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The stability of low Reynolds number airfoil flow in a confined domain, resembling the

test section of a wind tunnel, is investigated computationally for a cambered NACA 65(1)-412

compressor blade. Compressible Navier-Stokes simulations of the blade flow at 4◦ and 8◦

of incidence are compared for slip-wall and free-stream boundary conditions to evaluate the

effect of pressure waves induced by vortex shedding, including the effects of reflections on wind

tunnel walls. The domain size, blockage and type of boundary condition are shown to have a

substantial impact on the shape of the laminar separation bubble and the wake for an angle of

attack of 8◦ of incidence, while the flow is nearly indifferent to these factors at 4◦ of incidence.

For the former, the interaction of the reflected pressure waves from the walls with the laminar

separation bubble at the leading edge of the airfoil drives the shear instability and accelerates

the vortex shedding, resulting in a reduction of the laminar separation bubble length. At 4◦

of incidence, a reoccurring interference pattern in the reflected pressure waves results in local

increase and decrease of pressure and skin-friction fluctuations on the airfoil surface, as well as

a more irregular vortex shedding. Despite having a strong effect on the flow topology, the wall

boundaries change the aerodynamic forces only by 5% at most at these low incidence angles.

I. Nomenclature

�3 = drag coefficient

� 5 = skin friction coefficient

�; = lift coefficient

�? = pressure coefficient

2 = chord

4 = internal energy

F = flux vector

ℎ' = reverse flow height

" = Mach number

# = polynomial order

? = pressure

%A = Prandtl number

'4 = Reynolds number

') = temperature ratio

( = Sutherland constant

C = time

) = temperature

U = vector of conserved variables
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D, E, F = velocity components

*' = normalized reversed tangential velocity

G, H, I = Cartesian coordinates

H+ = wall coordinate

W = ratio of specific heats

X∗ = displacement thickness

^ = thermal diffusivity

d = density

g = stress tensor

AOA = angle of attack

LSB = laminar separation bubble

'3.5, '30 = domain radius reference

RMS = root mean square

II. Introduction

A
irfoil flow at low to intermediate Reynolds numbers (Re) is governed by boundary layer separation, reattachment

and transition to turbulence – processes that can result in significant and sudden changes of the aerodynamic forces

acting on the body. The Reynolds number range 104 ≤ Re ≤ 105 is generally characterized by an initially laminar

boundary layer, separation upstream of the trailing edge and transition to turbulence. Depending on where this transition

occurs, the flow can reattach and form a laminar separation bubble (LSB). Accurate prediction and control of such flow

events is of principal interest when operating aerodynamic devices at moderate Reynolds numbers and high-fidelity

benchmark data, both experimental and numerical, are at the foundation to solve this problem.

Capturing the highly non-linear dynamics of the transition process, however, is challenging. Results of experiments

collected at different test facilities can differ significantly and experiments at low Reynolds number do not match with

DNS results in literature [1]. As remarked many years ago [2], the highly sensitive nature of the complex transitional

flows over airfoils at low Reynolds number is likely responsible for continuing disagreements in the otherwise mature

field of airfoil and wing aerodynamics for higher Reynolds number.

While the NACA 0012 is a canonical test case for airfoil flows [1], in engineering applications one usually encounters

cambered airfoil profiles that generate optimal performance for a given operating condition. In turbomachinery, for

example, the blades in axial flow compressors are commonly selected from the NACA 65-series [3, 4] or Eppler series.

Compressor blades owe their shape to the adverse pressure gradient against which they operate and their slender profile

and small camber allows the flow to remain attached over most of the airfoil under operating conditions. If, however, the

flow conditions deviate from the design point, forces induced by boundary layer separation, transition, and reattachment

can change rapidly and become difficult to predict [5].

Direct Numerical Simulations (DNS) produce very accurate time and space resolved datasets and are an excellent

tool to benchmark the transitional airfoil flow at moderate Reynolds numbers [6]. They are, however, computationally

expensive and generally conducted on small domains without accounting for the surrounding environment [7–9]. At low

Reynolds numbers, flow separation and transition to turbulence, are particularly sensitive and small changes in the angle

of attack can bifurcate the flow field easily and counter-intuitively [5]. For example, acoustic feedback from instability

waves originating from the vortex shedding at the trailing edge have been found by Jones et al. [8] to induce a global

instability for a NACA 0012 at a Mach number of " = 0.4.

