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A B S T R A C T  

Nonlinear wave-wave interactions can be quite localised in space and an appropriate spectral 
analysis of such a wave field must  retain this local phase information. To this end, the 2-D, complex 
wavelet functions 'Arc '  and 'Morlet2D'  can be used to decompose a wave field in space b and scale a. 
As both wavelets are Hardy functions, the transform result is complex, and the phase, ~b, is defined over 
all b. Arc can be used to measure  the energy of the wave field over b as a function of I k l, and the 
direction-specific wavelet, Morlet2D, can be used for the spatial energy distribution of k. 

Surface waves generated by unsteady wind have dislocations in phase that are widespread and 
persist until the initial wave field becomes disordered in appearance. While the energy at fundamental  
wavelengths (the wavelength of the initial instability) appears to saturate, the energy of the subhar- 
monic component  continues to increase with time. There appears to be significant energy in both 
modes,  from early on in the life history of these organised wave fields. The energy of wavevectors 
aligned at a small angle off the mean wind direction vector (the including angle, a = 20 °) increases to 
become a substantial fraction of the total energy. The possible role of the pattern defects in local 
nonlinear mechanisms of energy transfer is discussed, and analogies are drawn with recent results in 
plane mixing layers. Techniques for the measurement  of the complex dispersion relation, w(k), and 
group velocity, Ug(k), utilising the local space-scale decomposition of the 2D wavelet transform, are 
proposed. 

1. I N T R O D U C T I O N  

Microscale capillary-gravity waves are responsible both for a large 
portion of the momentum and energy transfer across the air-water inter- 
face and for the Bragg scattering and detection of surface features by 
remote sensing devices. Their generation by wind is therefore of critical 
importance in quantifying fluxes across the air-sea interface, and in deter- 
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mining the transmission and detection of pattern information to microwave 
remote sensors. The review by Phillips (1988) and the recent volumes by 
Geerneart and Plant (1990) may be consulted for details. 

Thus far, classical linear instability analysis (see Phillips, 1957, 1977 and 
Miles, 1957, 1959) has had somewhat limited success in accounting for 
laboratory data that are becoming increasingly sophisticated and quantita- 
tive, and that showing growth rates that differ markedly from theoretical 
values (Wu et al., 1979; Snyder et al., 1981) and also demonstrating the 
strongly nonlinear nature of the interactions between modes (e.g. Okuda, 
1982a-c). One such possible interaction would be the wave-crest pairing 
event discussed by Ramamonjiarisoa and Mollo-Christensen (1979), or 
perhaps 'wave-trough pairing' as suggested by Melville (1983). Not only is it 
apparent that nonlinear mechanisms can be important, if not dominant, 
but, as pointed out by Melville (1983), for example, there is a clear need for 
a spectral analysis that satisfactorily accounts for both phase and amplitude 
modulations in wave fields where nonlinear wave interactions give rise to 
variation in both frequency and wavenumber. 

Given the complexity of the phenomena observed in the field, one turns 
to carefully controlled laboratory experiments, where attention will be 
focused on the wave-wave interactions in an unsteady wave field generated 
by a time-dependent wind stress. Informal observations show complex 
pattern deformations that appears very early on in the generation of 
surface roughness. The wave field then rapidly becomes very disorganised 
in appearance. The mechanisms reponsible for this transition from regular 
to disordered surface wave motions are as yet poorly understood. 

The investigation described here is an initial attempt to apply certain 
recently developed wavelet transform analytical tools to obtain a space-scale 
decomposition of a two-dimensional (2-D) surface wave field. Although the 
current analysis is preliminary in nature, the careful application of 2-D 
complex wavelet transforms allows one to perform a quantitative, whole- 
field, unsteady analysis. The overall objectives are to identify and quantify 
the (nonlinear) dynamics responsible for the pattern generation and the 
eventual disruption in surface roughness generated by unsteady wind. 

2. 2-D WAVELET TRANSFORM 

2.1. Definitions and background 

Wavelet transform analysis, after its initial introduction and formalisa- 
tion by Grossmann and Morlet (1984), has enjoyed considerable success in 
signal and image processing and analysis, and as an efficient basis for 
computing numerical solutions of systems of partial differential equations 
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(see Combes et al. (1989) for an overview). This is in part due to the 
rigorous mathematical basis and also to the systematic way in which the 
window aperture is automatically varied with scaling parameter, a. In this 
respect, it differs significantly from the various alternative windowed-Four- 
ier transform and filter techniques. 

