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Lunate-tail swimming propulsion. 
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The theory of an oscillating, high-aspect-ratio, lifting surface with a curved 
centreline (Cheng & Murillo 1984) is applied to a performance analysis of lunate-tail 
swimming propulsion. Thrust, power and propulsive efficiency are calculated for 
model lunate tails with various combinations of mode shapes and morphological 
features to ascertain the viability of the proportional-feathering concept, and to 
determine the influence of sweep and centreline curvature. One of the principal 
conclusions concerns t,he interchangeability of the heaving amplitude of the peduncle 
(identified with the major pitching axis) with the centreline sweep, and its effect on 
the propulsive efficiency, while maintaining the same thrust. Hydrodynamic reasons 
are also offered for the apparent preference for the crescent-moon fin shape over the 
V-shape a t  moderate sweep angles, and for the large sweep angles often found in 
V-shaped fins. 

1. Introduction 
Amongst the various modes of aquatic animal propulsion, the carangiform mode 

is characterized by the restriction of noticeable undulation to the posterior end of the 
body, where the caudal fin becomes primarily responsible for thrust generation. 
Here, the selective pressures for efficient maintenance of high-speed propulsion 
appear to be responsible for the convergent evolution of caudal fins of high aspect 
ratio. The significant morphological change typically involves the evolution towards 
a fin shape of the crescent-moon form. commonly referred to as the lunate tail, and 
may be identified in the only distantly related mammals (dolphins, whales), sharks, 
and bony fishes, as illustrated in Norman & Fraser (1937), Kramer (1960) and 
Lighthill (1969). Figure 1, adapted from Joseph, Klawe & Murphy (1979) shows 
variants of lunatc-tail form among the tuna and the bill fishes. Note that  at a short 
distance anterior to the caudal fin, where lateral oscillation amplitudes begin to 
rapidly increase, the body depth is greatly reduced. The practical consequence is that  
thrust generation is confined almost exclusively to the caudal fin, which may be 
considered to oscillate in an otherwise undisturbed free stream. 

Lighthill (1969, 1970) gave a general survey of the hydromcchanics of aquatic 
animal propulsion. RcasonrJ for convergence upon the lunate tail of the thrust and 
propulsive eficiency were advanced, treating the lunate tail by the two-dimensional 
theory of oscillating airfoils in heaving and pitching modes. I n  this approximation, 
only the cross-stream components of wake vorticity were taken into account, 
although in reality, streamwise components must also be present ; the propulsive 

t Present address. Pnited States Kaval Academy, Department of Aerospace Engineering, 
Annapolis, MD 21402-5042, USA. 



330 G.  Karpouxian, G. Spedding and H .  K.  Cheng 

Frigate tuna 

Shortnose spearfish 

Yellowfin tuna 

Giant northern 
bluefin tuna 

FIGURE 1 .  Variants of lunate-tail form among tuna and bill fishes, after Joseph et al. (1979). 

efficiency of the lunate-tail model treated by the two-dimensional theory must 
therefore be an overestimate, due to an underestimation of the wake energy loss. Wu 
(1971a), for example, finds high propulsive cfficiencies, close to unity (0.96-0.99) in 
a two-dimensional analysis. A three-dimensional analysis is clearly required for more 
accurate and realistic estimates of the propulsive efficiency, which, in turn, should 
clarify the apparent evolutionary convergence on this mechanical design. 

Lunate-tail propulsion by oscillating, unyawed straight wings of high aspect ratio 
has been studied by Chopra (1974) and James (1975). But, as noted by Lighthill 
(1969), the curvature and sweep of the planform centreline might be expected to 
exert a strong influence on the unsteady hydrodynamics and lunate-tail performance, 
since the induced upwash is a functional of these parameters. Numerical calculations 
of thrust and propulsive efficiency of oscillating rigid flat plates as a three- 
dimensional lunate-tail model have been made by Chopra & Kambe (1977), applying 
a kernel-function method, and by Lan (1979), applying an improved doublet-lattice 
method. The effect of sweep on the propulsive performance remains unclear from 
these studies. 

Noting this deficiency, the quasi-steady problem for wings with curved planform 
has been studied by Ashenberg & Weihs (1984) for lifting-line theory with centreline 
curvature, and by van Dam (1987) with a surface panel method. These works 
examined the wake energy loss or induced drag of planar lifting surface in the quasi- 
steady limit, and their results cannot directly be compared with the unsteady 
performance parameters presented here. 
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(4 (b) 
FIGURE 2. The Cartesian coordinates (z, y, z )  and the orthogonal curvilinear coordinates (z", y", z"), 
the centreline of a planform, and definitions of b, c,, c", ze(y'), zz and y,. Note that z, is comparable 
with co in magnitude. 

Generalizing the classical lifting-line theory (Prandtl 1918 ; Van Dyke 1964), 
Cheng and Murillo (1984, hereinafter referred to as CM84) developed an asymptotic 
analysis of inviscid incompressible potential flow about a high aspect ratio (A ,  = 
2b/co >> l),  planar lifting surface, oscillating at a reduced frequency based on the half- 
span in the unit order range, i.e. SZ = wb/U = O(l),  including the quasi-steady limit 
SZ -+ 0, where b is the fin half-span, co is a reference chord, w is the circular frequency 
and U is the mean-stream velocity. (Fuller analytical details of this work and the 
problem background were documented in Cheng & Murillo's (1982) (hereinafter 
referred to as CM82) and in Murillo (1979).) The analysis is consistent with 
physiological and kinematic data reported in the literature, as summarized by Wu & 
Yates (1978), for example. Note that the reduced frequency based on the half-chord 
is small in this case, i.e. k = wc0/2U Q 1.  The analysis takes into account the 
centreline curvature and sweep, and is applicable to lunate-tail models provided the 
assumption of a planar lifting surface remains adequate. Figure 2 shows a typical 
planform of an isolated lunate-tail model, to which the theory is addressed. 
Complementary to the present work is an earlier study (Cheng 1976) for high aspect 
ratios at reduced frequency k = O(1) and higher, i.e. SZ = O(A)  B 1. 