In this paper, we investigate the impact of pressure reflections on the instantaneous and mean properties of the

transitional flow around a generic compressor blade (NACA 65(1)-412) in a domain with horizontal slip-wall boundaries.

Angles of attack of 4◦ and 8◦ at a chord-based Reynolds number '42 = 2× 104 and Mach number " = 0.3 are computed

using a discontinuous-Galerkin spectral element method [10, 11]. Results from simulations with horizontal slip walls

are compared to solutions with free-stream boundaries on the same domain, as well as free-stream computations on a

large domain, to isolate the effects of the reflected waves.
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III. Governing Equations

A. Conservation Laws

We compute solutions to the compressible Navier-Stokes equations, which can be written in non-dimensional form

as the system of equations

mCU + ∇ · F = 0. (1)

In (1), U represents the vector of the conserved variables,

U = [ d dD dE dF d4 ]) . (2)

The flux vector F is split into an advective (superscript a) and a viscous part (superscript v),

∇ · F = mGF0 + mHG0 + mIH
0 − 1

'4 5

(

mGFE + mHGE + mIH
E
)

, (3)

where

F0
=
[

dD ?+dD2 dDE dDF D(d4+?)
])

,

G0
=
[

dE dED ?+dE2 dEF E(d4+?)
])

,

H0
=
[

dF dFD dFE ?+dF2 F(d4+?)
])

,

(4)

FE
=

[

0 gGG gHG gIG DgGG+EgHG+FgIG+
^

(W − 1) %A"2
5

)G

])

,

GE
=

[

0 gGH gHH gIH DgGH+EgHH+FgIH+
^

(W − 1) %A"2
5

)H

])

,

HE
=

[

0 gGI gHI gII DgGI+EgHI+FgII+
^

(W − 1) %A"2
5

)I

])

.

(5)

d, D, E, F, ?, and ) are the density, velocities, pressure, and temperature respectively. The specific total energy is

d4 = ?/(W − 1) + 1
2
d(D2 + E2 + F2) and the system is closed by the equation of state,

? =
d)

W"2
5

. (6)

All quantities are non-dimensionalized with respect to a problem specific reference length, velocity, density, and

temperature yielding the non-dimensional Reynolds number, '4 5 and Mach number, " 5 .

We approximate the system, (1), with a discontinuous Galerkin spectral element method (DGSEM). Details can be

found in [10, 11] and will not be discussed here.

IV. Setup
The flow over a NACA 65(1)-412 airfoil is simulated in two dimensions at a chord-based Reynolds number of '42 =

2 × 104 and a free-stream Mach number of " = 0.3. At this Mach number, the compressibility effect on the pressure

coefficient are expected to be of the order of 5% in relation to incompressible flow, according to the Prandtl-Glauert

correction �?,"/�?,8 = 1/
√

1 − "2. A Prandtl number of Pr = 0.72, Sutherland constant ') = (/) 5 = 110/200, and

ratio of specific heats W = 1.4 are chosen in accordance with Nelson [12].

The Navier-Stokes equations are solved using a discontinuous Galerking spectral element method (DGSEM)

[10]. The conservative variables (2) are spatially approximated on a # th order polynomial basis and collocated on

Legendre-Gauss quadrature nodes. A fouth-order explicit Runge-Kutta adaptive time-stepping scheme [13] is used with

time step sizes ranging between 8.2 × 10−6 ≤ ΔC ≤ 1.3 × 10−5. A Riemann solver is used to sort out the characteristics
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(a) '30 (c) '3.5

Fig. 1 Overview of computational domains: (a) Large domain with boundaries 30 chord lengths away from

airfoil ('30). (b) Narrow domain with boundaries 3.5 chord lengths away ('3.5) and airfoil at incidence of 8◦.
Only elements without interior Gauss nodes are shown.

at all boundaries [14, 15]. To account for the curvature of the airfoil, the boundary elements are curved and fitted to a

spline representing the airfoil’s surface according to Nelson et al. [16].

