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Colin Pennycuick was almost single-handedly responsible for the successful, and continuing,
merger of the engineering and mathematical sciences of aerodynamics and flight mechanics
with ornithology, ecology and bird flight behaviour. He developed a mathematical/
aerodynamical/ecological model of bird flight that could explain and predict bird body and
wing shapes and sizes, and hence flight behaviour over a broad range of length- and time-
scales, for real birds. He sought to bring rigorous quantitative methods to the people, and
insisted that no matter how complex and sophisticated a theoretical model may be, unless it
showed some improvement and advance in its practical utility, then it was of questionable
value. He similarly insisted that model predictions be testable, and that results be openly and
quantifiably given. His approach was marked by two distinct characteristics: first he pioneered
the use of small aircraft and powered and unpowered gliders to follow soaring and migrating
birds in their natural environment, exploiting his top-level pilot skills; second, he invented,
designed and built novel instrumentation for making hitherto unheard-of laboratory and field
measurements. The most well-known were his tilting wind tunnels, in which birds and bats
could be trained to perform steady gliding flight. His intellectually and geographically-broad
range of interests and contacts led to his being a giant influence in theoretical and practical
bird flight mechanics and behaviour, one that is likely to stay with us for many decades.
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4 Biographical Memoirs

Early life

Colin James Pennycuick was born on 11 June 1933 to Marjorie and Brigadier James Alexander
Charles Pennycuick in Windsor, Berkshire. His father joined the Royal Engineers in 1910 and
served with some distinction in the 1914–1918 war, successfully blowing up a bridge in 1914
to save the British Expeditionary Force on their retreat from Mons in France.

At age five Colin flew over Singapore harbour, creating a vivid impression of life as
seen from the air. Colin was educated at Lanesborough Preparatory School (1943–1947)
and Wellington College (1947–1951), where he acquired a taste for bird watching and
photography. He went up to Merton College, Oxford, to read biology (1951–1955), where
he acquired a first in natural sciences and a Christopher Welch Scholarship in 1955. In 1953
he enlisted as Aircraftman Second Class Cadet Pilot in the Oxford University Air Squadron,
graduating to Pilot Officer in 1955 and Flying Officer in 1956. During this time he flew
de Havilland Chipmunks, a general purpose two-seater aircraft that became known for its
aerobatic capabilities.

University education, RAF and postdoctoral studies

While at Merton, in 1954 Colin joined an expedition to Spitsbergen, which is an island north of
Norway in the Arctic; this and a subsequent visit formed the basis of his first two publications
on Brünnich’s guillemots Uria lomvia and on arctic fulmar Fulmarus glacialis (1, 2). From
a steep cliff observation point (figure 1), the soaring behaviour on cliff or wave faces could
be traced (3). Successful flight requires reliable orientation and navigation systems, and Colin
wrote an early paper (4) on how this might be achieved, sparking a lively discussion in the
pages of Nature (5, 6) (see A1 and A2 in the online supplementary material for more detail of
this work).

Colin completed his undergraduate degree in 1959 and then spent three years earning
his PhD in the zoology department, Cambridge, under the supervision of Professor J. W.
S. Pringle (FRS 1954). A series of four papers came from this work (7–10) (see A3 in the
supplementary material), with the overall goal of examining the properties of frog muscle as an
electromechanical system. The mechanical properties of muscles vary considerably according
to loading conditions, cyclic usage and contraction rates. The experiments from Colin’s own
ingenious electromechanical apparatus to investigate them were novel, but it proved difficult
to generalize.

Following award of his PhD in 1962, Colin took a postdoctoral position at the animal
behaviour lab in Madingley, Cambridge, and has described how he trained pigeons to home
on a mobile loft, which he would transport tens of kilometres in any direction to test their
homing performance (62). Though the pigeons successfully adapted to loft movements, it
taught him nothing about navigation other than their quick learning abilities to work out where
they should go given any disruption.

The Bristol years I (1964–1968)

In 1964, Colin began a long association with University of Bristol as a lecturer. He built his
next pigeon loft on the rooftop of the zoology department, and began some investigations (11,
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Figure 1. Expedition to Spitzbergen, 1956. The meaning of the term ‘steep cliff’ in the text is clarified
in the photograph on the right. (Reproduced courtesy S. Pennycuick.) (Online version in colour.)

12) that themselves homed in on what would become his tour de force, the measurement
of flight performance from experiments in his custom-designed and built wind tunnel.
The lineage of muscle performance study continued and, observing that the usual muscle
performance estimates (multiply a mass (simple) by the average estimated power per unit
mass (not at all simple)) were rather approximate, he estimated an upper strength limit by
measuring the breaking strength of the muscle attachment and a lower limit from startle-
response climbing performance of his tame pigeons. The window of muscle performance
was not outlandish, with reasonable safety factors. If muscles are the engines, then we may
regard the bones as the transmission and Colin examined the bone strengths in the pigeon
wing, comparing them with likely loads based on simple stripwise aerodynamic calculations
along the wing planform (12). He found that the safety margins, or load factors, were about
the same as for gliders in current use and also reported that the implied lift coefficient in
mid downstroke in hovering flight would be about 3.4, which greatly exceeded the lifting
performance of known wings and airfoils at equivalent speeds and size.

The Bristol wind tunnel and basic aerodynamic measurements

The flight of insects and birds has long entranced earthbound humans, and the original impulse
to embark on aeronautical adventures was clearly inspired by these living proofs of concept
(cf. Anderson 1997). Early pioneers, such as Marey (1874) and Magnan (1934), had shown
intricate details of the wing motions and sometimes of the resulting airflow too, but these and
all subsequent studies of animal flight did not have control over the air. Just as the Wright
brothers capitalized on systematic tests from their own wind tunnel, so Colin Pennycuick
realized that such a platform was required for systematic and rigorous study. So he built one,
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Figure 2. The Bristol wind tunnel. A bird in training sits on the end of a temporary perch. (Photograph
by Colin Pennycuick; reproduced courtesy S. Pennycuick.)

and was the first to use wind tunnel data and observations to construct an aerodynamic model
of bird flight.

Colin’s custom wind tunnel was designed through programs developed on the first
computer at University of Bristol. There were certain key elements of the design that were
adapted to its use in animal flight studies. First the tunnel was open section, with a blow-
through design. A test subject could be reached and cajoled to fly without great disruption
to the airflow, and if the flight went wrong, the destination would not be in the fan blades
downstream. Second, the entire apparatus could be tilted. This is an unusual feature, but is
critical if gliding flight is to be studied. Gliding in an airstream arriving at some incidence
angle is physically identical with gliding at that descent angle and flight speed through still air.
Finally, the entire apparatus had to be compact so as to fit in a stairwell in the department—the
only space available (figure 2).