This paper will apply and develop further the analysis of CM82 and CM84 to the 
performance of a lunate-tail model. Thrust, power and propulsive efficiency are 
calculated for model lunate tails with different combinations of mode shapes and 
planforms to  explore the viability of the proportional-feathering concept in three 
dimensions, to determine the sweep-angle influence and to assess the centreline 
curvature effects. 

2. Lighthill's theory and proportional feathering 
Lighthill (1970) considers an oscillating flat plate in two dimensions, whose 

(1)  
Cartesian ordinate z, is z, = Re {eiwt [h - ia,(x: - xO)]}, 

where Re signifies the real part, w the circular frequency, and h and aL, when taken 
to be real and positive, determine the amplitudes of the heaving and pitching 
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/ 
Pitch axis 

FIGURE 3. The geometric parameters of a flat. plate in pitching and heaving oscillations. 

oscillations, respecbively. A real xo then gives the pitch-axis location. A pair of real h 
and uL in (1) signifies a 90' phase lead of the heaving relative to the pitching, and any 
imaginary part in h associated with additional phase diffcrence is equivalent to a 
rcadjustment of the pitch-axis location xo. Figure 3 illustrates the two modcs of 
oscillation of a flat plate in a uniform stream. The hydromechanics of this osc.illating 
plate is controlled by three parameters : the proportional feathering paramctcr 0, the 
reduced frequency k. and the normalized pitch-axis location 2,, defined as 

The important concept of proport,ional feathering, introduced by Lighthill (1969), 
characterizes the carangiform mode when the fin incidence angle aL and the 
transverse (heaving) velocity w h / U  are in phase with each other. It refers to the 
degree to which the oscillating surface follows the trajectory of the pitch axis or, 
more precisely, the direction of the relative wind vector at the pitch axis. 

The relative importance of the parameters in (2) is best seen from an expression of 
the normal surface velocity 

where .F is x /co ,  and W = wh is the maximum heaving velocity at the pitch axis. If 
0 = 1, the surface imparts no transverse disturbance to the fluid at the pitch axis ; thc 
feathering condition must. be considered perfect in this case, at least at x = xo. For 
a fixed maximum slope of the trajectory of thc hinge line wh/U, the factor (1 - 0 )  
obviously determines the angle of attack (at 0 = Zo) relative to  the wavy trajectory 
of the hinge line. Clearly, the factor (1 - 0) will also control the angle of attack for the 
entire plate. provided the reduced frequency is sufficiently small and both 0 and 0" 
are finite. To maintain a fixed 8, the pitch amplitude aL must. be adjusted in 
proportion to  the maximum slope of the trajectory wh/IJ,  with 0 cntering as a 
constant of proportionality ; hence the notion of proportional feathering. The 
definition of 0 in (2) remains useful for complex h and aL. In  such a case, perfect 
feathering is still identified with 0 = 1 according to (3).  The time-averaged thrust is 
given by 

( T )  = $pW2 [l  -Re(B)], 

which shows that, Ke(@ must be less than one for useful thrust generation. 
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Kinematically, Re(@ < 1 provides a condition assuring that the Joukowski force has 
a thrust component a t  all or most times. Lighthill (1970) has obtained an explicit 
analytical expression for the time-averaged values of the thrust, ( T ) ,  the power 
required, ( P > ,  and the propulsive efficiency, q = U(T) / (P) ,  for the motion. In the 
quasi-steady limit, the benefits of operating in a low-frequency range are most clearly 
exhibited by expressing the thrust and efficiency for a small k 9 0, which read 

(Cl,) = - (1-0) [l+n(l-@)k+ ...I, ( 5 4  

assuming for simplicity that both 8 and W a r e  real, and the 6 and 6, are finite. The 
dots represent terms of higher order in k. I t  is clear that the propulsive efficiency 7 
a t  a low k is high, but the corresponding thrust coefficient of (5a), which is 
proportional to k2, is low. However, the skin friction and other forms of drag may be 
low enough to tolerate a low (CT). By virtue of the factor (1-6) in (5b), the high 
efficiency enjoyed by the slow oscillation can be further enhanced by the 
proportional-feathering concept when 0 is close to 1. The practical significance of this 
observation, however, is that the reduction in thrust due to the factor ( 1  - 6 )  in (5  b )  
may be compensated for by raising the heaving amplitude, hlc .  Note that this 
conclusion does not involve the pitch-axis location. 

The high propulsive efficiency achievable in the two-dimensional model implies 
that  the three-dimensional corrections may be critical in the determination of the 
true wake-energy loss and propulsive efficiency. Without a systematic analysis of the 
three-dimensional influence, it is difficult to  ascertain whether the normalized wake- 
energy loss in the domain 51 = kA, = 0 ( 1 )  may be of order A;2 (1 -f?)2, as (56) would 
suggest. The three-dimensional study is made more important by the realization that 
the unsteady and three-dimensional corrections in the flow analysis are not strictly 
superposable, since there is a three-dimensional influence in the wake-induced effect 
itself (CM84). There is also the possibility of wake-energy extraction by portions of 
downstream panels of swept candal fin, as discussed in another context by Wu 
(1971 b ) .  

3. The lunate-tail model and proportional feathering 
The surface ordinate of the model fin may be represented by two modes, 

z, = Re { ( € 6 )  eiWt [ E ,  - (x - x,)] + (ao) eiWt [ E ,  - &,(y’) (x’ - xh( y’)]}, (6) 

where x is the streamwise Cartesian coordinate normalized by the half-span b, x‘ and 
y’ are the two orthogonal curvilinear coordinates shown in figure 4 (a) ; ZA and xA arc 
constants, and E: is a small parameter which controls the magnitude of perturbations. 
All terms inside the two square brackets are treated as either unit-order or smaller 
quantities. The first mode, expressed as a linear function of the Cartesian (outer) 
variable x, represents the heaving and pitching motion of a rigid flat plate about the 
pitch axis a t  x = xA corresponding to the vicinity of the peduncle. The latter axis will 
be referred to  as the major pitch axis. The second mode, expressed in the curvilinear 
(inner) variables x’ and y’, describes the heaving-pitching motion of the local fin 
section, with its local pitch axis set a t  a distance cox&’) from the curved centreline 
(dash-dot curve in figure 4 a ) .  Thc constant in is generally complex ; it determines the 
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(4 
FIGURE 4. (a )  The major pitching axis (dash-dot line) and the curved, local pitching axis (dash-dot 
curve) for the special class of the lunate-tail model analysed. ( b )  Planform and coordinates used in 
the lunate-tail model. 

