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The comparison of theoretical and experimental estimates of the mechanical power require-
ment for #ight is currently impossible owing to the absence of complete experimental data
based on mechanical power, as opposed to measurements of metabolic rates. Nevertheless,
comparisons of measured and predicted characteristic speeds, and inferred power curves are
frequently made, despite the total absence of uncertainty estimates of the theoretically
predicted quantities. Here the method for correct calculation of uncertainty estimates in
mechanical power models is outlined in detail, and analytical and numerical results are derived
for realistic examples. The sensitivity of the calculated variations in power requirement varies
greatly among the independent variables, and the practical and theoretical consequences of
this variation are discussed. Pending the arrival of appropriate experimental measurements, it
is now possible, in principle, to make quantitative comparisons with theoretical predictions.

( 2001 Academic Press
1. Introduction

1.1. MECHANICAL OR AERODYNAMIC POWER CURVES

Flight is locomotion in a #uid (air), whose density
is so low compared with that of the #ying body
that hydrostatic forces can be neglected. In that
case, the entire weight of the bird has to be
supported by accelerating air downwards, which
in turn requires work to be done on the air at
some minimum rate (the induced power). At the
same time, additional work has to be done
against the aerodynamic drag forces caused by
the bird's forward motion through the air (para-
site power), and by the relative motion between
its wings and the air (pro"le power).

An accurate and complete calculation of the
forces exerted by a su$ciently realistic, #apping,
wing}body system on the surrounding air (and
hence the drag forces on the bird from the air), by
direct numerical solution of the Navier}Stokes
2}5193/01/020127#13 $35.00/0
equations, lies well beyond the reach of current
computer capacity, and in practice, some kind of
more simple physical model must be solved
instead. The basic approaches were reviewed
in Spedding (1992), and papers by Hall & Hall
(1996) and Hall et al. (1998) represent recent
examples of elegant, state-of-the-art calculations
with potential application to practical problems
(e.g. Spedding & Lissaman, 1998).

The more sophisticated models usually con-
centrate on the accurate estimation of the in-
duced power component, but without exception,
simplifying assumptions limit the range of #ight
regimes that can be covered, and the additional
problems of estimating viscous losses at the
appropriate Reynolds numbers (Re,;c/v for
a wing chord, c"10 cm and #ight speed,
;"10 m s~1, with v the kinematic viscosity of
air, is approximately 7]104) remain particularly
vexing. In the spectrum of #ight models, ranging
( 2001 Academic Press
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from simple and easy to use, to complex and
unwieldy, practical applications have tended to-
wards the former, in part because the frequently
small-to-negligible practical bene"ts of incremen-
tal improvements in the accuracy of computing
one particular component do not justify the extra
cost incurred (as measured in dollars, CPU
or program debugging time, backpack weight,
number of "eld measurements, etc.).

The purpose of this paper is primarily to draw
attention to the principles and bene"ts of includ-
ing appropriate error analysis in any #ight model
prediction and calculation. The example analysis
will be performed on the model outlined in
Pennycuick (1989), because it is simple. The same
reason makes it the most widely applied model in
practical ornithology, and ensures the broadest
practical application of the results herein. This
focus is for clarity of exposition and directness of
practical application, and it would be very grat-
ifying to see a more widespread application of
these types of calculation to other models, which,
incidentally, might also usefully be compared on
this basis.

Back at the bird, the total rate at which work
has to be done, that is the power required from
the muscles, depends on the forward speed, and
on whether the bird is climbing or descending,
accelerating or decelerating. These latter com-
plications are avoided by restricting attention to
the special case of level #ight at a constant true
air speed, <. For that special case, the Pen-
nycuick (1989) model calculation of the power
required by a particular bird to #y at a particular
speed requires estimates for the values of eight
input variables, falling into three categories:

1. Morphological variables: these must be
measured on the particular bird, using spe-
ci"ed procedures. They are the total mass,
m, the wing span, b, the wing area, S, and the
body cross-sectional area, Sb.

2. Aerodynamic variables: outside of control-
led laboratory experiments, typically in-
volving wind tunnels, these usually cannot
be measured for the individual bird, so their
values are calculated from general relation-
ships established by such experiments.
These include the constants, k, the induced
power factor, CDb, the body drag coe$cient,
and X1 (or equivalently, C2), a multiplying
constant for the pro"le power factor. This is
assigned a constant value internally, since
there is currently little rational basis for
making any particular modi"cation to the
constant itself, short of modifying the for-
mulation of the entire calculation, which is
explained further in Section 3.3. It is notable
that each of these constants corresponds to
a component of the aerodynamic power cal-
culation, and re#ects a signi"cant degree of
uncertainty in the calculation of all three
components of the aerodynamic power.