Gliding flight is, in principle, much simpler than flapping flight, but had never been studied
in this fashion (see further details in A4 of the online supplementary material). From an
aeronautical point of view, and that of a glider pilot, it is the obvious way to investigate the
aerodynamic foundations of free flight. The ‘free’ is emphasized here because, unlike their
insect counterparts, birds (and later bats) would not and could not be attached to a tether. A
series of landmark papers described the results of the wind tunnel studies and placed them in
a theoretical framework (13–15) that was entirely new to bird flight. Since the experimenter
has control of both the flight speed, U, and the incidence angle of the air, γ (determined
by the tilting of the wind tunnel), then for a given weight W of the test subject, it is rather
straightforward to estimate both lift and drag as

L = W cos γ

D = W sin γ

}
, (1)
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(b)

(a)

(c)

Figure 3. Two images from the first wind tunnel study of bird flight: (a) demonstrates the wing planform
changes in a gliding pigeon from slow speed (top) to high speed (bottom); (b) is the first power curve
estimated for bird flight. There is a pronounced minimum in the flight power required. (From (14),
reproduced with permission from The Company of Biologists Ltd.)

and then the aerodynamic force coefficients are

CL = L

qS

CD = D

qS

⎫⎪⎪⎬
⎪⎪⎭

, (2)

where q = 1/2ρU 2 is the dynamic pressure, ρ is the air density and S is a reference wing area.
Equations (1) and (2) show immediately how the proper experimental design, where for the
first time γ is a known control variable, leads to estimates for the lift and drag coefficients
and their ratio, L/D, which is commonly used as a measure of flight efficiency in aircraft. It
is important to note that these wind tunnel observations were not just exercises in applying
aeronautics to birds, but were informed and guided by the knowledge and intelligence of an
experienced bird-watcher. Colin was well aware of the numerous postures and geometries of
the wings, body, tail and feet that were used in practice (as pre-figured in earlier work (3)),
which is why he knew to look for systematic variations with flight speed (and glide angle,
γ ). The pigeon silhouettes shown in figure 3 have been reproduced and discussed many times
over and remain an instantly recognizable part of his unique imprint in the field.

The primary purpose of the wings is to generate the aerodynamic lift force, L, that supports
the weight, W. The aerodynamic cost of this appears as the drag, D, which slows the aircraft
down or requires it to descend at some angle—when this angle is equal to γ , the flight is in
equilibrium and the speed is constant. Human-engineered aircraft have engines that provide
sufficient thrust to overcome this drag, and then steady and level flight is possible. All the
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glamour of flight is associated with lift, though it is actually the drag that is important in
determining engine thrust, and hence fuel consumption. This remark applies equally to birds
and planes. Lacking separate engines, birds produce both lift and thrust by flapping their
wings, and careful selection of flapping amplitudes and wing pitch and trajectory allow them to
also proceed in level or climbing flight. In fixed wing aircraft, the total drag is often written as

CD = CD,0 + CD,i, (3)

where CD,0 is a constant, determined by the viscous and pressure drags on the body, and CD,i

is an unavoidable drag component that varies with CL. The drag forces (in N) are then

D = qSCD,0 + qSCD,i. (4)

In slow flight, as U decreases, then equation (2) shows that CL must increase, and therefore
so does the induced drag, Di, and its coefficient CD,i. The dynamic pressure, q ∼ U2, and the
consequence is that the first term on the right hand side of equation (4) increases with U, while
the second term decreases. There is an optimum, intermediate speed when D is minimized, and
this is the speed at which flight should occur. For any given flight mission, flight at the lowest
D consumes the smallest amount of fuel. Colin noted that, from the point of view of the bird
and its musculo-mechanical system, the power requirement is also of great importance. The
power, which is the rate of doing work per unit time, can be expressed as P = DU, and Colin
identified three components of the power required for flapping flight:

P = Ppar + Ppro + Pi. (5)

The components Ppar and Pi are the same as the drag terms in equation (4) multiplied by
the flight speed. The new term, Ppro, is required to account for the new drag cost of flapping
the wings. Further details are given in A4 of the online supplementary material, but one of
the main conclusions was that not only is there a speed at which total fuel consumption
is minimized (the minimum drag speed), but there is another, lower speed when the fuel
consumption per unit time is minimized.

The implications and application of the flight theory

The existence of optimum flight speeds, and different ones for minimum power versus
maximum range, opened up a whole new frontier in avian biology with strong implications
for migration and foraging behaviour. In these ground-breaking papers, Colin also outlined
some of the ecological consequences, including the effect of size on the power required, and
the power available for flight. Here we find the first quantitative argument for a maximum size
or weight for a flying bird, as the flight capabilities of hummingbirds, vultures and condors
are considered. The limits are ultimately set by surface area to volume ratios, as the wing
surface area that scales as a length squared (or l2) must support masses that increase as l3.
These arguments were elaborated in some detail, and he noted that, while practical birds may
weigh up to 15 kg, those able to fly at a maximum range speed would be further restricted to
about 6 kg and below (15).

Geese and swans are large birds that migrate successfully using flapping flight (the whooper
swan Cygnus cygnus can weigh up to 15 kg) and the implication was that their aerodynamics
must be more efficient somehow. In this respect it is noteworthy that Colin was at the time
developing active contacts and collaborations at the Slimbridge Wildfowl and Wetlands Trust
(WWT; founded by Sir Peter Scott, who was also a champion-calibre glider pilot). At the
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time of its founding, and for many years after, the appearance of migratory geese and swans at
Slimbridge was a somewhat mysterious phenomenon. Colin’s calculations increased the depth
of the mystery a little more, and his association with WWT remained active for many years,
culminating in a widely-consumed BBC Radio 4 programme in 2008 where the movement
of Speedy, the greater white-fronted goose Anser albifrons, tracked a close path to Colin’s
Cessna 182 while his performance was compared in real-time against predictions from the
flight model.

Nairobi and the Serengeti (1968–1973)

In 1968 Colin moved to take a post as lecturer in the zoology department at the University
of Nairobi, Kenya. In 1967 he had visited the Serengeti Research Institute in neighbouring
Tanzania, and data from East African birds featured prominently in his work (15). His flight
of a Slingsby T31 (which he described as a ‘dreadful’ aircraft) into the Serengeti that year was
the first glider flight in Tanzania. He discovered that local dust devils could be reliable sources
of thermal lift and that this brought him into shared airspace with a large flock of white storks.
The drag on the glider was high enough to bring the overall aerodynamic performance more
or less in line with that of the storks, and the adventure of flying side-by-side with the birds
was born.