transverse displacement of the peduncle. A Z0(y’) =t= 0 would allow additional fin 
bending at  the local hinge line x’ = x;. The local pitching amplitude &,(y’) may be 
used to account for the passive structural response of the caudal fin in twist under 
hydromechanical forces. A parabolic shape 

x = Ky2 (7) 

will be assumed for the planform leading edge and, for convenience, this will also be 
taken as the reference centre line x = x,(y) in the subsequent applications. To 
facilitate computational work, the planform trailing edge is not given in terms of x 
and y, but rather by the local fin chord measured normal to  the y’-axis, 

C(Y’) = CO(1 -?.I% (8) 

where yc is a known function of y’, differing slightly from y (figure 4b). Figure 5 
illustrates the effect of varying A ,  E 2b/c , ,  the aspect ratio, and K ,  the average 
tangent of the sweep angle, on the morphology. 

3.1. Boundary condition 
The wing boundary condition may be expressed by the convective derivative of z,. 
The condition can be written for an arbitrary planform in terms of the local sweep 
angle A ,  the frequency D = ICA,, the local pitch angle Oi,, local pitch axis locations xb, 
and also Zo, as well as the important function 

H = xc(y’)-xA-2A, ( 9 4  
which controls the resultant heaving motion of the local fin section. A parameter 
corresponding to 8 in (2) and (3) may be identified here as 

i(sec A +So)  O r  
DH sec A ’ 
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K = 0.1 0.25 0.5 0.75 1 .o 

FIQURE 5. The dependence of the lunate-tail planform on (a)  aspect ratio and 
( b )  the average-sweep parameter. 

which can be used to eliminate &,(y’) in (6). The factor (secA + G o )  in ( 9 b )  is the sum 
of the maximum angle of the rigid flat plate and that due to the local pitching 
(normalized by e )  ; the product QHsec A in ( 9 b )  is the maximum heaving velocity a t  
the station y’ prescribed by the rigid-plate pitching mode (normalized by eUcos A ) .  
The numerator and denominator on the right-hand side of ( 9 b )  may thus be 
identified with aL and wh/U for the two-dimensional problem, with the additional 
factor of --e. The 0 of ( 9 b )  represents a localized proportional-feathering parameter 
corresponding to  8 = aL Ulwh in (2). Indeed, eliminating Oi, with 0, the leading 
approximation for the transverse surface velocity (normalized by EUCOS A )  is 

P(0) = -iQH(l-@)secA, (9c) 

comparable to (3) for k + 0. The parameter 0 thus controls the departure of P(O) from 
its perfect feathering value, P(O) = 0, in our leading-order solution. 

Note that h in (1) and H defined above have opposite signs. According to the 
discussion following (4) and (5), the condition Re 0 < 1 assures the proper incidence 
relative to the trajectory of the local hinge for generating a thrust component from 
the Joukowski lift. 

The 0 considered in most examples in CM84 and the present study falls in the 
range 0 < 0 < 1 ; for simplicity, it will be taken to be uniform spanwise. Examples 
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with a fixed 0 will be referred to as the ‘feathering cases’. As contrasting examples, 
cases with Oi, = 0, corresponding to a rigid flat plate in oscillation, have also been 
studied ; they will be referred to as the ‘rigid cases’. It should be pointed out  that, 
insofar as the proportional feathering is only a quasi-steady concept, an appropriate 
or optimum solution to the propulsion problem is expected to require a slightly non- 
uniform spanwise distribution of 0. Ideally, 0 should approach unity from below for 
the highest propulsive efficiency, which implies, however, a vanishing thrust. For a 
specified thrust a t  levels considered below, a reasonably high efficiency may 
nevertheless be achieved at some 0 < 1.  

4. Lunate-tail propulsive performance : application of the asymptotic 
theory 

4.1. The time-averaged power and thrust 

The analytical base of the performance analysis is the surface distribution of the 
pressure jump across the lifting surface, which was examined in CM84. The symbol 
‘ [ 1,’ signifies the difference between the upper and lower surface values over thc 
lifting surface. From the linear theory, the pressure jump is given by 

where p, is the perturbation velocity potential. The power required and the thrust 
generated may then be evaluated, respectively, as 

where the integration extends over the entire projected lifting surface, and T, is the 
contribution from the local leading-edge suction TP-*) : 

The line integral is to  be carried out along the entire leading edge (LE), whose 
curvilinear coordinates are 5’’ = a” = c,, a’. The R in (12 b)  is the radius of curvature 
of the (reference) centreline (being positive for the example illustrated in figure 2) and 
cos ALE is the cosine of the leading-edge sweep angle, related to the cosine of the 
centreline sweep angle cos A by 

sin A aa’ 
COSA,,  = COSA-~-- 

A ,  ayf- 

The local leading-edge suction is evaluated from the singularity of the velocity 
gradient in accordance with the two-dimensional theory 

TP-D) = p A 2 ,  ( 1 2 4  

where 

For the sinusoidal oscillation with frequency o, the linear system admits 

z ,  = Re(z”,eiUt), 9 = Re($eiUt), 
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with similar cxpressions for other perturbation quantities, where $ is the solution to 
the reduced problem giving the frequency response. Of interest are the time-averaged 
values of the power and thrust, ( P )  and ( T ) ,  which involve three timc-averaged 
products 

These can be evaluated from the rcal parts of 

where the double asterisk signifies a complex conjugate operation. 

for the wake-energy loss ( E )  = (P) - U ( T )  : 
For convenience, we introduce the power and thrust coefficients, and a coefficient 

Note that the expression for (C,) above differs from the ( C T )  of ( 5 a )  as the square 
of the magnitude of perturbation, e, appears in the denominator ; the cocfficients 
defined above are generally of unit order in this theory. 

