2)2. For a given speed,
V, the only way to increase the mass flux (and so decrease
Pi) is to increase Sd by increasing b. Alternatively, the ani-
mal must watch its weight. The crucial parameter in equ-
ation (4.8) is now seen to be the disk loading,

Qd =
W
Sd

, (4.9)

which completely controls the induced power require-
ment.

In this model, there are no wings, no tail flukes, no fea-
thers, no wing veins, no elastic membranes, no kinematics,
no wing geometry effects. All departures from the ideal-
ized case of uniformly accelerated downward flow are
subsumed into the numerical value of k, a dimensionless
coefficient whose value is greater than 1.

In the light of its obvious deficiencies, it may seem out-
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rageous and/or primitive to persist in using a model like
this. However, it is simple enough so that anyone can use
it, program it and even modify it, and it is the only model
for bird flight (for example) that has a large body of practi-
cal literature, freely available programs and estimates of
required empirical constants (Pennycuick 1989).

(ii) Uncertainty estimates
It is quite common to see theoretical and even empirical

curves of P(V ) in the animal locomotion literature, but
very uncommon to see the curves bounded by bands of
likely uncertainty. Here is how to remedy this problem for
the particular case of equation (4.8).

In the language of equation (4.3), Pi is a function of five
independent variables

Pi = f(k, W, �, V, b) (4.10)

and so, following equation (4.6), we can write

�Pi =
∂Pi

∂k �k �
∂Pi

∂W �W �
∂Pi

∂�
�� �

∂Pi

∂V �V

�
∂Pi

∂b �b. (4.11)

Evaluating the partial derivatives gives

�Pi =
2W 2

�Vb2 �k �
4kW

�Vb2 �W �
2kW 2

�2Vb2 ��

�
2kW 2

�V 2b2 �V �
kW 2

�Vb3 �b, (4.12)
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which can be simplified to

�Pi

Pi
=

�k
k

�
2�W
W

�
��

�
�

�V
V

�
2�b
b

. (4.13)

The most likely value for the uncertainty in Pi is

�Pi = Pi ���k
k �2

� �2�W
W �2

� ���

� �2

� ��V
V �2

� �2�b
b �2�1

2
. (4.14)

One advantage of performing this calculation is that the
relative importance of accurate knowledge of certain terms
can be quickly known by inspection; here, it is twice as
important to know about the wingspan b and weight W
than the remaining variables (including k).

(iii) Quantitative results
The procedure outlined for Pi can be followed in similar

fashion for the remaining power components, and an
expression for �P can then be formulated. The sensitivity
to variations in W and b remains much higher than any
of the other variables, as presaged in equation (4.14), and
this fact can be immediately seen from the analysis with-
out need for further numerical computation. The
expressions for the uncertainties can be tracked through a
numerical computation of the flight power curve, P(V ),
however, and figure 5 shows a summary result.

The flight power curve now has two additional curves
representing upper and lower bounds of ± �P(V ) as com-
puted from measured experimental uncertainties in a wind
tunnel experiment. The expected variation in calculated
mechanical power is a substantial fraction of the total
change in power over the entire range of flight speeds.
Consequently, a set of purely fictitious data points, scat-
tered as shown on the same graph, might be interpreted
by themselves as a refutation of either the specific flight
power calculation values, or the shape of the power curve
itself. They are not, because they are indistinguishable
from the cloud of possible values given realistic experi-
mental uncertainties for the numbers used in the theoreti-
cal calculation alone.

Some practical consequences are as follows.

(i) It is very difficult to perform a definitive laboratory
experiment. Definitive field measurements are even
harder.

(ii) The expected or likely variation of the computed
power output, given realistic uncertainties of the
contributing independent variables, is large com-
pared with the predicted variation of P itself. There
are therefore quite limited possibilities for making
meaningful tests of either the particular shape of one
model-predicted P(V ) curve, or of the relative mer-
its of entirely different flight models.

(iii) A corollary of (ii) is that the construction of mechan-
ical or aerodynamic models of greatly increased
sophistication may not be justified, if the original
objective (O in the introductory remarks) is restricted
to making simple predictions of, say, flight speeds.
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5. SAMPLE APPLICATIONS

The following examples are taken from recent research,
selected to illustrate some of the general principles out-
lined here. The first is a seemingly simple and standard
problem which reveals complexities in the flow field that
contrast quite sharply with the rather idealized fluid flow
models encountered so far. The second is from a nomin-
ally much harder problem, which also has some surprises.
Both examples show data from wind tunnel experiments
described further in Spedding et al. (2003a,b).