When taking up his lecturer position in Nairobi, Colin had brought his wind tunnel along,
which he strung between acacia trees, and he also bought a Piper PA-12 Cruiser for the
princely sum of £400. His new colleagues were initially sceptical, but the Cruiser soon became
an essential instrument for touring around ecological study sites in Kenya, where rudimentary
landing strips cut from the bush were quite common. All the elements were in place: a wind
tunnel for controlled experiments, a glider for following soaring birds and a reliable powered
transport for visiting and understanding the ecosystem as a whole. It remained to convert glider
tracking experiments to quantitative data, so Colin invented a procedure for estimating relative
speeds (both horizontal and vertical components) of the bird with respect to the glider, and then
deriving for the bird a glide polar by reference to the known performance characteristics of
the glider itself (a Schleicher ASK-14 with the canopy removed and a custom camera and
range-finder mount in front of the pilot).

Thermal soaring in vultures

In November 1970 Colin submitted three manuscripts to the Journal of Experimental Biology:
one from glider-based observations of the African white-backed vulture Gyps africanus in free
flight (18), one on the aerodynamic properties of Rüppell’s griffon vulture Gyps rueppellii
from drag measurements of a specimen mounted in the wind tunnel (19), and one on the
gliding flight of the dog-faced bat Rousettus aegyptiacus observed in free gliding flight in the
tunnel (20).

The glide performance measurements were analysed in some detail (18) so as to construct
a glide polar where the sink speed is plotted as a function of forward speed. The polar
reconstructions were not completely straightforward, as corrections had to be made for the
scarcity of data at low forward speeds and high-lift coefficients. Two constants were involved
in the fitting of an aeronautically-consistent curve to the data: a span efficiency factor, k, and
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a parasite drag coefficient, CD,0. The simple form and subsequent analysis is made possible
by these constants, but establishing their value is something of a dark art. The experimental
relationships established by Colin can be used to investigate and/or establish likely lower and
upper bounds, and many of his works in subsequent years took aim, in one way or another,
at these aeronautical quantities. Colin also introduced (18) a question that remains a source
of enquiry, and sometimes dispute, today and can be paraphrased as: why do vultures not
look like albatrosses? He showed that a vulture equipped with albatross aerodynamics ought
to fare better in almost all cases, with the possible exception of very tight turns in small
thermals, and, although explanations for the characteristically splayed wingtips at the end
of rather blunt wing tips are often advanced on grounds of aerodynamic efficiency, the real
reason must have something to do with take-off and landing performance and constraints, and
not purely aerodynamics.

Flight with a wing membrane

The first aerodynamic experiments on a gliding bat built upon a careful examination of the
musculoskeletal and wing system (20). Bat wings are formed from an elastic wing membrane
stretched between elongated digits of the modified hand, and the tension in the wing membrane
supports and transmits the aerodynamic loads to the body. If the tension is released, then the
membrane will balloon out into a non-useful shape and at worst will flap uselessly like a flag.
Bats therefore do not show the same wing planform adaptations to varying speeds as birds, and
glide over a reduced speed range. By contrast the profile section shape at any cut through the
wing in the streamwise direction did show significant variations that were consistent with the
known and unusual aerodynamic characteristics of airfoils at small scale (where, for example,
rough or sharp edges can improve performance by promoting early transition to turbulence),
and were also consistent with requirements for stability in tailless aircraft. The observations
of wing geometry were made using a pair of stereo-cameras, and these photographs would
later be analysed in quantitative fashion using photogrammetric reconstruction techniques (26)
(figure 4). Fifty years later there have been no better, or even further such measurements of
bats in steady gliding flight.

Quantitative observations from a glider

From 1971 to 1973 Colin was installed as deputy director of the Serengeti Research Institute.
A successor to the old Piper Cruiser was used by up to 50 pilots working the area, and
Colin undertook a number of investigations on broader ecological studies, inventing new
measurement techniques from aerial platforms and making quantitative analyses of all kinds
of animal movements. The Serengeti and surrounding rift valley were sites for movements
of immense herds of ungulates as they followed the availability of water and food over large
ranges. Their predators had smaller available range and were thus obliged to lead a more
episodic lifestyle with times of feast and lean pickings.

The motions and intersections of these groups of animals comprise an important component
of the ecosystem as a whole, and Colin continued to observe and measure from his plane and
powered glider (figure 5); 304 hours of flight observations of East African birds were described
(21) in flight performance with respect to the ASK-14, and in general movements following
the large ground-based populations, which are described as a food supply. His remarkable
paper, published in 1972 (21), contains lengthy natural history-type descriptions of the region
and the birds in it, which are then followed by a quite technical analysis and discussion, based
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Figure 4. The three-dimensional geometry of the bat wing membrane in gliding flight. (From (26),
reproduced with permission.)

on the theoretical developments of the likely glide polars (14, 15, 18) and the relative cost of
soaring and flapping flight in large and small birds. The ability to think of the natural world
from these differing viewpoints and to synthesize them is uncommon. From the beginning,
Colin was determined that all mathematical and theoretical treatments should in the end be
about the animal, and should be usable and useful to all studying them. In this spirit, his paper
on the flight of vultures (27) is an equation-free summary of the East African studies.
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Figure 5. Sandy, Colin Pennycuick’s wife, entitled this picture ‘Colin in his element’. (Reproduced
courtesy S. Pennycuick.)

Aircraft make excellent platforms for surveys of animal populations as well as fellow
gliding or soaring birds, and a consistent thread in Colin’s work is to use photography and
careful error analysis to convert images to quantitative data. Several papers show examples
of the efforts to find the correct scale and orientation of photographic instruments (16, 22,
24, 29), and optical methods were proposed to guide and estimate the height of an aircraft
from ground, a necessary first step in then being able to quantify the data (23). Aerial census
data were gathered for pelicans and flamingos (24, 25) and interests in the flamingo were
extended to a quite detailed energy budget calculation made possible by the predictable
behaviour and feeding mechanism (a constant flow rate filtering pump for extracting blue-
green algae from alkaline lakes). When and if sufficient algal concentrations occur, then the
flamingos may breed, but these conditions are local and variable, which explains the nomadic
lifestyle.

Previous observations of white-headed Trigonoceps occipitalis and lappet-faced vultures
Torgus tracheliotus (21) showed a more sparse distribution than their Gyps sp. counterparts,
and one that did not move about following prey concentrations. Rather, these two species
have very low wing loading (Q = W /S where W is the weight and S the wing surface area)
that allows them to operate in weak thermals and efficiently stay aloft, at the expense of
cross-country speed. By staying local and flying early, they can be first at a kill, where
they must soon compete with hyenas and other later-arriving vultures. The distribution of
these two species (30) reflects this feeding–nesting–breeding cycle that is itself a measure of
secondary productivity, and, since the nesting density is quite amenable to aerial census, the
variation of this productivity can be inferred also. Understanding the flight behaviour as part
of the overall ecosystem dynamics was also reflected in studies on facial markings in lions
(17) and on the running mechanics of ungulates (29) (see A5 in the online supplementary
material).