4.2. Explicit calculation of power and thrust 
The potential jump [@I, is determined from the jump of the coefficients in the 

asymptotic solution 

where Ic‘ 3 ksec A .  For the particular model described by (6), the jumps of 

a#O)/ax’, a p o ) / a x ’  and a $ ( o l ) / a d  

are given in CM82, where the functions of y’ or ye, pro), Tio1), @’), and py) are also 
found. From these, #O), $(lo),  and qVol), and their time derivatives may also be 
deduced. I n  particular, a t  each span station the circulation f = [@IrrE (of the inner 
solution) can be computed from 

fro) = i[$(oqTE = -nc‘p(o), (16a)  
5 1 0 )  = u $ ( 1 O ) l T E  = -nctpp - ;7cc /pp~)  

+ ~ R c ’  tanA 7 ( ~ ’ V ( o ) ) + ~ ’ ( ~ r + a ’ )  P O )  , (16b)  

(164 

G 1 
301) = [&Ol’] TE - - -nc‘p&ol) -ixc/p01) + 2iRC‘(C’ +a’) p(o), 

where c‘ = c/co is a normalized local chord, K’ = -dA/dy’ is a normalized ceritrclinc 
curvature, and thr subscript TI3 signifies the trailing edge. The power and thrust 
coefficients (C,) and (C,) may each bc reduced to a line integral explicit in A ,  and 
52, being functionals of 9’: 12, 0 (or k 0 ) ,  c‘, and two normalized (finite parts of‘the) 
induced velocities, vzo) and @&,, subject to a relative error comparable with Ay2. 
The latter two induced velocities are themselves, however, functionais of the 
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centreline shape, x = xc(y), and the leading-order circulation, fro) = cosA?O), 
determined from the matching (CM84). 

For the lunate-tail propulsion study, a slightly more general shape for the 
centreline t,han (7) has been adopted. It reads 

xc = KY2 +m, IYI (17)  

where the second term is added to allow for V-shaped fins. 
For the type of oscillation defined by (6), and the type of planforms designated by 

(8) and (17),  the induced velocities may each be conveniently represented by a linear 
combination of three basic induced velocities corresponding to three normalized span 
loadings, 

which are independent of the mode shape constants K ,  m,, xA and iA. 

quasi-steady strip (local two-dimensional) theory 

(18) f =  l-y2, f =  lyI(l-y2), f=yZ(l-yS),  

The leading-order result for the power and thrust can be readily obtained from the 

(cp) = {q?’) = sz l1 Re (iHf’$”$’) dy 

{sZzlfi12 -Re [iQ( 1 + &, cos A )  fi , ,]>c‘ dy 

1 

= xb)2/-lIfi~z[l-Re (@)]c’dy, 

which is consistent with (4), and will serve as a base for subsequent discussions. 

4.3. Wake-energy loss and eficiency 
The difference ( P ) - U ( T )  = ( E ) ,  or (C,)-(@,) = ( C E ) ,  gives the rate a t  which 
the energy is lost to the wake and is expected to  be non-negative. The propulsive 
efficiency is 

(20) 
( E )  ( C E )  7 = I-- = I-- 
(P> (C,). 

As noted carlier, the ratio (CE) / (C, )  is anticipated to belong to the order A;’ in 
the domain of A ,  and k of interest. The 7 of (20) can be evaluated to  within a relative 
error of O ( A T ~ ) .  Within this degree of accuracy, i t  is asymptotically correct to retain 
only the leading-order term for (C,), i.e. (Cr)), in the calculation of 7. However, in 
the neighbourhood where the power or thrust may approach zero (as shown in the 
two-dimensional analysis), or in cases where the corrections in (C,) or (C,) are 
relatively large (either because (1 -0) is small, hence (C$?)) is small, or because the 
corrections themselves are numerically significant), a fuller expression for the power 
and thrust coefficients is required. 

This power coefficient reads 
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a + 2i- [(a’ +id) (cos A + 02,) - (i, + 4, x;)] P!U,) 
A ,  

The thrust coefficient can be readily found by determining the wake-energy loss 
coefficient (C,) from an analysis of the far wake, but which %ay also be determined 
by the spanwise circulation distribution, r(O) (y) = COSA Fo)(y’), the centreline 
geometry, x = x,(y), and the reduced frequency SZ = ICA,. Following some lengthy 
algebra, we obtain 

(C,) = 7c s’ cos3Ac’ Re { p$?)(A;’pGo) + k’p&,)} dy’. (22) 

The product v$‘i fzot, being the quasi-steady contribution, corresponds to the 
induced drag in Prandtl’s original theory, which results from a rotation of the local 
Joukowski force at  the lifting line. In  fact, it is identifiable with the Trefftz plane 

-1 

- 
kinetic-energy loss, 

(C=E)Trefftz = -- 

being independent of the centrelinc geometry. This can be proven for a straight 
oblique wing, and has also been verified numerically for wings with curved centrelines 
to within 2 YO in the samples : (i) K = 0.2,SZ = 1.5, A ,  = 10, xA = 0, = - i 0.78, and 
Oio = 0, (ii) K = 1, $2 = 1.5, A,  = 10, xA = 0.2, ZAA = 0, and 8 = 0.6. 

5. Computation of power, thrust and efficiency : preliminary remarks 
Extensive computations of the lunate-tail performance were made by Chopra & 

Kambe (1977) for a variety of planforms, mostly in the frequency range 
corresponding to a relatively high = ICA,. The mode of oscillation considered was 
limited to heaving and pitching about a single pitch axis corresponding to  the rigid- 
plate mode of (6) with Oi, = ZA0 = 0;  a similar mode shape was assumed in the 
computational study by Lan (1979). Consequently, the proportional-feathering 
concept applies only to  a limited portion of the lifting surface, close to the pitch axis. 
In  fact, heaving of the (major) pitch axis corresponding to transverse peduncle 
motion is a necessary element of the motion, and a more uniform proportional- 
feathering distribution and together with a moderate peduncle movement may 
significantly enhance the performance ; their effects will be investigated with the 
mode shape defined by (6). The effect of centreline sweep on these performance 
measures will also be discussed. 