3. Environmental variables: These are the ac-
celeration due to gravity, g, and the air
density, o. They are frequently assigned con-
stant values, although g can vary by 0.8%
across the globe, and o can vary substan-
tially, by 20% or more, in #ights involving
signi"cant, but normal, changes in altitude.

Once the bird, and the air through which it
#ies, have been de"ned by assigning values to the
above variables, Program 1A in Pennycuick
(1989) sets the true air speed, <, successively to
a series of di!erent values, and estimates the
mechanical power required to #y at each speed. It
follows from the underlying mechanics (this is
equally true for birds, planes, helicopters, and
gliders, where the rate of loss of potential energy
substitutes for power) that the resulting form of
P(<)*the power curve*is U-shaped, whose
minimum value de"nes a characteristic speed, the
minimum power speed,<

mp
, where the total com-

bined aerodynamic power requirement (mechan-
ical work done per unit time) is at its minimum
value.

1.2. METABOLIC POWER CURVES

The metabolic power curve represents the rate
at which the animal consumes fuel energy, but it
is not a simple transform of the physical power
curve outlined in the previous section. Part of the
fuel energy consumed by a #ying bird is con-
verted into mechanical work, and this compon-
ent can be derived from the physical power curve,
if a value is known or assumed for the e$ciency
with which the muscles convert fuel energy into
work. In sustained, aerobic #ight, the muscles
that ventilate the lungs also consume fuel energy,
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as does the heart. These secondary demands for
fuel energy are presumably related in some way
to the primary mechanical power output of the
#ight muscles, but there is unfortunately no
physiological theory from which their magnitude
can be calculated. In addition, it is usually as-
sumed that basal metabolism is an additional
overhead, which can be simply added to any
other demands for fuel energy. Basal metabolism
is measured by de"nition in the inactive animal,
and there is currently no theory that determines
whether it continues when the animal is active,
and if so, at what rate.

1.3. EXPERIMENTAL TESTING OF PREDICTED

POWER CURVES

1.3.1. Comparing Metabolic Power Curves

Many investigators have measured variables
that can be used as indicators of the rate of fuel
consumption (the metabolic power) in #ying ani-
mals, usually the rate of oxygen consumption, the
rate of carbon dioxide production, or the rate of
mass loss. Certain authors, notably Rothe et al.
(1987), have made such measurements over
a range of air speeds, on birds #ying at a steady
speed in a wind tunnel. There has been much
discussion as to whether such measurements do
or do not con"rm the shape of predicted power
curves, but insu$cient attention has been paid to
the nature of the curves being compared, or to the
formal basis of the comparison. Such a compari-
son requires estimates of uncertainty for both the
predicted power and the experimental measure-
ments, and it also obviously requires that like be
compared with like, i.e. that the predicted and
observed values either both refer to physical, or
both to metabolic power. The uncertainty of pre-
dicted powers can be calculated only if the pre-
dictions come from a formal theory. As noted
above, this condition is satis"ed for the physical,
but not for the metabolic power curve. There is as
yet no formal or quantitative theory for deriving
the metabolic power curve from the physical
curve, and therefore it is not practical to use
measurements of the rate of fuel energy consump-
tion to verify a predicted power curve of either
type. For this reason, the numerous measure-
ments of metabolic power in the physiological
literature cannot be used for this purpose.
1.3.2. Direct Comparison of Physical
Power Curves

It is feasible to calculate uncertainties for the
physical power curve, and this paper sets out
a method for doing it. Experimental values are
then required for physical, not metabolic power.
Measuring the physical power depends on purely
mechanical measurements, and has so far been
attempted twice on birds #ying in a wind tunnel
(Biewener et al., 1992; Dial et al., 1997). The
method used in both cases was to bond a strain
gauge to the dorsal surface of the bird's humerus,
at the proximal end, and calibrate it so as to
determine the force which the pectoralis muscle
applied to the bone. The amplitude of the dis-
placement of the muscle attachment was then
estimated from video, so giving an estimate of the
work done during shortening. The power was
obtained by multiplying this cycle work by the
wingbeat frequency. Such a measurement could
be compared directly with the predicted power, if
all the measurements needed for the prediction
were also recorded. Unfortunately, the necessary
measurements were not recorded in these two
experiments, but it is anticipated that this will be
done in future wind tunnel experiments, and also
that less intrusive methods for measuring the
cycle work will be developed.