To model the flow in confined geometries, such as the test section of a wind tunnel, a narrow computational domain

with transverse boundaries at ±3.52 and wake length of 20 chord lengths is chosen. For the NACA 65(1)-412 at 4◦

and 8◦ incidence, the geometric blockage ratio is 1.8% and 2.5%, respectively. The results are compared to reference

solutions of free-stream simulations on a large domain with boundaries 30 chord lengths away from the wing.

The computational domains are presented in Fig. 1. In Fig. 1 (a), the large domain of the reference solution is

plotted. The mesh consists of 3366 quadrilateral elements and has been shown to give a converged solution for a

polynomial order of 12 at an inflow angle of 4◦ and Reynolds number '42 = 2 × 104 [16]. The domain is rapidly

stretched towards the outflow boundary and pressure damping [15] is gradually increased from G/2 = 12 to G/2 = 16 to

reduce spurious reflections from vortices entering the low-resolution region. Consistent with Nelson et al. [16], we use

a polynomial order of # = 12 in simulations with angle of attack of 4◦ but a higher order of # = 18 for AOA = 8◦ to

provide sufficient resolution at the airfoil’s leading edge.

The computational grids used for simulations with higher blockage is given in Fig. 1(b) with the airfoil at 8◦

incidence. A similar domain is used for simulations at AOA = 4◦. 20,640 and 22,102 quadrilateral elements provide

high resolution around the airfoil and along the wake and allow for computations at a lower polynomial order of # = 6.

Free-stream conditions are used at the inflow and outflow boundaries, and a pressure damping layer of 5 chord lengths is

employed to reduce spurious reflections from vortices leaving the domain. The transverse boundaries are set either as

free-stream or slip-wall conditions and the airfoil surface is approximated as no-slip adiabatic wall.

All simulations are run for at least 50 convective time units to reach quasi-steady state and statistics are subsequently

computed over 30 convective time units.

V. Results and Discussion

A. AOA = 4◦

The time-averaged streamline pattern and contours of the velocity |u| are presented in Fig. 2. At 4◦ incidence, the

flow is characterized by the separation of the shear layer at mid-chord (G/2 = 0.5) and formation of a long recirculation

region without reattachment to the airfoil surface. Vortices shed periodically from the pressure and suction side and

form a Von-Karman-type vortex street behind the wing. Details of the flow can be found in [16, 17].

Figure 3 shows plots of the instantaneous pressure coefficient in the range from -0.1 < �? < 0.1 on the left, which

corresponds to approximately 10% of the stagnation pressure coefficient. On the right panel, RMS values obtained

from statistics over 30 convective time units are presented. All cases show pressure waves radiating from the airfoil’s

trailing edge, which in the case of free-stream boundaries freely leave the domain (Fig 3a,c), but are reflected when slip

walls are used (Fig 3b). Most noticeably, the pressure reflections lead to wave interference that result in a checkerboard

interference pattern upstream, as well as above and below of the wing. In the wake, the pressure wave fluctuations
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Fig. 2 Averaged absolute velocity contours |u| and streamlines at '42 = 2 × 104 and AOA = 4◦.

appear in the form of elongated streamwise structures that travel downstream.

The wake flow is governed by a regular vortex street that extends approximately 5 (slip-wall), 7 (free-stream, '3.5)

and 9 (free-stream, '30) chord lengths behind the wing before it becomes unstable and breaks up. The dispersion of the

vortex street is quantified by analyzing the pressure coefficient RMS field in Fig. 3(b,d,f), which shows an earlier spread

at slightly higher rate for the case with slip-wall boundaries as compared to free-stream simulations on the same domain.

The pressure RMS field shows a similar wave interference pattern as observed in the instantaneous field, indicating that

the interference pattern is reoccurring.