Propulsive efficiency is meaningful only if adequate thrust can be generated to 
overcome the resistance. The result of the efficiency calculation, such as T,I us. K or T,I 
vu8. Q, will therefore be carried out for a few fixed values of the thrust coefficient 
(C,). Since (C,) is obtained as an explicit function of 0, K ,  SZ, etc., maintenance 
of a constant (C,) implies a readjustment of 0 (or other parameters) for each 
different K or a. This is accomplished by applying the (C,,) formula interactively, 
at a computcr terminal. The values chosen for (C,) are typically 0.1, 0.3, and 0.6. 
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Note that the theory allows a (C,) as large as order unity. The Reynolds numbers 
in most examples of lunate-tail propulsion, to which the present theory [k = O(A;') 
4 11 applies, lie in the range lo4 < Re < lo6 which overlaps with the upper Re range 
for laminar-turbulent transition (Schlichting 1979). Although few data arc available 
for this Re range, one may nevertheless suppose that the boundary layer may still be 
laminar, in which ease the zero-lift drag coefficient CD0 = Drag/+pVS, of the airfoil 
(alone) may be closely approximated by that of a laminar flat plate with 2 x 1.33/Ref, 
provided boundary-layer separation does not occur upstream of the trailing edge. 
The realization of unseparated laminar boundary layers on well-designed airfoils has 
been described by Althaus (1980), where at Re = 2 x lo5, a minimum G, = 6 x 
corresponding to the laminar flat-plate result a t  the same Re is achieved for a NACA 
0009 section. Moreover, a number of dynamic stall studies (see McCroskey 1982, for 
a review) indicate that favourable unsteady motion may allow unseparated laminar 
flows at Reynolds numbers considerably beyond this range. While the skin friction 
might increase owing to a boundary-layer thickening, such an effect cannot introduce 
unit-order changes in skin friction, so long as the pressure and velocity perturbations 
remain small. 

The thrust coefficient required to overcome the parasite drag is 

where C'K) indicates the total parasite drag. Now, the ratio of the fin project)ed area 
S ,  to (cob)  is $ for the planform considered ((7) and (8)). Assuming (laminar) 
separation does not occur, and if B is taken to  be 0.12, the value of (C,.) required to 
produce a thrust to just overcome the parasite drag of the lifting surface alone is 0.60 
in this case. However, with an e twice or triple the value of 0.12, a thrust coefficient 
at (C,) = 0.60 will produce a thrust four or nine times the parasite drag of the fin 
and should suffice for propulsion and acceleration. We note that the laminar skin- 
friction coefficient for the body based on the wetted area is much less than that for 
the fin. Therefore CE)/CD0 is far less than A S ( ~ ) / X ~ ,  where is the total projected 
area. 

6. Results and discussion 
6.1. Lunate-tail performance : optimum sweep 

Tho first set of performance computations were made with lunate-tail models 
belonging to  the 'feathering case' where 0 is constant (uniform spanwise), with the 
study of the sweep effect on the propulsive efficiency at a fixed thrust coefficient as 
the main objective. The data will be plotted against K which is the averaged tangent 
of the centreline sweep angle for the lunate shape x, =Ky2. The centreline swecp 
increases x, in the function fi = x, -xA-iA, which, in turn, determines the local 
heaving displacement and hence may increase the efficiency without loss of thrust, 
as suggested by the quasi-steady two-dimensional theory, cf. (5a,  b) .  This 
performance enhancement should be most pronounced for cases involving small 
values of xA and i,, implying very limited movement of the peduncle. Although a 
relatively large PA is vital in the rigid case (Oi0 = .& = 0) to be studied later, the 
examples with small xA and i, will demonstrate that, with adequate sweep, a large 
peduncle movement is not strictly necessary. Note that with a li,l as large as unity, 
the physical dimension of the peduncle-displacement amplitude IiA/ = E b  remains 
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FIGURE 6. Propulsive efficiency q of parabolic h a t e  tail in the feathering case as a function of 
averaged sweep K for three thrust levels (C,) = 0.1, 0.3 and 0.6; a = 1.5, A,  = 10, xh/c' = 1/4, 
xA = -0.2, iA = 0. The proportional-feathering parameter 0 is uniform spanwise, but must be 
adjusted for different sweeps, K .  to maintain a constant thrust coefficient (Cg)) = 0.6 in the 
leading-order approximation. 

small compared with the half-span. Figure 6 presents the results of computations for 
three assigned values of (C,): 0.10, 0.30, and 0.60 over the sweep range 0 < K < 1 .  
I n  this set of calculations, the aspect ratio A, = 10, the reduced frequency SZ = kAl 
= 1.50, and z  ̂ - 0 but xA = -0.2. The local pitch axis is assumed to be at the 
quarter-chord line xk = ad .  The result for the set with xA = 0 is similar but the 
performance is considerably inferior. In order to maintain the same thrust in these 
cases, 0 must vary with K ,  as noted earlier, and values of 0 are marked periodically 
along these curves. 

The existence of an optimum sweep K depending on the thrust coefficient is clear. 
While the peak efficiency decreases somewhat with increasing thrust, the benefit of 
sweep is more noticeable a t  the higher (C,). For (C,) = 0.60, the efficiency remains 
abovc 0.8 over a broad range 0.5 < K < 1.0. 

Figure 6 also shows the results (dashed curve) computed for (C,) = 0.60 by using 
only the leading-order approximation (corresponding to the quasi-steady strip 
theory) for the thrust, i.e. (a=$')) = 0.60. The dashed curve gives an 7-value 
considerably higher than the corresponding results for (C,) = 0.60, and shows a 
trend of asymptotically increasing 7 with K ,  consistent with two-dimensional 
arguments noted earlier. The significant difference between the two curves not only 
demonstrates the importance of the three-dimensional and unsteady corrections, but 
also suggests that the three-dimensional corrections are responsible for reducing the 
thrust (at fixed 0) ; this would be consistent with the observed efficiency reduction 

A .- 
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FIGI-RE 7 Examination of adequacy of the asymptotic theory at four conditions, (n-d) respectively, 
shown as A, B, C and D in figure 6:  comparison with the doublet-lattice results of lift distributions 
at the same span-station, y = 0.575. A ,  = LO, Q = 1.5, x A  = -0.2, E A  = 0. (a)  8 = 0.278, K = 0.6; 
( b )  0 = 0.61. K = 0.4: (c) 0 = 0.943, K = 0.1 ; (d )  0 = 0.445, K = 1.0. 

a t  large K .  Computation confirms that the thrust corrections are all negative, which 
may be used to  construct a model analysis to  explain the existence of a maximum 7 
at  an optimum K ,  a t  least for a small (1--0) and (C,) (Cheng 1989). 