1.3.3. ¹esting Predictions ¹hrough Observations
of the Flight Speed, <

The accuracy of the #ight power model can
also be tested indirectly, by comparing predicted
and observed values of the characteristic min-
imum power speed. For example, it is possible to
measure <

mp
in a bird trained to #y in a wind

tunnel. If there is indeed a #ight speed at which
the observed metabolic power consumption is
lowest, and it is close (&&close'' can be de"ned quite
precisely using the methods outlined below) to
that predicted by the mechanical power curve,
then the calculation method and the values
assumed for the constants in Section 1.1 (the
aerodynamic variables) are supported. Note that
a minimum metabolic power speed need not
necessarily accord with <

mp
, because variations

in the energy conversion e$ciency may skew
the estimate in either direction (increasing, or
decreasing <). However, signi"cant variations in
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muscle e$ciency so close to the presumed design
point of the #ight system are perhaps unlikely.
Alternatively, the speeds at which wild birds are
observed to #y in the "eld can be compared with
calculated values of <

mp
for each species. If the

birds are, in fact, #ying at <
mp

, then this also
constitutes a broad test of the underlying model
predictions. We should note here that the
assumptions about the desirability, and/or feasi-
bility of #ying at and maintaining a true air speed
of<

mp
may well be more suspect, and less general,

than frequently assumed in the literature.

1.4. OBJECTIVES

The objectives of this paper are thus three-fold:
(i) to give an explicit but general method for the
calculation of uncertainties in functions of mul-
tiple variables in terms that can readily be applied
to quantitative and theoretical biology; (ii) to pres-
ent a detailed application of such methods to the
particular case of the mechanical #ight power
curve, in anticipation of future comparisons with
appropriate experimental results; and (iii) to
analyse the implications of the numerical results
for the theoretical power curve calculation.

2. Methods for Estimating Uncertainties

2.1. DEFINITIONS

The formal treatment of uncertainty analysis in
experimental measurements with multiple vari-
ables appears to have been introduced by Kline
& McClintock (1953). Recent summaries can be
found in various textbooks, e.g. Beckwith et al.
(1993); and Figliola & Beasley (1995). The follow-
ing presentation is thus not entirely new, but it is
a unique collection and selection of the most
important methods required to perform the un-
certainty analysis in the subsequent sections. It is
both a little more selective, and a little more
complete, than a standard treatment; the goal is
to show all necessary derivations so that no mys-
tery remains, and all of these methods can be put
to practical use.

The following de"nitions are elementary
and not unusual, but in this context it is essential
that they be clearly stated for a precise technical
discussion of the more applied, ensuing calcu-
lations.
Let x be a real-valued physical quantity. It is
never possible to know x exactly, only to make
some estimate that attempts to minimize the
error, E, de"ned by

E"x!x
i
, (1)

where x
i
is an observation or measurement. Since

x is unknown, then, without exception, so is E.
When multiple observations are made, then
x
i
can be replaced by a mean value, xN , and the

average error is now

E"x!xN (2)

and is still unknown. Errors can be of two kinds:
systematic and random. The former lead to bias
in estimates of x, and can in principle be correc-
ted. The remaining random errors can be esti-
mated, and the numerical estimate of their likely
magnitude is the uncertainty in the measurement,
Dx. When a normal distribution about x is ex-
pected, a reasonable measure of Dx is the stan-
dard deviation, p, whose value can be calculated
from the usual statistics. For single measure-
ments in otherwise ideal conditions, Dx is not
likely to be less than 1/2 of the instrument resolu-
tion. This marks the lower bound of the possible
values for Dx. Higher values will accrue in non-
ideal circumstances, and numerical estimates
should re#ect this. Given a realistic estimate of
Dx, it is now possible to compare two such num-
bers according to whether their values are within
their respective uncertainty ranges. In other
words, one simply determines the truth or false-
hood of the proposition: x

i
$Dx

i
"x

j
$Dx

j
.

Without uncertainty estimates, Dx
i
, Dx

j
, it is not

possible to determine the truth or falsehood of
x
i
"x

j
.