The impact of the wave reflections on the aerodynamic forces on the wing is assessed by means of lift, drag, pressure

and skin friction coefficients in Fig. 4–6 and tabulated in Table 1. The time history of the lift and drag coefficients

is governed by the shedding of vortices from the airfoil’s trailing edge and shows fluctuations around a mean. The

shedding is highly regular in case of free-stream conditions but becomes irregular if pressure waves are reflected from

the boundaries. This pattern is reflected in the RMS values of the lift and drag coefficients, which increase from 5% to

6% of the time-averaged solution (Table 1). All cases show a dominant peak in lift spectrum at a Strouhal number of

(C = 5 2/*∞ = 2.8 (see Fig. 5), but the pressure reflections in case of slip-wall boundaries result in several additional

low-frequency peaks that point to the higher irregularity shown in Fig. 4.

Apart from the irregular fluctuations, the case with walls along the horizontal boundaries shows a 4% higher average

lift coefficient than the equivalent simulation with free-stream conditions. When compared to the reference solution in

the large domain, the difference reduces to 1%. The averaged drag force is affected by 1% at most. As shown in Fig.

6(a), this change is driven by a difference in the pressure coefficient at the leading edge: simulations with slip-wall

boundaries show nearly identical values of �? as given by the reference solution, whereas the narrow domain with

free-stream boundaries deviates by 6%. The close proximity of the free-stream boundary appears to force the flow in the

latter case.

RMS values of the pressure and skin friction coefficients are presented in Fig. 6(c–d). While both free-stream

solutions show an identical RMS pattern, the slip-wall boundaries show increased fluctuation levels towards the trailing

edge and point to the irregular vortex shedding pattern presented in Fig. 4. Notably, the pressure coefficient RMS of the

slip-wall case shows a local minima at G/2 = 0.3 and is 37% lower than compared to the free-stream solutions. While

this result seems surprising at first, given the overall high levels of pressure fluctuations in the domain, the RMS(�?)

contours in Fig. 3(d) show a distinct interference pattern with a narrow region of low levels ranging from the airfoil’s

suction side vertically to the upper wall boundary. The reoccurring interference of pressure waves can therefore be

attributed to the local minima 6(c). The RMS plots reveal another effect: although the averaged skin friction distribution

is nearly identical (Fig. 6b), fluctuation levels at the asymptotic separation point, i.e. the time-averaged zero-skin-friction

point, are actually reduced by 15% for the case with slip-walls as compared to the free-stream boundaries. This effect

can be attributed to local minima in pressure fluctuations upstream of the separation point, as discussed previously.

Impinging pressure waves from the boundary have therefore only little, if any, effect on the stability of the separated

shear layer. Although the pressure reflections perturb the regularity of the vortex shedding, they do not induce a

large-scale instability in the separated shear layer.
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(a) �? , free-stream '3.5 (b) RMS(�?), free-stream '3.5

(c) �? , slip-wall '3.5 (d) RMS(�?), slip-wall '3.5

(e) �? , free-stream '30 (f) RMS(�?), free-stream '30

Fig. 3 Instantaneous pressure coefficient and corresponding RMS values in the wake of two-dimensional

simulations for free-stream and slip-wall boundaries. '3.5 and '30 correspond to to the vertical height of the

domain size. AOA = 4◦.
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(a) Lift coefficient (b) Drag coefficient

Fig. 4 Lift and drag coefficients over 5 convective time units for free-stream and slip-wall boundaries. AOA =

4◦.
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(a) Lift spectrum (b) Detail plot

Fig. 5 Energy spectrum of the lift coefficients over 30 convective time units for free-stream and slip-wall

boundary. (a) Full spectrum and (b) detail plot. AOA = 4◦.
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(a) Pressure coefficient (b) Skin friction coefficient (suction side)
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(c) Pressure coefficient RMS (suction side) (d) Skin friction coefficient RMS (suction side)

Fig. 6 Time-averaged pressure (a) and skin friction (b) coefficients for free-stream and slip-wall boundary.

RMS values for suction side given in (c) and (d). AOA = 4◦.
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Table 1 Lift and drag coefficients for AOA = 4◦.

Boundary �̄; �;,A<B �;,A<B/�̄; �̄3 �3,A<B �3,A<B/�̄3

Free-stream '3.5 0.449 0.022 4.8% 0.055 0.0028 5.1%

Slip-wall '3.5 0.468 0.030 6.3% 0.055 0.0033 6.1%

Free-stream '30 0.463 0.022 4.8% 0.055 0.0029 5.4%
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Fig. 7 Averaged velocity contours |u| and streamlines at '42 = 2 × 104 and AOA = 8◦.