The existence of a minimum wake-energy loss resulting from a balance between 
the leading-order thrust and its three-dimensional correction shown above would 
suggest the breakdown of the asymptotic theory at the optimum and larger K .  A 
comparison of the surface pressure distributions obtained in CM84 with the 
corresponding data from the doublet-lattice method of Albano & Rodden (1969) 
allows us to test the adequacy of the theory in the range of large K .  This has been 
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(4 (4 
FIGCBE 8. (a) Swept wing with a V-shaped centreline. (6) Swept, wing with a V-shaped leading 

edge but a curved centreline. 

done for the cases corresponding to the three maxima A, B and C, as well as another 
case D, marked in figure 8. Representative results are given in figure 7, where the 
pressure coefficient is plotted against the normalized chord length. The full curve 
represents the theory of CM84, the open circles are the data from the doublet-lattice 
method and the dashed curve is from the quasi-steady two-dimensional theory. The 
real and imaginary parts of the pressure coefficient are designated by Re and Im 
respectively. Only the surface pressure distributions a t  the 57.5% span station are 
shown in each case. Despite the relatively large corrections for the A, B and C cases, 
the agreement with the doublet-lattice method is surprisingly good. In  case D where 
the three-dimensional correction a t  K = 1 is clearly excessive (figure 6), the 
asymptotic theory is apparently in need of improvement and this aspect will be 
discussed later. In  any event, the magnitude and solution behaviour given by the 
theory in figure 7 for case D may still represent an improvement over the quasi- 
steady two-dimensional result. 

6.2. Problems with V-shape tails ; the importance of peduncle movement 
We wish to compare the performance of a parabolic-shaped lunate tail to that of the 
V-shaped tail to determine the influence of the centreline curvature. However, a V- 
shaped centreline has an excessive, singular downwash a t  the apex, induced mainly 
by the bound vortex on the opposite side of the fin panel (figure 8a) .  This feature of 
the lifting-line theory has been discussed also by Cheng et al. (1981) in steady 
compressible flow and is believed to be the cause for the ‘middle effect’ of a flying 
wing aircraft (Horton & Selinger 1983). This excess downwash would cause an 
irregularity in the span load and on the flow, requiring the use of a higher real camber 
or a higher incidence at the wing root, as is evident from most modern swept-wing 
transport aircraft. Apart from its aerodynamic drawbacks, the downwash singularity 
also causes a local breakdown of the asymptotic theory. Here, we resolve the problem 
with a vanishing span load at the apex, i.e. Po) = 0 at y = 0, which amounts to 
requiring that zA = Z, = 0 (a frozen peduncle), or more generally (x, + Z,) = 0 for the 
V-shaped centreline z, = m,lyl. 

Note that the centreline of a planform with a pair of straight, swept leading edges 
is not necessarily of V-shape (see figure 8b) .  Many species in the order percomorphi 
with lunate tails appear to  possess similar trailing-edge contours. 

To provide a fair comparison of results with the two dissimilar centreline shapes, 
we first compare the V-shape with a parabolic shape having the same tip and major 
pitching axis locations as illustrated in figure 9(a).  This is equivalent to a parabolic 
shape with K = m, + xA, chosen so as to round-off the apex of the V-shape centreline. 
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FIGURE 9. Comparison of parabolic lunate and V-shaped centrelines in the feathering case: ( b )  
propulsive efficiency ?is. a sweep parameter m, at a fixed thrust coefficient (C,) = 0.60, Q = 1 .O, 
A ,  = 10, xh/c’ = 4, and 1, = 0. m, is the tangent of the sweep angle of the V-shaped centreline; the 
corresponding parabolic centreline is shown in (a,) for three values of m,. Xote that the tail tips 
coincide but the major pitch axis locations differ. 

The set of parabolic lunate planforms in figure 9 ( a )  assumes an m, dependence as xA 
= -+ma. The results of these two families are presented in figure 9 ( b )  as the efficiency 
r vs. the swcep parameter ma for the specified thrust coefficient (C,) = 0.60, for 
aspect ratio A, = 10 at the reduced frequency D = 1.0, with ;, = 0, x;l = id. The 
values of 8 required to maintain the specified thrust level are marked at successive 
points along the curves. On account of the rather high thrust level considered, the 0- 
values turn out to be far from unity. Note that no heaving of the major pitch axis 
is allowed for the parabolic lunate tail (iA = 0). The V-shaped fin results (dash curve) 
are apparently superior to  the parabolic shape (solid curve) for the same mo and 
promise high performance in the high sweep range rn, > 1. On the other hand, if the 
differences in the xA values of the parabolic family are ignored (xA is -0.128 and 
-0.167 a t  m, = 0.7 and 1, respectively), converting the curve q vs. ma to 7 11s. K should 
shift the parabolic h a t e  result reasonably closc to the case with xA = -0.20 shown 



Lurmtp-tail swimming propulsion. Part 2 

( K  = 0.4 

345 

< K = 0.8 

1 .o 

0.9 

0.8 

rl 

0.7 

0.6 

(4 
- Parabolic 

/ x, = -0.2 

i, = -0.2-0.2i 

x* = -0.2 

i 0.2 0.4 0.6 0.8 1 .o 
0 

K 

FIQURE 10. Comparison of parabolic and V-shaped centrelines in the feathering case : ( b )  propulsive 
effirienry vs. the average tangent of the sweep angle K a t  a fixed thrust (C,) = 0.60, SZ = 1.0, A ,  
= 10, x;/c’ = i, and fo = 0. Kote improvement in performance by allowing small changes in the 
major pitch-axis location and its heaving displarement, x, and f,. 
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FIQURE 11. Performance enhancement of parabolic h a t e  tails through properly tuned peduncle 
movement in the feathering case: 7 vs. K a t  fixed (C,) = 0.6 for four imaginary values off, and 
Re (ZA) = 0;  R = 1.5, A ,  = 10, x, = -0.2. Note, with a higher Tm (~9,). performance benefit of sweep 
becomes less apparent. 
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earlier. This suggests the alternative comparison shown in figures 10(a) and lO(b) ,  in 
which the two results (dashed and lower solid curves) are compared as 7 'us. K, with 
K now taken to be the averaged tangent of the sweep angle, assuming xA = -0.20, 
iA = 0 for the parabolic case. Not'c t'hat in this comparison, the fin tips of the two 
families no longcr coincide. Thus an evolution from the V-shape to the parabolic 
centreline, with a pitch axis located slightly anterior to the tail, may result in a 
performance enhancement in the moderate sweep and frequency domain K - 0.70 
and D - 1. 