The extension of the usual definitions of wavelet functions in one 
dimension to the 2-D case and their application to experimental data in 
fluid mechanics applications has been considered in some detail by Dallard 
and Spedding (1993). The general extension of wavelet functions to two 
dimensions has been discussed by Murenzi (1989). An application of the 
complex, 2-D Morlet wavelet to analysis of coherent structures in 2-D 
turbulence has been described by Farge and Rabreau (1988). Dallard and 
Browand (1993) have reported extensive results from phase-averaged 2-D 
velocity fields in an acoustically forced mixing layer, and Spedding et al. 
(1993) have discussed the design and application of 2-D wavelets to 2-D 
fluid turbulence data. Fluid turbulence applications, including 2-D, have 
been reviewed by Farge (1992). The important properties of the wavelet 
functions 'Arc' and 'Morlet2D' will be summarised below, and Dallard and 
Spedding (1993) may be consulted for a more complete discussion. 

In two dimensions, the wavelet transform (WT) of f is the inner product 
of f with the wavelet ga,b, 

f w ( a , b ) = f f f ( r ) ' g * b ( r ) d r  (1) 

where g* is the complex conjugate of g. g is rescaled by a and translated 
in physical space, b, so 

1 fw(a,b)= 'fff(r)'g* dr (2) 

The normalisation by 1/a 2 ensures that I(fw(a, b) l cx I f I. In practice, it 
is convenient to work in Fourier space, where the transform can be written 

fw(a, b ) :  f f flk) *<ak) exp(ik.b) dk (3) 

2.2. The choice of wavelet function--real vs. complex wavelets 

Typically, the wavelet function g(r) is some kind of smoothly varying 
wavepacket inside a Gaussian envelope, and the length scale of the 
oscillations and wavepacket size (and so, sampling area) vary according to 
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a. The WT can be seen to be just a decomposition of f onto the family of 
wavelet basis functions ga,b generated over a range of scales a. There are 
various possible choices for g, one of the more common being the Mexican 
Hat function, 

g(r) = (r 2 -  1) e x p ( - r 2 / 2 )  (4) 

However, it is simple to show that the WT derived from such a real 
function will contain a mixture of amplitude and phase information that 
can be hard, if not misleading, to interpret. Fluctuations in I fw(a, b) l may 
be due to modulations in either phase or amplitude of the original signal, 
and in many non-trivial applications, it may not be obvious which. There is, 
furthermore, a related difficulty in distinguishing artefacts caused by inter- 
ference between (oscillatory) nonzero resonances of neighbouring 
[ fw(a,  b) l with only small separations in a, b. 

This point is neither new (see Grossmann and Morlet (1984) and 
Grossmann et al. (1989); also Liandrat and Moret-Bailly, (1990), for a 
particularly clear discussion), nor difficult, yet it is frequently ignored. It 
can be rendered moot by choosing a complex wavelet function satisfying 
~(k) = 0 for k ~< 0. The WT is then complex and may be expressed as a 
modulus and phase. (For the first and definitive discussion of this topic, see 
Grossmann and Morlet (1984).) 

Within the class of Hardy functions, two have proven useful to this work. 
In the first case, g is chosen to be direction specific, as in the straightfor- 
ward extension to two dimensions of the Morlet wavelet, 

g~(r) =exp(iko'r  ) • e x p ( - [ r  12/2) (5) 

with 5 < k  0 < 6 fixed and (e~-f~ 0) = a. This function (Fig. 1), denoted 
'Morlet2D', is direction specific, interrogating wavevectors in Fourier space 
with a preferred magnitude and orientation. Its Fourier transform is 

ff,~(k) = e x p [ -  (I k - k 012)/2] (6) 

Alternatively, 'Arc' (Fig. 2) is both complex and non-directional, and is 
defined as 

k ~37 "1" gc(k)~--~ e x p [ - (  ]k I - I  ko 1)2/2] 

k ~ 7r2: ~c(k) = 0 (7) 

It should be noted that wavenumber space is partitioned into two halves, 
~.1 and 7r 2, and care must be taken to partition the space without bisecting 
regions of high signal amplitude. This is a simple matter when the wavevec- 
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Fig. 1. (a) The real part of the Morlet2D wavelet. (b) The Fourier transform of Morlet2D. 

tors  are  c lus te red  a r o u n d  some relat ively local ised region in k-space,  as is 
the  case here .  