2.2. PROPAGATION OF UNCERTAINTIES

If y is a real, continuous function of n indepen-
dent variables,

y"f (x
1
, x

2
,2, x

n
),

then given small increments, Dx
1
, Dx

2
,2, Dx

n
,

Dy, the change in value of y, is

Dy"f (x
1
#Dx

1
, x

2
#Dx

2
,2, x

n
#Dx

n
)

!f (x
1
, x

2
,2,x

n
)"Df. (3)
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Equation (3) can be approximated by retaining
the linear, "rst-order terms of a Taylor series
expansion about x

1
, x

2
,2, x

n
,

Df"
Lf

Lx
1

Dx
1
#

Lf
Lx

2

Dx
2
#2#

Lf
Lx

n

Dx
n

#e
1
Dx

1
#e

2
Dx

2
#2#e

n
Dx

n
, (4)

where the e's are small coe$cients for higher-
order terms. e1,2,2, n

P0 as Dx1,2,2, nP0, and the
total di!erential, Df, can be written as

Df"
Lf

Lx
1

Dx
1
#

Lf
Lx

2

Dx
2
#2#

Lf
Lx

n

Dx
n
. (5)

Recalling the original motivation for this exer-
cise, we now have an expression for the change in
value of a function given small changes in the
values of its independent variables. In the case of
experimental uncertainty analysis, the D's repres-
ent uncertainties in the estimates of physical
quantities, and can be of any sign, provided sys-
tematic biases have been removed or compen-
sated for. In any single instance, there is thus no
expectation of a particular sign for a particular
component, and a positive quantity can be
assured by taking the square of eqn (5). For
convenience, consider an example with just two
variables, Dx

1
, Dx

2
, where

(Df )2"A
Lf

Lx
1
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1
#

Lf
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2
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2
, (6)

which can be expanded as

(Df )2"A
Lf
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1
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1B

2
#2
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1

Dx
1
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2
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2
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Now, provided Dx
1

and Dx
2

are uncorrelated,
then the middle term will, on average, be zero, so
the most likely value of the uncertainty, Df , is

Df "GA
Lf

Lx
1

Dx
1B

2
#A

Lf
Lx

2

Dx
2B

2

H
1@2

. (7)
3. Uncertainty Estimates for Power
Curve Components

The total mechanical power, P, required for
#ight is calculated as,

P"P
i
#P

par
#P

pro
, (8)

where P
i
is the induced power required to sup-

port the weight, P
par

is the parasite power re-
quired to overcome viscous drag on the body and
P
pro

is the pro"le power required to overcome
viscous drag on the wing surface. It is convenient
to consider each of these terms separately, and
then combine the results.

3.1. INDUCED POWER

The induced power can be written as

P
i
"

k=2

2o<S
d

, (9)

where k is the aerofoil e$ciency factor,="mg
is the body weight, o is the air density and < is
the #ight speed. S

d
is the actuator disc area,

S
d
"

nb2

4

and so in terms of the independent variables,

P
i
"

2k=2

o<nb2
. (10)

The underlying rationale is that the power is "rst
calculated for an actuator disc of diameter b,
producing a force equal to=. This is regarded as
a minimum or ideal estimate for P

i
. It is then

multiplied by the induced power factor, k, whose
default value is 1.2, to account for the departure
of the e!ect of the real #apping wings from
the ideal actuator disc. It may eventually be pos-
sible to replace this simple scenario with a more
elaborate and/or realistic calculation, based on
the structure of the vortex wake (e.g. Spedding,
1987a), but insu$ciently general information
about birds' vortex wakes is available at present
for this to be attempted with great con"dence.

We wish to know DP
i
, given uncertainties

in each of the variables in eqn (10). For small
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deviations, the total di!erential of eqn (10), fol-
lowing eqn (5), is

DP
i
"

LP
i

Lk
Dk#

LP
i

L=
D=#

LP
i

Lo
Do

#

LP
i

L<
D<#

LP
i

Lb
Db . (11)

The partial derivatives of P
i
can be evaluated and

so eqn (11) becomes

DP
i
"

2=2

o<nb2
Dk#

4k=
o<nb2

D=!

2k=2

o2<nb2
Do

!

2k=2
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D<!

k=2

o<nb3
Db . (12)

A less cumbersome expression can frequently be
found by writing the relative uncertainty, which
here is

DP
i

P
i

"

Dk
k
#

2D=
=

!

Do
o
!

D<
<

!

2Db
b

. (13)

Note that, for now, the signed terms in eqn (13)
are retained [rather than taking sums of squares
as in eqn (7)] because the remaining components
of P in eqn (8) also involve some of the same
primitive variables.