Thc location xA = -0.2 in the parabolic case (solid curve) is equivslcnt to a 
peduncle heaving displacement wit,h Re (2,) = -0.2, and thus favourable effect of 
peduncle movement suggests that a still more effective enhanccrnent might be 
achieved with the deployment of both parts of iA. The rcsult of setting bA 
= -0.2( 1 + i )  in addition to xA = -0.2 is presented as the upper solid curve in figure 
10 ( 6 ) .  This enhancement with a relatively small peduncle movement is not entirely 
unexpected, if one recalls the dependence of (C,) on lfi12 and the manner in which 
xA and 2, affect H (equations (9),  (19)). We also note that the efficiency curves in 
figures 9 ( h )  and 10 (6) are generally lower than those in figure 6, which were computed 
for a higher reduced frequency (a = 1.50). 

To ascertain t,he significant influence of the peduncle displacement ẑ , on a lunate 
tail, we present the results with Im (ZA) = k0.70 in figure 11 where results with Im 
(i,) = 0 and -0.2 are also shown. The performanee enhancement through Im (2,) is 
indeed large. Apparently, with the relatively large value of lXAAl = 0.70, the optimum 
sweep is so small that practically any sweep (K > 0) t>ends to reduce the efficiency. 
In  this instance, '1 is rather high (q = 0.90-0.95) for moderate sweep (K < 0.50), and 
t,he case with a negative Im (2,) is superior in maintaining 7 > 0.90 for all K < 1.0. 

In order to maintain high propulsive efficiencies, the development of a V-shaped 
tail should be accompanied by reduced peduncle motion (or its equivalent : xA + b, 
= 0) and increascd sweep angles. The condition z,+2, = 0 implies either a zero 
phase lag for x, < 0, or a 180' phase lag for xA > 0 for the peduncle motion of a V- 
shaped fin. It remains to be seen whether this is true of real life. Also, according to 
this performancc analysis, the reduced sweep of a parabolic lunate tail may be 
compensated for by an increased amplitude of peduncle motion ; conversely, 
increased sweep angles enable high efficiencies to be maintained in the presence of 
constraint,s on t,he peduncle motion. 

6.3. Comparisons with the rigid-plate oscillatiori 
Figures 8, 9, and 11 assume that the peduncle movement is not restricted by 
physiological or structural constraints. If iA = 0(1), i.e. x, = O ( d )  a t  x = x,, is 
permitt,ed, even a rigid plate, in heaving and pitching about a single axis, may 
perform impressively with appropriate tuning of the relative phase and pitch-axis 
location. The proportional-feathering concept may still be useful in this case, but is 
relevant only over the fin area close to the pitch axis x = x, (figure 12). Proport,ional- 
feathering control will clearly depend on the centreline sweep and the pitch-axis 
location ; thus for x, = 0, proportional feathering applies more effectively to  an 
unswept fin than to  one with K $. 0. For zA > 0, on the other hand, performance may 
be enhanced by the sweep. 

With 4, = z",, = 0 in this rigid case, the functions H and 0 become 
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FIGURE 12. Illustration of regions on h a t e  tails in rigid-plate mode (shaded areas) over which 
concept of proportional feathering remains applicable. Extent of the (shaded) region depends on 
pitch-axis location and planform. 

Note that H and 0 are both necessarily non-uniform spanwise here. At the pitch axis 
(x = xA), the proportional-feathering parameter is 0 = 0, = -i/Qz",. Therefore, 

Re (0) = Re (0,) = - 1/(QIm (iA)).  (26) 

From two-dimensional analysis, Lighthill (1970) showed that Re (0)  must be positive 
and less than one for thrust generation. Consequently, in (26) Im (iA) is negative, and 
the peduncle movement must lag behind that of the pitch of the rigid fin. Efficient 
propulsion can be achieved in this case only if iA can be brought sufficiently close to 
-i/Q. If the peduncle were frozen (i.e. if P A  = 0), 0 becomes i/Q(z,-x,) and would 
be far from unity, when propulsion is not expected to be efficient. 

Figure 13 presents the results of a performance analysis for the family of oscillating 
rigid lunate plates with x, = Ky2,A,  = 10 at reduced frequency $2 = 1.50, allowing 
Im (2,) 4 0. To make a meaningful comparison with one of the feathering cases 
considered earlier in figure 11, the results are plotted as curves of 7 vs. K for the fixed 
thrust coefficient (CT) = 0.60. We take Re (i,) = 0, since the latter can be absorbed 
into the axis location x,. Four curves corresponding to four different axis locations, 
xA = -0.2,0, 0.15 and 0.30, are shown. The only remaining mode-shape parameter 
is Im (iA) which is adjusted to maintain (C,) = 0.60 as K changes. These required 
values of Im (2,) are marked along the curves. Except when 5, < 0, there exists an 
optimum value of K which increases with xA, from K = 0 for X, = 0 to K = 0.6 for xA 
= 0.30. This is consistent with the observations made in figure 12. The efficiency, 7, 
reaches 0.95 a t  xA = 0, while Im (52,) varies from -0.617 to -0.79. Here, the values 
- l/(Q Im (iA)) are indeed close to unity, as may be expected for a high efficiency. 
The peak efficiency, 0.95 in this case, is only slightly lower than that of the 
corresponding curve in figure 11 for the feathering case a t  the same (C,) = 0.60, 
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FIGURE 13. Propulsive efficiency of parabolic lunate tail in the rigid-plate mode as functions of the 
averaged sweep parameter K at a fixed thrust (C,) = 0.60 for four different pitch-axis locations: 
$2 = 1.5, A ,  = 10, and Re(i,) = 0. Kote that the imaginary part of the ẑ , in this case must be 
adjusted for each K to maintain a constant thrust. 

although the y in figure 11 with comparable Im (2,) deteriorates with large K a t  a 
much lower rate and 7 is considerably higher for K away from K = 0. 