2.3. Energy measures 
T h e  ene rgy  and  ene rgy  densi ty  can  be  c o m p u t e d  f rom the  W T  as 

 s;Tss It f II 2 = II fw(a,  b)II 
= a 

• d b  ( 8 )  

whe r e  

c.=ff,= ik12 d k <  +oo (9) 
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iX) 

Fig. 2. The real (a) and imaginary (b) parts of the Arc wavelet and its Fourier transform (c). 

This is the admissibility condition on the wavelet and amounts to the 
requirement  that f fg(r)  dr  = ~(0) = O. 

(2/C~) II f w ( a ,  b)II 2 in Eqn. (8) can be regarded as a spatial energy 
density (energy per  unit area) at the scale a (per unit d(ln a)). 
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3. MATERIAI_~ AND METHODS 

3.1. Experimental facilities 

Experiments were conducted in the Air -Sea  Interaction Research Facil- 
ity at NASA Wallops Field. The wave-tank-wind tunnel assembly has a 
working section of 18.29 m x 1.22 m x 0.91 m (width), where surface wind 
is generated in a closed-loop tunnel by fan suction. A video camera records 
disturbances on the water surface at a location 14 m from the upstream 
end of the quiescent water surface. The water depth is 75 cm, and the 
enclosed air height is 50 cm. 

The air flow is started from rest to 3.4 m s-1 (as measured 10 cm above 
the water surface), which, after some short time (about 6 s from the first 
noticeable perturbation from resting state; as the flow start-up is not 
instantaneous, there is some difficulty in defining a time origin here), 
causes disturbances with wavelengths of the order of 1.5-2 cm to appear in 
the field of view of the video camera (Fig. 3). For approximately 4 s there is 
a regime where organised waves are clearly visible, together with disloca- 
tions in their structure. The field then becomes very disorganised in 
appearance, and is replaced after about another 4 s by fetch-limited waves 
of much longer wavelength. Attention here will be confined to the short 
interval from the first appearance of the organised wave field to its 
disappearance (at least to the eye) into apparently incoherent surface 
motions. 

3.2. Data characteristics and image processing 

3.2.1. Data representation 
The data thus comprise a series of 8-bit grey-scale digitised video 

images, where there is some unknown mapping between the wave height 
a n d / o r  slope and the grey level. The lighting was diffuse, and from above, 
and the video camera was also mounted above the surface; also, there is no 
guarantee that the mapping is unique. However, in the absence of any 
other information we shall assume that the image brightness is related in 
some simple but unknown way to the surface slope. This restriction places 
rather severe limits on the scope of the results, which must therefore be 
considered preliminary in nature. Comments and interpretation must 
therefore also be restricted to those of a comparative nature, so that 
although one may talk of the relative growth and decay of spectral 
components,  their absolute amplitudes and energies are not known. 
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Fig. 3. Sequence of nine rectified video images that comprise the data set for the analysis. 
The inverse colour bar shows waves as dark stripes on a light background. The longitudinal 
streaks are thought to be the surface disturbance caused by stream-direction structures in 
the turbulent boundary layer. The horizontal dimension of each image covers 20 cm, and 
the time between successive images is 1/3  s. In each image, and in all subsequent wavefield 
plots, the flow is from right to left, and the original wind forcing is parallel to the x axis, 
which lies along the horizontal in this figure. 