On his return migration to England, Colin outfitted the Piper Cruiser with an extra 55-
gallon fuel tank, parked on the seats normally occupied by passengers. He flew from Nairobi
to Cairo (narrowly avoiding the initial rumblings of the 1973 Yom-Kippur war as he drew up
next to a huge Antonov in his little Piper) to Crete and thence to England, where he re-took a
position as lecturer.
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The Bristol years II (1973–1983)

After returning from Africa in 1973, Bristol became his home base for a decade and Colin
started and became involved in a number of research projects on bird flight. He was promoted
to reader in 1975.

The ornithodolite and the flights of seabirds

In the late 1970s Colin developed the ornithodolite, a direct descendant of the device he
had invented earlier (3). The ornithodolite is a portable, computer-based instrument used
to measure flight speed of birds on short time-scales (33). An optical range finder, azimuth
and elevation axes were all fitted with custom Gray-code discs for LED-photodiode arrays
to convert the information to eight-bit binary form and input into a parallel port on an early
portable computer. A local anemometer was read for estimates of wind speed, and then each
tracking operation, following a target bird, yielded the three-dimensional trajectory and then
local heading and airspeed.

The first field study using the ornithodolite was made during an expedition to Bird Island,
South Georgia, from 1 December 1979 to 23 February 1980 (figure 6), and on the expedition
ship RRS Bransfield to and from South Georgia. The results from this expedition, comprising
about 9300 observations from the previously non-field-tested device, were published in
a seminal paper in Philosophical Transactions of the Royal Society B (34), detailing the
observations of flight speed and behaviour in seabirds, ranging from the 38 g Wilson’s storm
petrel Oceanites oceanicus to the 9 kg wandering albatross Diomedea exulans. All albatrosses
and the giant petrel Macronectes sp. were found to almost never flap their wings whenever
even trace winds were active, making progress through slope soaring or flying in and out of
ocean waves in a zigzag pattern. As Colin noted in his analysis of the gliding flight of the
fulmar petrel (3), dynamic soaring theories of quite some sophistication had been developed
but did not seem to have been closely followed by the actual birds, who instead used a mix of
local wind shear and up-wave slope soaring, extracting energy from the complex and shifting
wave and wind field.

When slope soaring over Bird Island, the albatrosses would fly slower than predicted
(for either minimum power or maximum range) and with statistically significant numbers
of occasions with high estimated lift coefficients that must have been made possible by
unsteady (time-varying) effects and special wing performance from controlled separation,
made possible by drooped leading edge contours. The paper (34) also reported the discovery
of a mechanical lock in the shoulder joint of the albatross wing, significantly reducing the
muscle work required to extend the wing during gliding flight; and for performance at sea, a
quite conservative calculation showed that a fuel fraction of 1% body mass in the wandering
albatross would carry it for about 1000 km over 29 hours, without flapping its locked wings.
The interesting conclusion was reached that larger birds were better suited for long range
due to this shift from flapping to soaring flight. One does not reach this conclusion using the
standard range equations for fixed wing aircraft, where range is independent of size.

The next application of the ornithodolite was during a field trip to Flamenco Island,
Panama, from 21 May to 6 June 1980, where three large, dissimilar species using thermal
soaring were observed to test predictions about climb rate and circling radii in relation to wing
loading (35). Here Colin revisited the question about why bird wing shapes are as they are
(18), now based on quantitative data for the frigatebird Fregata magnificens, brown pelican
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(b)

(a)

Figure 6. Colin Pennycuick with sooty albatross (a) and ornithodolite (b) on Bird Island, South
Georgia. (Reproduced courtesy S. Pennycuick.) (Online version in colour.)

Pelecanus occidentalis and black vulture Coragyps atratus. The longer, pointy wings (with
high AR, b; recall equations (3) and (4); figure 7) allow the frigatebird to remain airborne
day and night, but take-offs from the ground or water surface are not possible. By contrast,
the broader slotted-tip wings of the vulture and pelican allow for such manoeuvres. Both
frigatebird and vulture reached lift coefficients of 1.6 in slope soaring. Such values are not
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Figure 7. Silhouettes of a frigatebird, brown pelican and black vulture, drawn by Colin Pennycuick from
video. This image has provoked many to wonder why wing shapes are the way they are. Some answers
are suggested in his work from which this image was extracted. (Reproduced from (35) with permission
from The Company of Biologists Ltd.)

attainable in standard trimmed wings without auxiliary high-lift devices such as flaps and
slats.

A third expedition was made in the summer of 1986 to Foula, Shetland, where Colin
recorded flight tracks of northern hemisphere seabirds over 11 days. Measurements of
11 species were made, including auks, skuas, gulls, gannet Morus bassanus and shag
Phalacrocorax aristotelis. By comparing flight mode and lift coefficients with those
previously obtained from South Georgia (34), Colin made inferences about the interaction
between speed selection, flight mode and wing shape (39).

These three expeditions and the papers stemming from them generated a very powerful
synthesis of novel instrumentation, careful error and quantitative analysis, and application of
the emerging flight modelling work to understanding and predicting how real birds work. An
example of ornithological outcomes of the data and theory combined (37) showed how scaling
arguments of flight costs and requirements of food provisioning to the growing chick(s) could
be used to develop a quantitative ecological theory of foraging radii and growth rate in petrels
and albatrosses.

The flight theory

In these years Colin was recruited to write a review on bird flight for the scholarly book
series Avian biology (Academic Press). What emerged instead was a 75-page opus entitled
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‘Mechanics of flight’ (28), where Colin developed the first complete version of his general
flight model, including extensive diagrams and tables for the calculation of flight ranges of
birds given only body mass, wing span and fuel ratio. The chapter also discussed the power
available from flight muscles, and the scaling of flight performance with body size in regimes
of flapping, gliding and soaring flight. This book chapter is likely the most widely read account
of bird flight ever written, and it has served as an inroad to the complicated field of animal
flight mechanics for generations of scientists and students.

In October 1977 Colin participated in a conference on bird migration research, held at
Falsterbo, Sweden, and his unorthodox contribution ‘Fifteen testable predictions about bird
flight’ (31) was published in the journal Oikos. This paper, a direct extension of the book
chapter (28), was where Colin worked out quantitative predictions on various aspects of flight
performance and physiology, all derived from flight mechanics. In the paper Colin noted that
‘the theoretical basis of our understanding of bird flight is somewhat rudimentary at the time
of writing, but could be considerably improved if each experimental or observational project
were designed from the outset with the intention of testing some specific prediction from
theory’. In his characteristically clear and crisp language, it was also a gentle but firm reminder
of the inutility of performing what he termed theory-free investigations.