3.2. PARASITE POWER

The parasite power is

P
par

"1
2
o<3S

b
C
db

, (14)

where S
b
is the equivalent body frontal area, and

C
db

is the body drag coe$cient. Proceeding as for
P
i
, the relative uncertainty is

DP
par

P
par

"

Do
o

#

3D<
<

#

DS
b

S
b

#

DC
db

C
db

. (15)

3.3. PROFILE POWER

The pro"le power is not a simple quantity to
calculate because it depends sensitively on details
of #ow separation on the wing, which at these
Reynolds numbers, are to all intents and
purposes, unknown. It can rather be roughly
estimated as the product of some multiplying
factor times the absolute minimum power,

P
pro

"X
1
P
am

. (16)

P
am

can be found from the minimum of P
i
#P

par
vs. <. If

P
i
#P

par
"P

i`par
"

k=2
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d

#

1
2
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(17)

then the condition

LP
i`par
L<

"0

is met at the characteristic #ight speed, <
mp

,

<
mp

"A
k=2

3o2S
b
S
d
C
db
B
1@4

. (18)

Substitution of this expression for <
mp

back into
eqn (17) gives

P
am
"C

1

k3@4=3@2S1@4
b

C1@4
db

o1@2S3@4
d

, (19)

where C
1
"(2/3)31@4:0.877. X

1
is the pro"le

power ratio, which was assigned a "xed default
value of 1.2 in the original Version 1.0 programs
of Pennycuick (1989), but which now (Version 1.1
onwards) has a default value

X
1
"C

2

S
b2

, (20)

where S is the wing area, and C
2
"8.4. The e!ect

of this is to make the default value of X
1

propor-
tional to the wing area, with the same value as
before for a bird of aspect ratio 7. Pro"le power
has never been directly measured in a #ying bird,
nor is there any valid analytical basis for calculat-
ing it, as the underlying physical principles are
poorly understood. The principle that P

pro
can be

considered independent of speed, and propor-
tional to P

am
is more than a guess, however, and

comes from an early analysis of wind tunnel
results by Pennycuick (1968, 1969). It remains the
best available approximation for speeds near and



TABLE 1
Analytical estimates for the relative contributions
to the total uncertainty in calculation of mechanical
power. ¹he relative contribution to each power
component from each independent variable can
be compared in columns 2}4. ¹he contribution to
the total is calculated from taking the modulus of
the sum of columns 2, 3 and 2 times column 4 [as
indicated in eqn (25)]. ¹he actual contribution to
the most likely uncertainty will depend on the
square of each individual term, and is given in the

rightmost column 6

D DP
i

DP
par

DP
pro

DP (DP)2

Db/b !2 7/2 5 25
D=/= 2 3/2 5 25
Dk/k 1 3/4 21

2
61
4D</< !1 3 2 4

DS/S 1 2 4
DS

b
/S

b
1 1/4 11

2
21
4DC

db
/C

db
1 1/4 11

2
21
4Do/o !1 1 !1/2 1 1
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somewhat above the minimum power speed, but
not for very low or very high speeds.

Substituting eqns (19) and (20) into eqn (15),
and expressing the result in primitive variables,

P
pro

"C
1
C
2

k3@4=3@2S1@4
b

C1@4
db

S
(n/4) 3@4o1@2b7@2

. (21)

Note that while P
pro

is not a function of <, it is
a strong function of the wingspan, b. The relative
uncertainty in DP

pro
is

DP
pro

P
pro

"

3
4

Dk
k
#

3
2

D=
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#
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DS
b

S
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!

1
2

Do
o

!

7
2

Db
b

. (22)

4. Calculation of DP

4.1. QUICK ESTIMATES

The total uncertainty in predicted mechanical
power, from eqn (8) is

DP"DP
i
#DP

par
#DP

pro
. (23)

Let us suppose that in the neighbourhood of <
mp

,
P
i
+P

par
, in which case P

am
+2P

i
+2P

par
. If, in

eqn (16), X
1
+1, then

P
pro

:2P
i
!2P

par
(24)

and the relative contributions of the relative un-
certainties in the power components are

DP
P

:

DP
i

P
i

#

DP
par

P
par

#2
DP

pro
P
pro

. (25)

The ratios chosen here are for convenience only,
and do not have to be exactly correct. They are in
fact demonstrably incorrect for the numerical
example given later, based on data in Table 1, but
we shall see that the predictions emerge relatively
unscathed. This simpli"cation allows the com-
parative importance of contributions to the total
uncertainty from all the independent variables to
be assessed by direct inspection of the sums of the
terms of each variable uncertainty in eqns (13),
(15) and (22). There are eight independent
variables, whose relative contributions to the to-
tal uncertainty are given in Table 1. Note that the
contributions from individual terms are summed
as signed quantities. Over all the i-variables in the
left column of Table 1, the most likely value for
the uncertainty in any of the power calculations
(components in columns 2}4, or the total in
column 5) can be written

DP
n

P
n

"G
8
+
i/1

(C
i
D
i
)2H

1@2
, (26)

where P
n
denotes either P

i
, P

par
, P

pro
or P, and the

C
i
coe$cients are given for the i-th variable in

Table 1. The accuracy of these estimates depends
almost entirely on the validity of the assumptions
behind the approximate equation (25), and a 20%
margin of error is not unreasonable.