(a) The wake of a fixed wing
It is instructive to analyse the wake of a fixed rectangular

wing in the same way as is commonly done for animal
wakes, i.e. measuring the wake disturbance alone. For a
given aerofoil shape (cross-sectional geometry and aspect
ratio), steady flow solutions are a function of two para-
meters only

u(x) = f(Re, �), (5.1)

and figure 6 shows a selection of flow field quantities for
� � 2, 12 and 20°, and Re � 3 × 104. The left-hand col-
umn shows the streamwise velocity component, u, in the
frame of reference moving with the mean flow. The mean
wake defect thus flows from right to left. In the top left,
the wake for the lowest angle of attack, � � 2�, already
differs markedly from the thin straight vortex sheet drawn
schematically in figure 3. The wake itself is unstable, and
wavy disturbances grow in amplitude eventually breaking
up the wake towards the downstream end (right side of
the panel). The cross-stream vorticity, �z (middle top, or
{1, 2}), given by

�z =
∂v
∂x �

∂u
∂y , (5.2)

shows that the spatial modulation is always present and
the vortex wake never appears as a flat thin sheet. The
time-averaged vortex wake (top right, {1, 3}) does look
more similar to the textbook pictures, but loses coherence
towards the right-hand side, and no single instantaneous
view corresponds to this.

At � � 12� (row 2), the aerofoil is just below stall, the
initial wake defect is still quite limited in the vertical direc-
tion, but becomes quite disorganized with increasing dis-
tance downstream. Likewise, the cross-stream vorticity is
rather complex in structure, and at no instant does it corre-
spond to the time-averaged value, whose decay with increas-
ing x is increasingly evident. Beyond stall, at � � 20� (row
3), the far wake structure is not qualitatively so different
from the previous �, but the near wake, immediately behind
the aerofoil, has increased in height. The instantaneous vor-
tex wake {3, 2} is quite spread out and intermittent. The
time-averaged signal {3, 3} is spread out vertically owing to
the spatial and temporal intermittency.

A more detailed quantitative analysis of the rectangular
wing wake is given in Spedding et al. (2003a). Here, we
show only the drag coefficient as computed from integrat-
ing the wake defect profile (figure 7). Two sets of symbols
are given, one for calculations from the time-averaged
wakes, and one for the average of the sum of profiles
through instantaneous wake structures. As the wake itself
becomes more unsteady (the wake structure varies in both
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Figure 7. The drag coefficient on a rectangular wing as
calculated from the wake momentum defect in data such as
figure 6. The triangles are average values taken from u( y)
profiles in 20 instantaneous flow fields. The error bars
show the standard deviation over the 20 velocity fields. The
circles are calculated from time-averaged velocity profiles,
u(y ). The curve is a second-order polynomial fit to the
mean values over the first four data points, and its
extrapolation shows how a continued quadratic dependence
of CD(�) would appear. Redrawn from Spedding et al.
(2003a).

space and time in unpredictable ways as hinted at in col-
umn 2 of figure 6), it is increasingly difficult to match
calculations from the two, although the upper bound of the
large variance in the instantaneous measure overlaps the
mean value for most values of �. In both cases, the meas-
ured drag begins to deviate from an expected quadratic
dependence on increasing � (illustrated by the solid curve
in figure 7). The difference becomes significant after 15°,
after stall, and when the wake structure becomes more
complex (row 3 in figure 6), and the magnitude of three-
dimensional disturbances (flow in the spanwise direction
owing to instabilities and/or end effects) increases.

Based on the wake survey of the fixed wing, one must
expect wake vorticity distributions to be significantly more
complicated than simple theories would predict, even when
the geometry and incoming flow field are very simple. This
increased complexity and departure from ideal model con-
ditions may or may not be important. Apparently reason-
able drag coefficients can be calculated even when the flow
structure appears as in row 2 of figure 6—not very similar
to a flat vortex sheet. However, by the time we reach row
3 in this figure (qualitatively not extraordinarily different
from row 2), the calculated drag coefficients do not agree
with simple extrapolations from the lower � result, and it
is clear from this and from the increase in variance in this
measure that estimating forces from such unsteady and
three-dimensional wakes is not simple.

Informed by the simple(!) model case, we can briefly
examine similar data from a flapping bird.