To Sweden

During the conference in Falsterbo in 1977, Colin and Thomas Alerstam (one of the
conference organizers) made plans to study the spring migration of common cranes Grus
grus by combining ground-based observers, surveillance radar, goal-tracking radar and direct
observations from an aircraft (the Piper PA-12). The airplane was piloted by Colin with co-
pilot Alerstam making notes on a map. The cost of flapping flight scales as m7/6, becoming
considerable in larger birds, both in terms of energy requirements and demands on the
musculoskeletal system, and, since common cranes are relatively large birds at 5–6 kg, one
would expect they would find ways to reduce flight costs.

In spring, common cranes depart from the Rügen peninsula in northern Germany and
cross the Baltic Sea by flapping flight, but when entering over land on the Swedish south
coast they revert to cross-country soaring flight. Cranes gain height by circling in thermals
and then convert the potential energy into forward distance. However, unlike storks, that
almost exclusively glide between thermals, cranes extend their inter-thermal flights by bursts
of wingbeats interspersed with gliding. Cranes also maintain nicely ordered formations
both when circling in thermals and during the partially powered glides between them. By
comparing the observations of the cranes’ flight performance against alternative predictions
(31), it was inferred that by pursuing a hybrid flight strategy, involving flapping flight in
cross-country soaring, cranes reduced the energy cost of travelling. It was further argued that
powered flight is the primary mode of flight in common cranes, and that cross-country soaring
represents a more advanced flight mode (32).

Home base and testing theory

Colin’s flight theory was simple and hence practical, a stunning example of the possible
success in the art of engineering approximation to difficult problems in biology. Some of these
approximations were huge; there was no real accounting for the fact that flapping wings only
slightly resemble an infinitely thin disc that (somehow) accelerates air downwards, and there
was no way to include any of the geometric and kinematic details of the wingbeats themselves.
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In the late 1970s Colin assembled a small group of PhD students, K. D. Scholey (KDS) and
Geoffrey R. Spedding (GRS), and a postdoc, J. M. V. Rayner (JMVR), who had arrived fresh
from having completed his own major works on the theoretical basis of flapping flight (Rayner
1979a, b, c). They worked on theoretical models of flapping wing aerodynamics (JMVR),
on measurements of actual air motions created by birds in flight (GRS) and on the detailed
kinematics of the wingbeat cycle (KDS). Further details are in the online supplementary
material (A6), but suffice to say that these efforts and their descendants continue to this day as
the community looks to maintain the balance between realism and simplicity that was making
the existing flight model so effective.

Colin, of course, could not be purely laboratory-based and he was busy renewing contacts
with the WWT Slimbridge group while continuing to attend to glider operations. The field
expeditions included a trip with KDS to the Paracas peninsula, Peru, to observe and film the
soaring flight of condors and turkey vultures Cathartes aura along the coast and up the side
of the Andes (36). The Andean condor Vultur gryphus is large and heavy (wingspan b up to
3.2 m, and mass 11–15 kg for fully-grown males), and almost certainly cannot easily fly at
minimum power speeds, relying instead on predictable winds and slope soaring to commute
between nesting and feeding grounds. The observed behaviours and dependence on ambient
wind were consistent with the analysis and predictions, and it is remarkable that a heavy bird,
so reliant on weather patterns, is viable.

Consideration of the high power requirements of slow flight leads to a conundrum:
how did flight ever start if the costs of getting off the ground are so formidable? Colin’s
flight mechanical arguments naturally lead to a number of apparent constraints and feasible
scenarios about how flight could have evolved, not only in birds, but in insects, pterosaurs
and bats, too. Though it was not a major focus of his work, the flight mechanical arguments
could not be ignored, and Colin advanced detailed arguments (38) on the possible nature of
proto-membranous wings, the development of flight in pterosaurs and bats, and the feathered
wings of later birds. Certain of these threads are discussed in A7 in the online supplementary
material.

Miami, the Caribbean and South America (1983–1992)

In 1982, the migratory impulse again took hold, and Colin was appointed as the second holder
of the Maytag chair of ornithology at the University of Miami, Florida, which now became
a new home base for nine years, 1983–1992. Miami was nicely-located for explorations to
central and south America, to the Caribbean and to various southern States. Here he continued
to publish results based on field campaigns in the Shetlands, but he also initiated new field
studies of the flight performance in birds with the aim of testing predictions from his earlier
theory (31).

Estimating drag and other elusive quantities

During the Miami period Colin coordinated a number of wind tunnel studies and experiments
involving dead and captive birds. The first (42) was an effort to measure the body drag, Dpar,
which has a similar form to the first drag term in equation (4),

Dpar = qSCD,par, (6)
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and is not easily measured, depending on exact details of the surface texture and body
geometry. Though in principle easier to estimate than Dpro of the moving wings (cf. A8),
its accurate estimate raises formidable challenges, particularly at the size and speed range of
birds. The size l and speed U of a moving object combine with the density ρ, and viscosity μ,
to form a dimensionless number, the Reynolds number:

Re = ρUl

μ
. (7)

When Re is the same, the balance of forces between inertial terms and viscous terms in the
governing fluid dynamical equations is the same, and Re in Colin’s paper (42) was reported as
1.5–4.6 × 105. Towards the lower end of this range, especially, estimating drag of even simple
bodies is challenging. The overall goal was to provide coefficients CD,par so that a library of
values could be established for different body shapes (and for different Re at lower Re). Colin
and his team duly mounted frozen (dead) and wingless bird bodies on a drag balance, using
medium to large sized waterbirds and raptors. The library was compiled and used as defaults
in the flight model calculations, but major uncertainties remained concerning the applicability
of dead-body measurements to the in-flight case, even more so when one includes the modified
background flow due to the action of the wings, whether or not they are flapping.

At around this time it was becoming popular to deploy radio transmitters on birds, typically
attached as a back-pack harnessed above and between the shoulders. Perhaps anticipating
the boom of using satellite transmitters in avian biology (1990 and onwards), Colin and his
collaborators measured the potentially detrimental effects to the bird of carrying such devices.
It is not only the addition payload that increases the flight cost, but the additional aerodynamic
drag penalty may be much worse, depending on the streamlining of the transmitter (40, 43).
During the experiments it was noticed that some feathers on the back of the dead bird bodies
fluttered in a way that was not seen on live birds, indicating that the flow separates from
the body. By applying hair spray to prevent the feathers from fluttering, the measured drag
coefficient was reduced by 15%. Ever since this experience, in addition to arguing against the
use of radio transmitters (59), Colin also argued against the utility of measuring dead birds in
wind tunnels, since he believed the results were not good enough.