3.2.2. Resolution 
Video recordings originally made on Super VHS videotape were trans- 

ferred to 3 / 4  in format on a Sony VO-9600 VCR, and digital frame codes 
were superimposed in the horizontal blanking interval of the video signal. 
Commercial video frame rates are approximately 30 frames s -1, with 
successive interleaved fields being separated by 1/60 s. The mean surface 
wave phase velocity at this wind speed was about 32 cm s-1 and so a wave 
travels roughly 0.5 cm in this time. At any fixed point in space, the phase 
will therefore change by less than rr radians between successive fields, thus 
satisfying the Nyquist sampling criterion, but with little room for variation. 
It is entirely possible that the data are undersampled in certain spatial 
locations, and further quantitative investigations will need to bear this in 
mind. In commercial video-format charge-coupled device cameras, the top 
left corner pixel is interrogated just less than one field time before the 
bottom right pixel, and so there is a consistent aliasing of the signal from 
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corner to corner, of about one-third wavelength in magnitude. This has not 
been corrected for in the processed images, which were corrected only for 
the oblique camera mounting. 

3.2.3. Image processing 
Each 512 × 480 digitised image was separated into odd and even fields, 

the alternate missing lines being filled by bilinear interpolation in the 
vertical direction only. Simple geometric distortions could be corrected by 
digitising 10 corner points on the distorted image of a rectangular grid of 
known dimensions and solving for the coefficients of two second-order 
polynomial interpolating functions with a least-squares SVD (Singular 
Value Decomposition) algorithm. The field images were interpolated onto 
a 5122 array, smoothed with an eight-neighbour mean filter, and reduced 
to a 2562 array (largely to reduce excessive computation times in the 
wavelet analysis). The edge 10 pixels were then removed to leave two 2362 
rectified images. This is the form of the images in Fig. 3. 

3.3. Wavelet analysis 

3.3.1. Range of scales 
A typical image contains 11 waves over 236 discrete points, and so 

contains a wavelength approximately every 21 points. In discrete data units, 
the maximum resonance of the WT with a structure of wavelength A will be 
at the scale value a = (k0/2~-)A = 0.875A, for I k 0 ] =  5.5 (see Eqns. (6) 
and (7)). Anticipating the results somewhat, fundamental  wavelengths may 
therefore be expected to be detected at a = 19, and their subharmonic (if 
present) at a = 38. At analysing scales of a < 4, the transform results may 
be contaminated by noise a n d / o r  smoothing in the data, and the largest 
available a is limited by the support of the wavelet. At a = 50, the 
transform is free of artefacts from the edge effects (assumption of periodic- 
ity) only in a central 2 3 6 -  100 = 136 square. A compromise solution to 
retain as much information on likely large scales and minimise the risk of 
significant artefacts from the edge effects was to perform the analysis on 
the entire 2362 array, but retain only the central 1802 of the result. Finally, 
as the resolution of the wavelet varies logarithmically with a, sufficient 
resolution in a can be achieved by choosing 40 logarithmically spaced 
values over the range 6 ~< a ~< 50, a range of about four octaves. 

3.3.2. Transform representation--wavelet cubes 
The wavelet transform result of the 2-D data in physical coordinates 

(x, y) is fw(a, b). The horizontal axes of the resulting cube represent the 
position vector b (equivalent to the x and y spatial coordinates), and the 
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Fig. 4. The modulus of the Arc wavelet transform (I fw,(a, b)D for a test signal composed of 
two sine waves of equal energy but different frequency. In this, and all subsequent cubes, 
the horizontal axes are physical space axes x and y, with x the streamwise direction 
running from the front right face to the back left. The vertical axis is -In a, so larger scales 
appear at the base of the cube. The dark and white isocolour surfaces are drawn at 10% and 
30% of the modulus maximum. 

vertical axis denotes  the scale a. As it is actually - I n  a, larger scales 
appear  towards the base of  the cube. The range of  physical length scales 
from base to top of the cube is from 5.65 to 0.68 cm, or from 2.66,t 0 to 
0.37A0, where  h 0 is the initial instability wavelength. The transform modu- 
lus, I fw(a, b)I,  gives the amplitude and the argument, /_fw(a, b), gives 
the phase at each scale. Results  will be plotted as iso-value surfaces of  
[fw(a, b) l in an otherwise transparent  wireframe cube, where the semi- 

opaque,  dark, outer  shell represents  10% of the maximum value, and the 
inner, solid, white surface is drawn at 30% of the maximum. 