(b) The wake of a flying bird
Figure 8 shows a combined velocity and vorticity field

plot of a bird wake measured under similar circumstances
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as the aerofoil experiments. There are two patches of con-
centrated vorticity, and then in this view, little else.
Helmholtz’s laws require that vortex lines connect up in
closed loops or end at a surface, and so with no nearby
surface available (the wing semispan, b = 12.6 cm, and the
smallest wind tunnel test section diameter, dmin = 1.08 m,
so (b/d)max = 0.12), the evidence seems quite good for the
existence of simple closed loops in the bird wake. Thus,
a single closed-loop wake model might well be a quite
reasonable first-order approximation. The starting vortex
on the right of figure 8 in particular is very compact and
well defined. However, as the colour bar clearly shows,
there is a strong asymmetry in the peak vorticity levels of
the two vortex cross sections. The core cross section of
the structure left at the end of the downstroke (left-hand
side of figure 8) is less than 1/3 the peak magnitude of its
opposite-signed counterpart. The precise arrangement of
vortex lines therefore cannot be in a simple loop, and
either some circulation must be left on the wing during
the upstroke (i.e. it is aerodynamically active and vortex
lines continue up into this part of the wake) or all the
vortex lines do connect following the downstroke, but in
a much more diffuse and disorganized way. Recall that the
very notion of a vortex line is a mathematical one, useful
for modelling fluid flows when the vorticity distribution is
concentrated into discrete patches. The physical/empirical
description of the wake structure need not mindlessly par-
rot this same formula. Recall also that, even though the
wake structure may not look exactly like a simple ring
structure, this might nevertheless continue to be a useful
and convenient model description.

6. CONCLUDING REMARKS

This highly selective comparison of theoretical and
experimental models in fluid mechanics has used two
practical examples from recent experimental wind tunnel
work to illustrate the advantages and difficulties of making
model comparisons. The simple fixed aerofoil example
showed that observed departures from theoretical model
wake vorticity distributions may be important or unim-
portant, and it is not immediately obvious, a priori, which
will be the case. So it is with the typically more complex
problems in fluid mechanics modelling of animal loco-
motion. A model might be perfectly successful, even while
details are being soundly refuted by physical experiments.
Recall how the success or failure depends only on
explicitly defined objectives, O, and these are not neces-
sarily bound by the known physics, P. If it is convenient
to pretend, for example, that all bird wakes are made of
closed vortex loops, then one can do so. By the same
token, of course, if it is convenient to continue to imagine
a continuous tube of uniformly accelerated fluid, as in the
actuator disc, one can also do this. The critical remaining
component lies in the falsifiability of the model predic-
tions. Critical and unambiguous tests can only be perfor-
med if, in addition to predicted numerical values or
parametric curves, there are realistic estimates of the
uncertainty. These uncertainty limits are themselves quite
informative as to the expected precision of the outcome
of a particular test, and as to the relative contribution from
increased levels of complexity and/or realism in a model.



1576 G. R. Spedding Fluid mechanics models and experiment

min max↑0

Figure 8. The wake of a thrush nightingale in steady level flight at 5 m s–1, measured in a wind tunnel. As in the aerofoil
experiments (figure 6), the reference frame moves with the mean flow speed, and the flow is as if the bird has passed from
right to left, through still air. The cross-stream vorticity, �z(x, y), measured in a vertical centreplane is mapped onto a 16-step
colour bar. The velocity vectors show qualitatively the flow field and the spatial resolution. The image size is ca.
20 cm × 18 cm, and the structure left behind on one downstroke fills the field of view. The maximum and minimum �z values
are 980 and –290 s�1, respectively. The Reynolds number based on mean chord, Rec = 1.5 × 104. From experiments and data
described in Spedding et al. (2003a,b).

Many fluid mechanics problems are still regarded as
difficult, partly because of the complexity of possible
solutions to the Navier–Stokes governing equations.
Consequently, the field has a noble history of ingenious
and elegant simplified model problems that allow practical
progress to be made in real problems. In parallel, experi-
mental modelling has played a particularly important role,
because provided the appropriate dimensionless numbers
are matched (typically a Reynolds number), then physical
experiments can be arranged with real fluids, where the
fluid dynamics modelling then comes for free. The princi-
pal difficulty frequently arises in making independent and
correct interpretations of the possibly complex flow sol-
utions that one generates in the physical model. We can
eagerly anticipate strong future progress on both sides of
the equation.

ENDNOTES
1A famous story relates how, in the mid-sixteenth century, on being
granted a coveted audience with the Emperor of China, Daruma, the first
patriarch of Zen Buddhism, was asked for the most important principle
of the rapidly growing religion. ‘Vast emptiness, nothing holy!’, exclaimed
Daruma, by way of response. The Emperor, somewhat perplexed,
demanded ‘Who are you?’ ‘I do not know!’ replied Daruma, who then
promptly left and spent the next 9 years in meditation facing a wall. Daru-
ma’s outburst, ‘Vast emptiness, nothing holy!’ is quite a good means for
recalling the important selection and omission process in model-making,
and in ensuring that no examples are considered above criticism.
2This is a slight over-simplification, but it suffices for the current dis-
cussion and remains a good rule of thumb for quick estimates and
analysis.
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