While in Miami, Colin acquired a Cessna 182 and a 6.7 m Helson sailboat for further
explorations and field studies. One of his PhD students in Miami, F. Schaffner, worked on
the biology and energetics of white-tailed tropicbirds Phaethon lepturus breeding on a small
island about 30 km east of Puerto Rico. As a part of the study, tropicbirds were equipped
with radio transmitters (a tail-mounted configuration was the least disruptive) and could be
tracked by plane to their off-shore foraging locations up to 176 km away from the colony
(46). The field metabolic rate was measured by the doubly labelled water method, suggesting
the birds carrying radio transmitters had significantly increased metabolic rates, although they
had similar foraging success and food provisioning rates to the young as birds without radios.
Since tropicbirds feed by plunge diving, it may be unsurprising that the total metabolic costs
increase with a transmitter attached.

A number of field campaigns involving ornithodolite measurements were carried out at
various locations in the continental USA, including from the sailboat in the Everglades,
Florida, which introduced a new method to estimate the lift to drag ratio (L/D) from combined
measurements of flight speeds and video recordings of the wingbeat kinematics. The new
analysis exploited the finding that the wake disturbance of a bird in cruising flight seemed
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to consist of a continuously undulating wake with constant strength (Spedding 1987). In that
case the main asymmetry in the down- and upstrokes of a wingbeat cycle required to produce
a net positive thrust was produced just by having a reduced span on the upstroke. The wing is
otherwise loaded continuously, operating at the same effective lift coefficient.

Given this model system, Colin then realized that the drag could be simply related to the
ratio of span extension in the down- and upstrokes (44), so he measured these in double-crested
cormorants, Phalacrocorax auritus, filmed from close to head-on as they left their mangrove
island roost to feed. L/D calculated from the span-ratio analysis came out to be around 15,
a quite respectable number for a flying device at this scale. It is also higher than a value of
9, which would have been predicted by default settings on the flight model; something was
wrong somewhere. Plausible variations in various constants and parameter values in the flight
model could not close the gap, and it was noted that the flight model estimates, if based on
too low a value of L/D, would then predict too high a value of the mechanical flight power
required, P.

Wings that flap

As may be expected from the search for correct drag coefficients, there is plenty of room for
error and refinement in all the components of P in equation (5), and the studies described in this
period took aim at each one in turn. In particular, Colin made a number of efforts to account
for the fact that bird wings actually flap. One approach was to compile a database of flapping
frequencies and amplitudes, and this is what Colin did (45). The exercise (detailed in A9 in the
online supplementary material) yielded a handy formula from which the wingbeat frequency
could be predicted for any unknown bird, given its mass, wingspan and wing area. This kind
of result was important because very often an ornithologist wishing to generate predictions
from the flight model would not have all the data required, so the model, combined with a
database of careful and verified measurements, is the key to its success in the field.

Flight: the software

During the Miami years Colin continued to amend and extend his flight mechanical model
through wind tunnel studies, and he also made an effort to popularize the flight model by
publishing the landmark book Bird flight performance: a practical calculation manual (44),
which was accompanied by a five-inch floppy disk in a pocket on the inside cover. On the
floppy disk were simple programs written in Visual Basic that could be run as is, using defaults
and the databases compiled and/or verified by the author, or they could be modified to taste.
The broad distribution and transparency of the methods and data behind the predictions was
a turning point in the reach of bird biology, paving the way for a wide audience to introduce
themselves and their students to the productive interface between biomechanics, physiology
and ecology. In new editions, the disk shrank to 3.5 inches, and ultimately the software moved
to a web-based platform. The program was called Flight and it was carefully maintained,
nurtured and updated over the years. The last official book that explicitly centred on Flight
was a very extensive update in 2008 (57). It can be found on the bookshelves of amateur
ornithologists and professional aerospace engineers, and has had as profound an influence as
any publication in bird flight.

Before leaving Miami to move back to Britain, Colin had the Cessna modified to carry
400 L of fuel (the range of a bird and of an aircraft depends on the fuel fraction) and took off on
the homeward migration, with first stopover in West Greenland (figure 8). Here, Colin helped
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Figure 8. Colin and Cessna ca 1992 on his migration from Miami to the UK via Greenland and Iceland,
a track that was later followed by Speedy, the Greenland white-fronted goose. (From (62), used with
permission from the Pennycuick family.) (Online version in colour.)

American colleagues to track radio-tagged Peregrines Falco peregrinus for a few weeks
before setting off on 4 August 1992 from Kangerlussuaq, across the Greenland inland ice and
Denmark strait to arrive at Reykjavik, Iceland, after a 6.5-hour nonstop flight. From Iceland he
finally arrived in Bristol after an impressive solo flight, sub-divided into multiple flight steps
and stopover interludes, much as the birds carry out their own long-distance migration. Bristol
would become his base for the rest of his life.

The Bristol years III (1992–2015)

Upon his third arrival in Bristol, Colin became an associated research professor at the
Department of Zoology, and promptly married Sandy (with whom he co-authored his last
publication) and settled into his new/old home base of Bristol. Colin’s version of settling did
not exclude continued explorations of bird migrations, as he renewed connections with WWT
at Slimbridge and also embarked on an extensive collaboration with Lund University, Sweden.

A new wind tunnel at Lund

While still in Miami, plans for a novel wind tunnel specially designed for experiments
with live birds were already underway, and these took more concrete form as he plotted
with Thomas Alerstam at Lund. An engineering company based in Sweden, Rollab AB,
and its chief engineer, John Rosén, were engaged in the design plans, which resulted in
a document to form the foundation of a grant application. A private research foundation,
the Knut and Alice Wallenberg foundation, judged the application favourably and decided
to provide the necessary monetary resources for the new wind tunnel. At the time, Lund
University was constructing a new building for the ecology department, and, thanks to an
economic depression and decreasing construction costs in its wake, an annex to the new
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ecology building could be accommodated within the original budget. Both the housing and
the tunnel were ready in the autumn of 1994, marking the start of a new era in animal flight
studies.

The tunnel design made use of lessons learned in the early Bristol experiments (13).
Three critical features were: 1) a blow-down configuration with open-ended test section for
introducing and training test subjects; 2) a tilting mechanism so either steady climbing or
gliding flight could be investigated; and 3) low turbulence levels, typically <0.05% of the
mean freestream, the importance of which was beginning to be more clearly understood. The
technical specifications were documented in detail (50), also something of a first.

Wingbeat frequencies and further estimates of drag: what could be wrong?