3.4. Test signal with two frequencies 

As an example, Fig. 4 shows the wavelet cube (from the modulus of the 
Arc transform) that would result if the signal contained two pure sine 
waves, one with half the frequency of  the other, with equal energy in each 
component .  The wavelength of  the fundamental  was chosen to be equal to 
the average initial instability wavelength, h0, observed in the experiment 
(after conversion for equivalent pixel resolution). At each scale, almost all 
the transform energy is contained in bands that are reasonably well 
separated in a (vertical axis), and have equal width and equal amplitude. It 
should be noted that the W T  of a single frequency is not a delta function, 
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but is smeared out in a Gaussian distribution centred about that point (see 
Eqns. (1), (6) and (7)). As this resolution in a can be calculated directly, the 
total energy, Ea, at a particular physical length scale, A, can be recovered 
by integrating in bands of a about the value a~ = 0.875A, over the data 
area, S: 

1 2 da 
f f~a~[fw(a,b)  12 d b - -  (10) E~ = ~ • Cg JsJ~a~ a 

There are some artefacts visible in Fig. 4; the two bands are not completely 
fiat as there is a beating resonance between them, and the ends of the 
subharmonic band are downturned very slightly, because of the assumption 
of periodicity (deliberately not satisfied in this synthetic signal) at the 
edges. These effects are thought to be small enough to be tolerable in this 
case. 

4. RESULTS 

The complex, 2-D wavelet transform is a powerful quantitative analytical 
tool for the space-scale decomposition of wind-generated surface waves. 
This is of special interest when it is suspected that localised nonlinear 
mechanisms may be responsible for the evolution of these wave fields 
beyond their initially well-ordered state. In particular, it is possible to 
measure the spatial distribution of the surface wave spectrum, and the 
contribution of features that are non-uniform in space can be identified. 
Such measurements have not hitherto been possible, or have been achieved 
only with great computational expense a n d / o r  ad hoc choices of windowed 
Fourier transforms. The closest approach appears to have been that of 
Riemer (1991), some of whose results are shown in J~ihne's (1991) excellent 
monograph on digital image processing. Riemer's use of Gabor filters 
(Gabor, 1945), however, still requires that an independent  choice be made 
of filter width (and, hence, analysing scale, a), and it is precisely this 
difficulty that the wavelet transform removes. Based upon observations of 
the wavelet transform data, three significant conclusions are drawn con- 
cerning the developing microscale wave field. Each is discussed separately 
below. 

4.1. Energy is found in both subharmonic and fundamental wavelengths 

Figure 5 shows the Arc transform modulus, [ fw(a ,  b)l,  from the earli- 
est timestep in the series (Fig. 3(a), where once again, dark gray is the 10% 
contour and solid white is the 30% contour). Clearly, the energy distribu- 
tion is quite intermittent in space. Furthermore,  appreciable energy can be 
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Fig. 5. ] fw,(a, b)l for the data in Fig. 3(a), early in the time sequence. The wind forcing, 
and main component of the wave energy, is in the direction from the back right panel to the 
front left face. 

observed at both fundamental  and subharmonic scales (among others), 
even at these early times. The white patches, representing the largest 
amplitude, are scattered rather  sparsely. At later times, the white patches 
occupy a larger fraction of the physical space as the amplitudes grow. It is 
also clear that the bulk of the energetic features is concentrated about the 
scales corresponding to the fundamental  and subharmonic wavelengths. 

The total energy in the fundamental  and subharmonic, E~,, E2~ o, found 
by integrating over bands about A 0 and 2A 0 and then over all space (Eqn. 
(10)), is plotted as a function of time in Fig. 6. Energy in the fundamental  
band is seen to grow slowly, then more rapidly, and finally appears to 
saturate. By contrast, although the energy in the subharmonic band grows 
more slowly over most of the time interval in question, there is no sign of 
saturation. At this time, the total energy in the subharmonic is approxi- 
mately half that of the fundamental .  

4.2. Energetic events at fundamental and subharmonic wavelengths occupy 
different regions of  physical space 

Another  interesting feature of Fig. 5 is that regions of most intense 
activity at the fundamental  scale do not overlap regions active at the 
subharmonic scale. This conclusion is difficult to draw from one single 
view, as in Fig. 5, but a number  of views shows this to be the case 
qualitatively. It continues to be true as the wave field develops. 
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the fundamental (A = A 0) and subharmonic (A = 2A 0) length scales. 