Table 1 shows immediately that certain vari-
ables contribute much more than others to the
total variation in mechanical power. The likely
relative magnitudes can be seen in the rightmost
column. From the practical point of view it is
obvious that considerable care ought to be taken
in making measurements of the wingspan, b, and
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the body weight,=, either in the "eld, or in the
laboratory. The same remark applies also to us-
ing values quoted in the literature, or to using
mean values from a variable population applied
to one single event or individual.

The sensitivity of P, as measured by DP, to
small variations in b and = is also of extreme
importance to the individual doing the #ying
(here one should consider the ratio of sums in DP,
column 5, rather than their squares in column 6).
One can further note that the contribution of D<
is by no means negligible. Crude estimates of
< derived by dividing long distances over long
times in winds of uncertain direction and
magnitude can be expected to generate di!er-
ences in subsequent calculations of P that are
comparable in magnitude to the total probable
range of P in common use by the individual bird,
bat or insect.

4.2. COMPUTATION OF DP(<)

Numerical calculation of DP(<) can be per-
formed directly on eqn (23), without resorting to
the assumptions behind eqn (25). Here, the de-
pendent variable is P, the mechanical power
transmitted by the muscles to the wings.< is used
as the ordinate for plotting both the predicted
power and the uncertainty. The remaining inde-
pendent, primitive variables (b, m, g, k, S, S

b
, C

db
,

o) make up the same list as discussed in the
previous section, with m and g being treated
separately.

Equations (10), (14) and (21) are di!erentiated
with respect to each variable, as before, only<, as
the control parameter, is not included, and the
values of the partial di!erentials in each variable
(when used) are now calculated at each speed, for
each component of power. Up to three partial
di!erentials are then added together, to give the
partial di!erential of the total power with respect
to that variable. Thus, for input variable x

i
,
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"
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#
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i

#
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pro

Lx
i

. (27)

The partial di!erentials are given for reference in
Appendix A. After adding all (signed) contribu-
tions from each of the power components to each
of the independent variables, the most likely
value for the total uncertainty is found by

DP"G
8
+
i/1
A
LP
Lx

i

Dx
iB

2

H
1@2

(28)

as indicated in eqn (7).

5. Uncertainty Bands in Calculated Power Curves

5.1. SOURCES OF UNCERTAINTY

Most input variables can be directly measured,
but values have to be assumed for some of them.
The precision (a measure of the variation in re-
peated measurements; when the bias is zero, then
the precision is a reasonable measure of the un-
certainty) with which variables such as wing
span, wing area and body mass can be measured
depends on the circumstances. For an individual
bird #ying in a wind tunnel, it is possible to
monitor these variables to a precision better than
$1%. At the other extreme, when air speed
measurements are made in the "eld, on wild birds
that cannot be individually measured, the ob-
server has to be content with mean values, mea-
sured on samples of specimens that have been
caught. In this case, the uncertainty is much high-
er, and can be estimated from the standard devi-
ation of the sample. Typical values might be
$3% for Db/b, $10% for Dm/m and $6% for
DS/S. Dimorphic species, in which the sexes can-
not be distinguished in the "eld, will have higher
standard deviations. Body drag coe$cients can
also now be measured in individual wind tunnel
birds, and estimates for birds observed in the "eld
have improved as a result of wind tunnel experi-
ments (Pennycuick et al., 1996). It may eventually
be possible to estimate values for the induced
power factor, k, from studies of the vortex wakes
of wind tunnel birds. Spedding (1987b), for
example, inferred a value of close to 1.0 from the
wake spacing in a gliding kestrel. However, for
the most part, a value has to be assumed in both
wind tunnel and "eld situations, with no objec-
tive way to determine the uncertainty.