The foregoing analysis confirms the apparently interchangeable roles of sweep and 
peduncle movement in providing adequate heaving displacement a t  each local span 
station so as to reduce the value, or the averaged value, of (1  - 0). When a sizeable 
transverse displacement a t  the peduncle of the order ( ~ b )  is allowed, and properly 
tuned, the sweep is no longer required and, for a rigid fin, sweep even causes a 
deterioration in performance. If, on the other hand, additional constraints favour a 
stiffer posterior body movement, hence a smaller Im (iA), the sweep can be used to 
augment the heaving action at the local span stations. This can be realized with the 
help of additional pitching about a local curved axis. The feathering case considered 
here is but one of such examples ; comparable results may be realized in nature by 
passive structural response. Note that our feathering case with a spanwise uniform 
0 is not the result of an optimum three-dimensional analysis. It is for these 
feathering cases with a constricted peduncle movement (small Im (ia)) that the 
sweep is seen to play a beneficial role. It may be added that the performance of a 
flexible lunate tail may be enhanced further by relaxing values of xA or Re (z”,) to the 
negative range of the unit order. 

The results in figure 13 are in qualitative agreement with the earlier study of 
Chopra & Kambe (1977), which treated only mode shapes corresponding to  the rigid 
cases at high reduced frequencies. Yates (1983) has compared the numerical model 
results of Chopra & Kambe (1977) using experimentally determined morphological 
and kinematic data for porpoise (Lagenoryncus obliquidens) and kawakawa 
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(Euthynnus afinis), and has noted that the calculated values of thrust and efficiency 
were likely to  be upper bounds, and this observation is well supported by the results 
presented here. There remains a need for more precise field data before an 
independent evaluation of some of the more detailed model predictions may be 
attempted. 

7. Discussion and conclusions 
The present study underlines the importance of three-dimensional and unsteady 

corrections to the earlier two-dimensional results (Lighthill 1969, 1970). The two- 
dimensional theory neglects the trailing vortices which represent a major portion of 
the vortex wake in the frequency domain considered, and hence yields a higher 
propulsive efficiency. 

The importance of the parameter 9, representing a generalization of Lighthill’s 
proportional-feathering parameter, is identified, and the sweep and curvature effects 
of the centreline on the propulsive efficiency of a lunate-tail planform have been 
ascertained. In the feathering case, where the local pitching angle varies along the 
span in a special way, an optimum sweep can be obtained a t  each thrust level (and 
for each peduncle displacement amplitude) by varying the proportional-feathering 
parameter. The corresponding optimum efficiency may be further enhanced by 
moderately increasing the heaving amplitude of the major pitch axis (peduncle) as 
long as the assumption of small perturbations remains adequate. However, an 
increase in the heaving amplitude of the peduncle decrcases the value of the optimum 
sweep until the latter becomes zero. Using the results obtained for a V-shaped 
centreline (zero curvature) with a frozen peduncle or its equivalent (xA + 8, = 0) as 
a baseline, the propulsive efficiency generally improves with centreline curvature, 
and this improvement is further enhanced in cases involving peduncle motion. 

In  the rigid case, whcrc the local pitching angle Oi, = 0, thc propulsivc efficiency is 
high for an unswept fin and quickly deteriorates with increased sweep, at a rate 
higher than that for the feathering case. 

Certain biological implications and interpretations of this performance analysis 
may be advanced, whilst still leaving in mind the restricted domain of the 
asymptotic analysis. If one postulates a tendency in carangiform evolution towards 
increasingly restricted motion of the caudal peduncle, in the interests of reducing 
wake-energy losses, for example, then the increase in sweep angle of the tail appears 
as a design option to compensate for the reduced peduncle heaving amplitude. 
However, a simple swept-back arrangement such as a V-shaped centreline carries 
with it a penalty of excessive upwash a t  the centreline (in the symmetry plane), 
unwelcome both in practical and analytical terms. This may be avoided either by 
unloading the wing at  the centreline, or by rounding off the apex of the V here. The 
latter option will modify the V-shaped wing/tail towards the characteristic crescent- 
moon shape of the lunate tail. Alternatively, the frozen peduncle condition 
(equivalently, x,+X”, = 0) permits a V-shaped centreline, provided that the sweep 
angle is sufficient (m, 2 1) to maintain reasonable propulsive efficiencies without loss 
of thrust. Although non-negligible lateral peduncle motion may be observed in V- 
shaped-tailed fish (e.g. Webb 1975), sufficient data are not yet available to  determine 
whether adherence to  the condition xA + iA = 0 is indeed (inversely) correlated with 
centreline curvature. It should be noted that large-amplitude tail motion found in 
nature may exceed the range of the present asymptotic theory, which can treat with 
confidence only a relatively small transverse displacement, i.e. z, = O(d)  = O(c,). 
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However, according to theoretical and experimental two-dimensional studies 
(Chopra 1976; Katz & Weihs 1978; Oshima & Natsume 1980), the magnitude of 
corrections needed for large amplitudes in the frequency domain of interest appears 
to be rather limited. A systematic nonlinear correction to  the linear theory might 
thus bc able to  account for the finite-e effect. 

Further useful parametric studies remain, particularly with regard to the peduncle 
displacement iA, the centreline geometry x,(y), the distribution of the proportional 
feathering O(y'), and their optimization with various constraints. More extensive 
studies on the rigid-plate mode, which promises an impressive performance with 
relatively simple kinematic and structural requirements, are of great interest. 
Equally and perhaps more important is to ascertain whether the performance of a 
flexible h a t e  tail may be enhanced by the further tuning of the peduncle motion iA, 
and at higher thrust coefficients. 

The analysis may be extended to ornithopter mode propulsion following a 
relatively simple modification of the mode in (6) to include wing flapping, in which 
case a comparison with the experimental data of Archer, Sapuppo & Betteridge 
(1979) and with the unsteady lifting-line model of Phlips, East & Pratt (1981) would 
be of interest. A preliminary investigation (Cheng 1989) for the case of a straight, 
unswept centreline indicates that significant performance enhancement due to 
unsteady effects may be realized, compared with an equivalent quasi-steady 
analysis, such as that of Jones (1980). 
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