At first, the instrumentation was sparse, but Colin’s understanding of the steps needed to
encourage steady and reliable flights led to early well-controlled flights, and, in keeping with
the attention on real wingbeat kinematics, a flap-o-meter was designed to measure wingbeat
frequencies. The flap-o-meter consisted of a rotating plastic cylinder with four opposing
holes through which the bird could be observed, and when the wings appear motionless, the
frequency of the rotating holes matches the wingbeat frequency. The wingbeat frequency of
two species (a thrush nightingale Luscinia luscinia and a teal Anas crecca) was measured and
showed a parabolic relationship with airspeed, with a clearly defined minimum in each case
(47). Based on Colin’s earlier arguments (28), the speed for minimum f (U) ought to coincide
with minimum power speed, but they did not, as predicted values from the flight model were
only about two-thirds of the observed speeds and the birds were very reluctant to even fly at the
predicted speeds. Again, something was wrong, and attention turned to the various parameters
in the flight model, and in particular the body drag coefficients that had hitherto been obtained
from dead bodies mounted in wind tunnels of various kinds. If CD,par were reduced by more
than a factor of four, from default values of 0.4 to 0.08, then the kinematic data and model
predictions matched. There were already reasons to suspect drag data, such as from Colin’s
work on large waterfowl and raptors (42), so the default value in the flight model was duly
adjusted downwards.

A central theme in Colin’s research had been to predict the power required for a bird to
fly and then to use empirical measurements to refine the flight mechanical theory (14, 28,
31, 44, 48, 51, 57). In viewing high-speed videos of a swallow Hirundo rustica flying in
the Lund wind tunnel, Colin noticed that the body bobbed up and down in phase with the
wingbeat. Since the mass is known, the vertical acceleration gives the vertical force applied
by the wing at the shoulder joint, and, by measuring the moment arm and angular velocity of
the humerus from the videos, the work done by the flight muscle could be estimated. The work
done per unit time (dividing the cycle total by the wingbeat period) is another independent
estimate of mechanical power (53). Estimating power in this way yielded higher values than
if calculated from the theory using the now-standard body drag coefficient CD,par = 0.1, while
CD,par = 0.26 matched the measurements. More recent estimates from visualizations of the
wake in a jackdaw Corvus monedula suggest that CD,par is likely near 0.2 (Klein Heerenbrink
et al. 2016), and considering the ornamental tail streamers of a swallow a value of CD,par above
0.2 seems at least possible.

Incessantly chasing elusive drag coefficients in different conditions is an unsatisfactory
process that may not necessarily converge. Measuring precise quantities in animal flight is not
easy, and if we suppose an optimum, trimmed, minimum drag condition for any given speed,
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then any departures will draw estimates away, often to higher inferred values of aerodynamic
constants, which themselves may not necessarily be constant. When and if a flight model
informs us about the natural ecology, then it can be said to be useful, even if not an unreachably
100% accurate. Colin realized all this, of course, and the wind tunnel experiments devised
to test various elements of the flight equations were conducted while much broader field
expeditions were also in play.

Long-distance migration

In the broad spectrum of flight behaviour, ranging from assisted hops between tree branches
to critical tests of range or endurance, it is in long migrations with their fixed purpose
and incentives for fuel economy that we may expect to find the most strict adherence to a
model that predicts a strategy to optimize over available parameters, such as course selection,
wingbeat frequency and flight speed itself. The advent of satellite-based tracking systems
with small(ish) transmitters allowed continuous monitoring of certain predictable migrations,
first involving the whooper swan migrating between Iceland and Britain (49) (see A10 of
the supplementary material). The swans were found to select flight conditions consistent with
using a visible horizon for navigation (52). Optimal strategies and conditions change during
the course of a long flight as fuel is consumed and the mass decreases accordingly, and changes
were made to the Flight program so that incremental variations could be included step-by-step
as a long flight progressed. The program was successfully deployed in tracking and describing
the flight of the bar-tailed godwit Limosa lapponica baueri over 11 000 km flights from Alaska
to New Zealand, and of the 5420 km spring migration of the greater knot Calidris tenuirostris
from Australia to China (55).

Although it is important to understand that there is no aerodynamic magic at play, such
feats are extraordinary to behold, and a successful radio programme on the BBC, World on
the Move, followed three different species of geese as they travelled north from their home
base in Slimbridge to Greenland, Iceland and then Spitzbergen (see A11 in the supplementary
material). The track through the equations of the flight model was followed simultaneously
with their tracked progress, and it was noted that there seemed to be strong incentive to
arrive on time or early at a destination, when the richest food rewards would first be available
(58). This emphasis on speed over fuel economy mimics in some respects the scheduling and
operation of commercial passenger transports.

It is tempting to draw such analogies with our human-engineered systems, and with other
modes of locomotion in nature: how do the costs of flight compare with those of swimming, or
running? To address such a question, a rational measure must be defined, and a dimensionless
cost of transport can be expressed as

Ct = P

WU
. (8)

P is the power required for transport (overcoming all resistive forces) at speed U for a device
with weight W. Over all human-engineered systems, Ct is highest for flight, but flight is the
only way to achieve high speeds (Gabrielli & von Karman 1950). The lowest costs are incurred
by ships, where W is supported with no effort. Similarly in the animal kingdom, Ct is lowest
among comparably sized animals for swimming, highest for running and then intermediate for
flying. Ct for all locomotion decreases as size increases, so covering ground (or water) over a
reasonable time seems to favour large- or medium-sized birds. Colin considered such transport
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Figure 9. Colin was happiest when in the field, following his passions. Here he is looking completely
content while sitting on the side of a hill in Iceland in 1995. (Photograph by Sverrir Thorstensen.)
(Online version in colour.)

costs, and, being careful to account correctly for various chemical–mechanical conversion
efficiencies, invented a performance number, which is otherwise the reciprocal of Ct (41, 56).
Further detail is given in A12 in the online supplementary material.

The last migrations

One of the enduring objectives of Colin and his flight model was to predict and understand
flight and migratory strategies of birds and to frame the speed and trajectory selection in
overall ecological context. An underlying assumption is that body shapes, sizes and behaviour
are strongly selected for energetically efficient solutions, for high N, but that variations due
to ambient winds and turbulence, and to other physical and ecological imperatives (does the
male plumage look good to the female?), can be expected to occasionally trump the model
imperatives (e.g. (48, 51); Hedenström & Alerstam 1995). As good quality measurements
accumulated over species, so the instrumentation has improved. The range finder in the
ornithodolite was replaced with a Vector, a high-quality pair of 7×42 binoculars with built-in
laser range finder, a magnetic compass and an angular elevation sensor and deployed in two
studies at bird migration hotspots in southern Sweden, Falsterbo and Ottenby. The data served
as a basis for evaluating the consequences on optimal flight speeds of bounding flight and tail
wind (54) and, inevitably, the effect of body size on migratory flight speed (60).