B. AOA = 8◦

At 8◦ incidence, the separation point of the shear layer has moved to the leading edge of the airfoil and a laminar

separation bubble (LSB) has formed (Fig. 7). As the separated shear layer becomes unstable (Kelvin-Helmholtz

instability), the unsteady shedding of vortices results in the reattachment of the streamlines in the averaged flow field.

Contrary to the flow at AOA = 4◦, the reattachment downstream of the LSB leads to pressure recovery towards the

trailing edge and the reduction of form drag. This state is thereby characterized by high lift and low drag forces [18].

The instantaneous pressure fields are presented on the left in Fig. 8 and the corresponding RMS fields from flow

statistics over 30 convective time units are shown on the right. The flow in the narrow ('3.5) domain with free-stream

conditions along the outer horizontal boundaries has developed a narrow vortex street in the wake of the airfoil which

only slowly disperses approximately seven chord lengths behind the wing (Fig. 8a–b). The pressure fields show a

notable bending of the wake as vortices are initially forced in an upward motion before they move back to the centerline

and advect horizontally towards the domain exit. With slip walls along the horizontal boundaries, the wake shows a

highly irregular pattern with a much increased spreading rate. Although a general trend of the upward motion of the

vortices is still present, they no longer follow the same distinct pattern observed in the computations with free-stream

boundaries on the narrow domain. Surprisingly, the reference solution of the flow in the large domain (Fig. 8e–f) is

governed by similar wake dynamics as found in the case with slip walls, as the wake shows an irregular pattern of

vortex shedding, even though pressure waves can freely leave the domain. This result indicates that the proximity of the

free-stream condition in the '3.5 domain has a strong impact on the solution.

The regularity of the respective wakes is reflected in the time history of the lift and drag coefficients (Fig. 9 and

Table 2). The slip-wall computations show a large increase in the fluctuation levels of the aerodynamic forces that reach

20% of the time-averaged drag coefficient and 7% of the lift. The corresponding spectra are plotted in Fig. 10. In case

of the small domain with free-stream boundaries, the spectrum shows two distinct peaks: a dominant peak at a Strouhal

number of (C = 2.2 and a small peak at twice that frequency. The other two cases are characterized by a broad spectrum

with several peaks in accordance with the chaotic vortex shedding. The spectrum of the case with slip walls has an

overall higher energy content, corresponding to the higher amplitude of the force oscillations shown in Fig. 9.

The force fluctuations, driven by the vortex shedding over the airfoil and the trailing edge, indicate that the deviations

of the wake shapes derive from differences in the generation of vortices from the separated shear layer over the wing.

Instantaneous plots of the vorticity, pressure and skin-friction coefficients are shown in Fig. 11 from simulations in the

narrow domain ('3.5). The figures demonstrate that a strong adverse pressure gradient at the leading edge of the airfoil

leads to the separation of the shear layer in both cases. As the separated flow becomes subject to Kelvin-Helmholtz (K-H)

instability, the shear layer rolls up into right-turning vortices (blue). While the bottom shear layer remains attached, it

forms a strong left turning vortex (yellow) as it sheds from the trailing edge and interacts with vortices from the suction

side. The instantaneous plots (Fig. 11a–b) show that in the case of free-stream boundaries, a total of three vortices are

present on the suction side, as indicated by local minima in the pressure coefficient. If the flow is confined between

slip-wall boundaries, however, the vorticity and pressure plots indicate that the number of vortices has increased to five.

The difference in the vortex shedding pattern, driven by the instability of the separated shear layer, is clearly reflected

in the time-averaged pressure and skin friction distributions in Fig. 12(a–b). At the leading edge, the pressure coefficient

shows a difference of 5% between the cases, where the simulation on the narrow domain with free-stream conditions

yields a distinctly lower value than the other two cases. This effect was reversed for the flow at 4◦ incidence, where the

narrow domain with free-stream conditions lead to a higher pressure. Consistently, the pressure distributions of the flow

between slip walls and the '30 reference solution match closely.