5.2. THE TEAL EXAMPLE FOR WIND TUNNEL

AND FIELD STUDIES

Table 2 shows measured and assumed values
for the eight variables required for a power curve



TABLE 2
Input data for a teal (Anas crecca) observed in wind tunnel experiments by
Pennycuick et al. (1996). D here is the relative uncertainty, given by the

standard deviation of the estimate divided by the estimate itself

Variable Symbol Estimate Units D
windtunnel

D
field

Body mass m 0.235 kg 0.01 0.10
Wing span b 0.582 m 0.01 0.05
Induced power factor k 1.2 0.2 0.2
Gravitational acceleration g 9.81 m s~2 0.005 0.005
Air density (sea level) o 1.23 kg m~3 0.005 0.01
Body frontal area S

b
0.0031 m2 0.05 0.2

Body drag coe!cient C
db

0.10 0.2 0.2
Wing area S 0.0458 m2 0.05 0.2

FIG. 1. Heavy curve: power curve P(<) for the teal, cal-
culated from data in Table 2. Dashed curves: P$20%. Thin
curves: P$DP, where DP is calculated from the uncertainty
values in Table 2. There are two pairs of curves, for wind
tunnel and "eld conditions. Horizontal bars: uncertainty
limits for the minimum power speed <

mp
, also for wind

tunnel and "eld conditions.
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calculation, for an individual teal (Anas crecca),
which was used in wind tunnel experiments. Each
variable is accompanied by two uncertainty
estimates.

The column headed &&D
wind tunnel

'' represents the
precision with which variables could be measured
on the individual bird in laboratory settings, while
the column headed &&D

field
'' contains (mostly high-

er) values that would apply if measurements were
being made on a population of wild teal, which
could not be individually caught and measured.

Figure 1 shows a power curve [P(<)] cal-
culated from these values, with two sets of
boundary curves representing P$DP, where DP
is the uncertainty from eqn (28) for the wind
tunnel and "eld uncertainty values.

5.3. EFFECT OF INDIVIDUAL INPUT VARIABLES

Each of the eight panels of Fig. 2 shows the
same power curve for the teal as Fig. 1, with curves
above and below representing P$DP at each
speed. In each panel, the curves of P$DP have
been calculated by setting the uncertainties of
seven out of the eight input variables to zero, with
the uncertainty of the remaining variable set to
10% of its value. On each graph the magnitude of
DP/P at the minimum power speed (<

mp
) is shown.

As previously found in the analytical results of
Table 1, the magnitude of DP is much higher for
some input variables than for others, and the ratio
of their numerical values is quite consistent with
the predictions of Table 1. A 10% uncertainty
in the wing span, b, results in over 24% uncer-
tainty in P at the minimum power speed, whereas
a similar proportional uncertainty in the body
frontal area, S

b
, or the body drag coe$cient, C

Db
,

results in only 2.6% uncertainty in P. Generaliz-
ing over the range of <, the uncertainty of P is far
more sensitive to that of b than to any other input
variable, including the wing area S. The implica-
tion for the practical ornithologist is that it is
essential to obtain the most accurate possible
estimate of the wing span of any bird for which
power curves are to be calculated, but less impor-
tant to get an accurate wing area. If necessary, the
wing area can be estimated from the wing span,
using a value for the aspect ratio, obtained from



FIG. 2. The same power curve P(<) as in Fig. 1, with uncertainty curves P$DP calculated on the basis that one input
variable (identi"ed in each panel) has 10% uncertainty, while the other seven have zero uncertainty. The percentage
uncertainty of P is shown for the minimum power speed in each panel.
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a sample of birds of the same species. Figure 2
also shows that a "xed proportional uncertainty
of some variables (wing span, mass, gravity, air
density and induced power factor) has more e!ect
on the uncertainty of P at low than at high
speeds, whereas for others (body frontal area and
the body drag coe$cient) the reverse is the case.
There is one particular speed at which any uncer-
tainty in the air density has no e!ect at all on the
uncertainty of the power.

5.4. LIMITATIONS

Although the uncertainty bands in Figs 1 and 2
give clear apparent limits to the range of likely
values of P(<), their calculation shares the same
assumptions, and hence limitations, as those of
the formulation of the #ight power components
themselves. For example, on a very basic level,
departures from ideal actuator discs are sub-
sumed into the constant coe$cient, k, whose
value is given a fairly large relative uncertainty of
0.2. However, the degree of departure from model
conditions is quite likely to be a function of <,
and so an improvement would be to "nd a rea-
sonable expression for k(<). The e!ect of this, and
other more sophisticated modi"cations to the
theory (for example, deriving from improved
models of the geometry of the wake vortices), are



CALCULATIONS OF FLIGHT POWER 137
not necessarily correctly contained within the
given uncertainty bands.