In a different context that none the less involves some interesting 
parallels to this one, Dallard and Browand (1993) showed that, in a plane, 
turbulent mixing layer, the development of larger scales, centred at the first 
subharmonic scale, takes place preferentially at defect sites in the funda- 
mental wave pattern. These defect sites were identified as dislocation 
points in the pattern, and are precisely those points at which the energy of 
the fundamental  is lowest. Yang et al. (1993) explained the behaviour in 
terms of a nonlinear mechanism which acts to suppress subharmonic 
growth where the fundamental  is strong, but fails to suppress growth where 
the fundamental  is weak. 

Here also, many dislocation points can be observed, and it is natural to 
enquire whether the defects appearing in the surface wave field play a 
similar role in the interscale energy transfer. Figures 7(a)-7(c) show the 
isophase-lines for the Arc wavelet transform at an analysing scale, a, 
corresponding to A 0, and at the same time, isocontours of I fw(a ,  b) l for 
the slice a = 35, at 2A 0. This is done at two times, corresponding to 
timesteps b (Figs. 7(a) and 7(b)) and f (Figs. 7(c) and 7(d)) in Fig. 3. The 
postulate of a positive correlation of defects i n / _ f w ( a ,  b) at A 0 with peaks 
in ] fw(a ,  b)] at 2A 0 is plausible in the early stages of growth of the 
surface wave field (Figs. 7(a) and 7(b)), but less clear later on (Figs. 7(c) 
and 7(d)). Furthermore,  in a dispersive wave field, the different phase 
speeds of the two modes, coupled with the fact that growth is occurring in 
both spatial and temporal domains, significantly complicates the interpreta- 
tion of a simple spatial correlation, perhaps even after short times follow- 
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Fig. 7. Phase surfaces for the fundamental mode A = h 0, and the corresponding energy at 
the subharmonic scales, 2Ao, as shown by contours of [ fw(a ,  b)l for an early time (A, B) 
and approximately 1.3 s later (C, D). The contours of I fw(a, b)[ in (B) and (D) have equal 
spacing, A I fw(a ,  b)l, linearly spaced over the range of energies at each scale. The units in 
x and y are millimetres. 
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ing a defect's appearance. If, on the other hand, the local dynamics around 
the defects are similar to those observed in the mixing layer, one might 
expect the fundamental  and subharmonic modes (and possibly others, too) 
to be phase-locked there. 
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There is clearly room, and opportunity, for further work. The wavelet 
analysis offers the possibility of searching for locally nonlinear dispersion 
relations, and for isolating the energy transfer mechanisms around these 
defect sites. The analogy with the mixing layer may, or may not, ultimately 
prove to be useful or appropriate. It will also be of interest to compare and 
contrast this perspective with the 'wave-crest pairing' mechanisms dis- 
cussed by Ramamonjiarisoa and Mollo-Christensen (1979). 

A 

B 

Fig. 8. The  phase,  Lfw,(a, b) for a = 19 (A) and a = 38 (B), cor responding  to fundamen ta l  
and  subharmonic  scales, respectively. 
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Measurement  of the local dispersion relation, to(k), and group velocity, 
Ug(k) of the various modes should allow some of these issues to be 
clarified, and can be achieved, in principle, if two or more wavelet cubes, 
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separated by some small At, can be interrogated. Each single cube contains 
information on the most energetic scales at each spatial location, from 
] fw(a ,  b)]. As, at any given scale, a, one can differentiate the correspond- 

ing phase fields with respect to time, to = Ach/At,  one can obtain to(k). A 
differentiation in space leads to Cg(k) = Oto/Ok. Some extra complications 
arise in real data with noise, but work is in (good) progress on this problem. 