The skin-friction coefficient, on the other hand, displays larger deviations throughout the cases and indicate different

sizes of the laminar separation bubble, based on zero-crossings of the wall shear stress. Most noticeably, the LSB ranges
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(a) �? , free-stream '3.5 (b) RMS(�?), free-stream '3.5

(c) �? , slip-wall '3.5 (d) RMS(�?), slip-wall '3.5

(e) �? , free-stream '30 (f) RMS(�?), free-stream '30

Fig. 8 Instantaneous pressure coefficient and corresponding RMS values in the wake of two-dimensional

simulations for free-stream and slip-wall boundaries. '3.5 and '30 correspond to to the vertical height of the

domain size. AOA = 8◦.
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(a) Lift coefficient (b) Drag coefficient

Fig. 9 Lift and drag coefficients over 5 convective time units for free-stream and slip-wall boundary. AOA =

8◦.
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0

0.01
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0.03

Fig. 10 Energy spectrum of the lift coefficients over 30 convective time units for free-stream and slip-wall

boundary. AOA = 8◦.

(a) Free-stream (b) Slip-wall

Fig. 11 Instantaneous plots of vorticity, pressure and skin friction coefficients on the suction side for free-stream

(a) and slip-wall boundary (b). Domain: '3.5. AOA = 8◦.
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(c) Pressure coefficient RMS (suction side) (d) Skin friction coefficient RMS (suction side)

Fig. 12 Time-averaged pressure and skin friction coefficients for free-stream and slip-wall boundary. AOA =

8◦.

from the leading edge until G/2 = 0.46 for free-stream boundaries and G/2 = 0.65 for slip walls on the narrow domain

(Fig. 12b). Corresponding to the local minima of � 5 upstream of the reattachment point, the pressure distributions

indicate a similar shift of the local dent.

The large differences of the flow topology in the case of free-stream boundaries in the narrow '3.5 domain as

compared to the other two solutions suggests that the proximity of the boundaries significantly forces the flow and results

should be interpreted carefully. Comparing the averaged solutions of the flow between wall boundaries and the reference

solution in the large domain, the pressure reflections result in a reduction of the LSB length by approximately 0.052 or

9% and approximately 70% higher levels of fluctuations in the bubble. As the suction-side vortices are generated by a

K-H instability in a strong adverse pressure gradient, their formation is accelerated by perturbations from reflected

pressure waves impinging on the shear layer and resulting in the shortened bubble length and higher levels of fluctuations

within the LSB. As a result, the aerodynamic forces show a much higher irregularity than for the case of free-stream

boundary conditions (Table 2).

In laminar separation bubbles, the stability is linked to the reverse flow levels where Alam and Sandham [19] have

shown that a reverse flow velocity *' of 15-20% of the local boundary layer edge velocity is necessary to develop an

absolute stability. For values below this threshold, the instability is assumed to be of convective nature or linked to

three-dimensional modes [20, 21]. For the flow over NACA 0012 at '42 = 5 × 104, Jones et al. [7] report reverse flow

levels of 15.3% for three-dimensional DNS and 22.2% for two-dimensional simulation. Because the reverse flow levels

quantifying the tendency of the flow to become unstable and transition to turbulence, we evaluate the time-averaged

tangential velocity component within the LSB and normalize it by the local boundary layer edge velocity (Fig. 13). The

boundary layer edge is determined according to the methodology used by Uranga et al. [22], where irrotational flow is
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Table 2 Lift and drag coefficients for AOA = 8◦.

Boundary �̄; �;,A<B �;,A<B/�̄; �̄3 �3,A<B �3,A<B/�̄3

Free-stream '3.5 0.984 0.026 2.6% 0.058 0.0049 8.5%

Slip-wall '3.5 0.976 0.067 6.9% 0.060 0.0120 19.9%

Free-stream '30 0.963 0.038 3.9% 0.057 0.0073 12.7%

Table 3 Normalized reverse flow velocities *'. AOA = 8◦.

Free-stream '30 Slip-wall '3.5 Free-stream '3.5

6.2% 5.1% 1.2%

assumed outside the boundary layer and the vorticity and the vorticity gradient being below a threshold.