6. Characteristic Speeds

Each of the curves in Figs 1 and 2 is marked
with the minimum power speed, <

mp
, and the

maximum range speed, <
mr

, at which the ratio of
speed to power passes through a maximum.
These speeds are shifted by uncertainties in indi-
vidual variables, not always in the same direction
(Fig. 2). <

mp
is easier to calculate than <

mr
, and is

useful for normalizing the speeds of a particular
bird. It can be measured in wind tunnel birds by
observing wingbeat frequency (Pennycuick et al.,
1996).
<
mp

from eqn (18) can be written as

<
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. (29)
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Following eqn (7), the most likely value for
D<

mp
is
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(31)

Using the uncertainty values listed in Table 2 for
most likely estimates of &&"eld'' and &&wind tunnel''
conditions yields two pairs of upper and lower
limits for <

mp
, which are marked as horizontal

bars in Fig. 1. These can be used to determine
whether an experimental result di!ers signi"-
cantly from the predicted <

mp
.

7. Summary and Conclusions

This paper began by outlining a procedure for
performing an uncertainty analysis for a general
problem involving a function of several variables.
Many problems of biological interest can be
broken down this way, even, for example,
a simple calculation of velocity"distance/time.
A slightly more complicated example of generat-
ing uncertainty measures for the #ight power
curve was then examined, and the sensitivity of
the calculation to small variations in its compon-
ent variables was examined. It was immediately
clear that the relative sensitivity of the total
result varied greatly (the change in mechanical
power was 6 times more sensitive to changes
in wingspan, b, than to changes in wing area,
S, for example), with evident practical conse-
quences.

Calculations and discussion of the #ight power
usually occurs within the context of the #ight
power curve, where < is set as an independent
variable, and P(<) is generated over some useful
range of <. Here, the uncertainty values can also
be computed as a function of<, and so variations
in P(<) due to a speci"ed variation in one or
more of the other variables can be drawn as
bands that enclose the central, most-likely line
corresponding to the original prediction. Now we
have arrived at the point promised in the intro-
duction, with theoretical power curves, complete
with uncertainty estimates. When suitable experi-
mental measurements allow estimates of the
mechanical power, complete with their own
uncertainty estimates, of course, it will then be
possible, for the "rst time, to make a direct
comparison between the two.

In the meantime, indirect checks can be
made by comparing predictions of characteristic
speeds, such as <

mp
, and explicit formulae

are given for this also, together with numerical
examples.
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APPENDIX A

A Complete Calculation of the Partial Derivatives
for Mechanical Flight Power Calculations

For completeness, and possibly handy refer-
ence, the partial di!erentials for each
independent, primitive variable in each power
component are presented, collected as complete
expressions for the total di!erential for each
power component. It is understood that each
calculation is, by itself, rather elementary, but
since the practice seems rarely actually practiced,
it is felt that demonstrating its simplicity by
detailing each step might encourage broader
usage in similar, or even completely di!erent,
investigations.

A.1. TOTAL DIFFERENTIALS OF Pi , Ppar AND Ppro

A.1.1. Induced Power

The equation for Pi is repeated from eqn (10)

P
i
"

2k (mg)2
o<nb2

. (A.1)

Following the form of eqn (5), the total di!er-
ential with respect to all variables other than
< is
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Equation (A.2) evaluates to
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A.1.2. Parasite Power

The equation for P
par

is repeated from eqn (14),

P
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b
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, (A.4)

whose total di!erential (again, omitting <) is
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The result is
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A.1.3. Pro,le Power

The equation for P
pro

is repeated from eqn (21),

P
pro

"C
1
C

2

k3@4(mg)3@2S1@4
b

C1@4
db

S
(n/4)3@4o1@2b7@2

(A.7)

and the total di!erential is

DP
pro

"

LP
pro

Lk
Dk#

LP
pro

Lm
Dm#

LP
pro

Lg
Dg

#

LP
pro

LS
b

DS
b
#

LP
pro

LC
db

DC
db

#

LP
pro

LS
DS#

LP
pro

Lo
Do#

LP
pro

Lb
Db ,

(A.8)

which evaluates to
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At this point, the comparatively simple form of
eqn (22) can probably be appreciated. In fact, as
a practical matter, it is usually more convenient
to take the individual relative contributions, as
given for example in eqn (22), and then multiply
them by the power component. Thus, the last
term in eqn (A.9) can be written, and calculated,
as the right-hand side of
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