4.3. Energy is transferred to waueuectors inclined to tk,:e wind direction 

Finally, if one plots the isophase lines at slices corresponding to the 
fundamental  and subharmonic wavelengths for the argument of the trans- 

A 

B 
Fig. 10. (A) f fw(a, b)], for a = 0 ° at early time (Fig. 3(a)). (B) For Fig. 3(b), about 1 s later 
(C) At later time, from Fig. 3(i). The cube orientation is as in Fig. 5. 
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C 
Fig. 10 (continued). 

form at later times (Figs. 8(a) and 8(b) do this for timestep i of  Fig. 3), it is 
apparent,  first, that the dislocations or discontinuities in the isophase lines 
occur at both ~0 and 2A 0. Second, phase lines are not all or iented normal 
to the original forcing (wind) direction, but many appear to be tilted by 
some small angle. 

The Morlet2D wavelet can be used to select for wavevectors with a 
particular orientation, and following the indications of Fig. 8, from the Arc 
wavelet, the energy at fundamental  (solid lines) and subharmonic scales is 
plotted for those wavevectors with orientation close to 0 ° (Fig. 9(a)) and for 
those with an angle of approximately 20 ° to the wind direction (Fig. 9(b)) 
Although the energy of the fundamental  at 0 ° (the wavelet orientation 
a = 0, denoted %)  eventually saturates, as observed in the Arc result, 
those wavevectors resonating at a20 do not. The growth of the fundamental  
at a20 is slower than at %.  Only one orientation angle, a = 20 °, based on 
the indications of the /_fw(a, b) plots, was interrogated here, and it 
remains to survey the full range of plausible orientations. This result can be 
correlated with differences in the evolution of the spatial distribution of 
energy densities. Figures 10(a)-10(c) show three timesteps in I fw(a, b)[ 
for a 0 and Figs. l l ( a ) - l l ( c )  show the corresponding results for a20. There  
is a small tendency for the spatial intermittency of the energy at a 0 to 
increase with time, but the a20 component,  on the other  hand, clearly 
becomes more broadly distributed (less intermittent) in space over the 
same time period. The tilted wave component  apparently is growing faster 
and occupying a larger portion of the (fixed) spatial domain. The physical 
significance of this is as yet unclear. It could be wholly or partly a 
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consequence of small asymmetries in the original wind-forcing. Neverthe- 
less, the capacity of the WT to detect and quantify local energy densities in 
this fashion will be very valuable. 

5. C O N C L U D I N G  R E M A R K S  

The work described here represents the first few steps in quantifying the 
local nonlinear dynamics of small-scale wind-generated surface waves. 
Further progress will depend not only on improvements in experimental 
design and data analysis but also on corresponding advances in theoretical 

A 

B 
Fig. 11. Sequence as Fig. 10; P fw(a, b)l, for a = 20 ° at early (A), middle (B), and late (C) 
times. 
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C 
Fig. 11 (continued). 

modelling, and subsequently careful comparisons between the two. It 
appears that a suitable nonlinear stability analysis, taking into account both 
the effect of finite-sized shear layers (in both fluids), and a density 
interface with surface tension, would be useful. The full problem is rather 
complicated, and involves the spatial and temporal growth of boundary 
layers in both fluids. The most complete theoretical analyses (see Valen- 
zuela (1976) and Kawai (1979), and Creamer and Wright (1992) for added 
effect of surface contaminants) assume time-independent wind and water 
current profiles. A small, but helpful step, might be to modify the approach 
of Lawrence et al. (1991), who employed a piecewise linear approximation 
to the density and velocity profiles of a density stratified mixing layer. 
Caponi et al. (1992) also used a piecewise linear approximation to investi- 
gate the effects of water shear on the stability of the air-water interface, 
and offered specific predictions of regimes of instability mechanisms (of 
Miles' critical layer or Kelvin-Helmholtz type) at various wind speeds, and 
a detailed comparison ought to be possible with this type of model when 
quantitative data are available for a number of wind speeds. 

It is planned to measure whole-field surface wave slopes in the NASA 
Wallops Fields wave tank, using a technique introduced by J~ihne and 
Riemer (1990). In its present form, the apparatus gives the wave slope in 
one direction only, but simultaneously over the 2-D sampling area. Modifi- 
cations and /o r  alternative techniques are being investigated so that the full 
range of wavevector directions can be measured at once, and the computa- 
tions of w(k) and Ug(k) can proceed as outlined above. The combination 
of non-direction-specific (Arc) and directional (Morlet2D) wavelet trans- 
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form analyses described here will assist in determining the range of angles 
that must be sampled in the first place. 
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