The values of the reverse flow are tabulated in Table 3. While all reverse flow levels are well below 10%, the

simulations conducted on the large ('30) computational domain shows the highest recirculating velocity magnitude of

6.2%. The very low level of 1.2% for the case of free-stream boundaries in the '3.5 domain provides an explanation

for the regularity of the aerodynamic forces and the vortex street: the proximity of the upper and lower free-stream

boundaries in the '3.5 domain force the flow towards the horizontal unit velocity vector, thereby reducing the height

of the LSB at the leading edge and suppressing the reverse flow. This effect is still noticeable for the simulation with

slip-walls but to a lower degree because the strongly increased levels of pressure fluctuations induce instabilities in

the separated shear layer at the leading edge that lead to the formation of vortices which in turn induce reverse flow.

Furthermore, the boundary does not force the flow to the free-stream value at the domain edges, but only impose a zero

vertical flow component.

The different sizes of the LSB are also reflected in the boundary layer displacement thickness X∗, the momentum

thickness \, and consequently the shape factor � = X∗/\ (see Fig. 14). The lower bubble height for the case of

free-stream boundaries in the '3.5 domain results in a reduced displacement thickness accordingly and the peak in the

shape factor, which indicates the transition point of the flow [22], is rather flat. The other two case show stronger peaks

in �, with the large domain again having the higher value over the small domain with slip walls. Likely, the reason

is that the bubble height is slightly reduced in the case of the small domain as the outer boundaries strictly enforce

horizontal flow and thereby limit the displacement of the flow more than in a large domain.

The comparison of the airfoil flow in a narrow domain with walls to the free-stream case shows that there are two

mechanisms that induce and suppress instabilities: the pressure reflections from the walls induce instabilities within

the separated shear layer, but the condition of horizontal flow at the boundaries also limits the displacement of the

streamlines and result in a smaller bubble height. Given all the differences in the flow patterns, including deviations in

the LSB length of nearly 30%, as well as substantial changes in the wake topologies, it is somewhat surprising that the

lift coefficient is affected by merely 2% and the drag by 5% (Table 2).

VI. Conclusion
The impact of pressure reflections on the instantaneous and mean properties of the transitional flow around a NACA

65(1)-412 airfoil has been evaluated in a domain with horizontal slip-wall boundaries. For angles of attack of 4◦ and 8◦,
the flow is computed with horizontal slip walls and compared to solutions with free-stream boundaries on the same

domain, as well as free-stream computations on a large domain.

At 4◦ incidence, the natural flow is characterized by laminar separation at mid-chord without reattachment and

with highly regular vortex shedding from the trailing edge. The interaction of reflected pressure waves with the airfoil

and the wake results in a higher irregularity of the lift and drag force, as well as an earlier dispersion of the vortex

street, but shows only small differences in the time-averaged pressure and skin-friction coefficients over the wing. At an

intermediate angle of attack of 8◦, a laminar separation bubble has formed at the leading edge and sheds vortices over

the wing. The receptivity of this bubble to disturbances is much higher than the recirculation region at 4◦ and now

distinctly affects the flow topology and LSB size. Although the reflected pressure waves traveling across the domain are
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(a) Free-stream ('30) (b) Slip-wall ('3.5)

(c) Free-stream ('3.5)

Fig. 13 Contours of averaged tangential flow normalized by the local velocity magnitude at the boundary layer

edge. Streamlines in gray, normal velocity profiles in black. Plots are not to-scale to aid visibility. AOA = 8◦.
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(a) Displacement thickness (b) Momentum thickness (b) Shape factor

Fig. 14 Comparison of displacement thickness X∗, momentum thickness \, and the shape factor � = X∗/\ for

free-stream and slip-wall boundary. AOA = 8◦.
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of the order of 10% of the stagnation pressure, the integrated forces over the airfoil differ by 5% at most. If the objective

of a simulation is to determine flow structures and forces with maximum accuracy for a given computational cost then

the wall boundary effects must be considered and perhaps treated. especially if the results of either integrated forces or

flow structure distribution are to be compared with experiment where boundary effects are inescapable.
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