Towards the end of his working life, Colin’s movements became slightly more localized,
but he and his VW camper van were frequently spotted in the cargo bay of the Lund
wind tunnel, at whooper swan catch sites in Iceland (figure 9) and, of course, at the WWT
Slimbridge. He continued to write in direct and thought-provoking style (61) and his last
publication (62) was a book, co-authored with his wife Sandy, documenting his years
following the birds, from the East African years onwards.
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Overall assessment

Colin Pennycuick was a singular individual, who revolutionized the study of flying birds in a
way that is unlikely to be repeated. His pioneering field studies in small planes and gliders,
his novel wind tunnel constructions and experiments, his formulation of a flight model that
was just complicated enough to claim to be based on physics, but simple enough to actually
be used, his continued invention of new instrumentation and, finally, his democratization of
his research by reaching out to all communities through clearly-written manuals to freely-
distributed computer codes, are all significant achievements. Together, the scope and influence
is hard to circumscribe. For many years, his life and travels read like a Boy’s own comic
book, but in real life, and throughout that life, he maintained a youthful enthusiasm that was
infectious and stimulating. He was rigorous and, when it was appropriate, mathematical in
his thought, but he was always fair, ready to abandon ideas when faced with contradictory
evidence and ready to listen to new ones. Perhaps owing to these characteristics, his work
has often spawned more questions than answers, and generations of researchers will find
inspiration in the pages of his articles, and in his books (see A13 of the online supplementary
material).

Colin Pennycuick has had a lasting and indelible impact on the academic community, and
on those simply fascinated with birds. We offer this memoir partly as an accounting of some
of this influence and partly in the hope that it will further inspire more inquisitive and curious
minds.

Awards

1955 Christopher Welch Scholarship, Merton College, Oxford
1978 Corresponding Fellow of the American Ornithologists’ Union
1983 Maytag Professor of Ornithology at University of Miami
1990 Fellow of the Royal Society
1996 Honorary Doctorate, Lund University

Additional material

Additional material relating to the life and work of Colin Pennycuick is supplied in an online
supplement, which is available at https://doi.org/10.1098/rsbm.2021.0023. This contains
Appendices A1–A14, which provide more detail on his research, information about his
published works and some examples of his appealing writing style.

An extended version of this memoir can be found at http://ame-dept.usc.edu/docs/
spedding/CJP-Obit-bioRxiv.pdf.
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Author profiles

Geoffrey Spedding
Geoffrey Spedding took his undergraduate degree in Zoology at the University of Bristol in the years 1975–1978. In
his second year of study, he took a course in Animal Mechanics, taught by Colin Pennycuick. Here we learned why
elephants do not look like scaled-up versions of mice, why all animals run at the same speed, and why birds are, in
fact, helicopters. These exciting and novel ideas completely transformed his career trajectory, and in 1978 he began
a PhD under CJP’s supervision, on the aerodynamics of bird flight. The PhD was finished in 1981, and he moved to
the University of Southern California for postdoctoral studies with Tony Maxworthy, on mechanical models of insect
wings. Surrounded by exotic experiments on geophysical fluid dynamics, he acquired a taste for tightly controlled,
quantitative experiments in fluid flows and has worked on them ever since. CJP was responsible for his eventual
re-surfacing in the biology world and made introductions to the Lund University group. The Lund wind tunnel had
just been completed, and he and co-author (AH) worked together on new, quantitative experiments on bird and bat
flight. All the while CJP was coming and going, keeping a watchful eye, enthusiastically (and patiently) awaiting
developments and outputs. The collaborations and our enthusiasm, stemming from his, continue to this day.

Anders Hedenström
Anders Hedenström took his BSc in Biology at Lund University, Sweden in 1990, and started his PhD trajectory on
the ecology of bird flight in the same year under the supervision of Thomas Alerstam. The starting point was Colin
Pennycuick’s 1975 book chapter on ‘Mechanics of flight’ in Avian Biology, where, based on aerodynamic principles
in combination with optimality reasoning, he had developed theory about flight and migration strategies in different
ecological contexts. It was during these years that CJP became a regular visitor to Lund, both for field projects with
his ornithodolite and his Cessna 182, and to make plans for a new wind tunnel dedicated to animal flight research.
After postdoctoral studies in Cambridge with Charlie Ellington FRS, he returned to Lund University to start his own
research programme on animal flight and migration with the then new wind tunnel as main infrastructure. CJP was a
regular visitor until 2015, which was not only a great inspiration, but also yielded tangible outputs (50, 53). This work
continues to this day with the aim of improving models of migration strategies and to link flight mechanics and flight
metabolism. In September 2012, CJP and his wife Sandy came to Öland, Sweden, to install a new ornithodolite. This
was during the migration season and two weeks of intense field work resulted in a research paper (60). The collected
work of CJP will remain an inspiration and immediate point of departure for many years to come.

References to other authors

Anderson, J. D. 1997 A history of aerodynamics. Cambridge University Press.
Gabrielli, G. & von Karman, T. 1950 What price speed? Specific power required for propulsion of vehicles. Mech.

Eng. (ASME) 72, 775–781.
Hedenström, A. & Alerstam, T. 1995 Optimal flight speed of birds. Phil. Trans. R. Soc. Lond. B 348, 471–487.

(doi:10.1098/rstb.1995.0082)
Klein Heerenbrink, M., Warfvinge, K. & Hedenström, A. 2016 Wake analysis of aerodynamic components for the

glide envelope of a jackdaw (Corvus monedula). J. Exp. Biol. 219, 1572–1581. (doi:10.1242/jeb.132480)
Magnan, A. 1934 La locomotion chez des animaux. I. Le vol des insects. Paris: Hermann et Cle.
Marey. E. J. 1874 Animal mechanism: a treatise on terrestrial and aerial locomotion. London: King.
Rayner, J. M. V. 1979a A vortex theory of animal flight. I: the vortex wake of a hovering animal. J. Fluid Mech. 91,

697–730. (doi:10.1017/S0022112079000410)
Rayner, J. M. V. 1979b A vortex theory of animal flight. II: the forward flight of birds. J. Fluid Mech. 91, 731–763.

(doi:10.1017/S0022112079000422)
Rayner, J. M. V. 1979c A new approach to animal flight mechanics. J. Exp. Biol. 80, 17–54. (doi:10.1242/jeb.80.1.17)
Spedding, G. R. 1987 The wake of a kestrel (Falco tinnunculus) in flapping flight. J. Exp. Biol. 127, 59–78.

(doi:10.1242/jeb.127.1.59)

http://dx.doi.org/10.1098/rstb.1995.0082
http://dx.doi.org/10.1242/jeb.132480
http://dx.doi.org/10.1017/S0022112079000410
http://dx.doi.org/10.1017/S0022112079000422
http://dx.doi.org/10.1242/jeb.80.1.17
http://dx.doi.org/10.1242/jeb.127.1.59


26 Biographical Memoirs

Bibliography

The following publications are those referred to directly in the text. A full bibliography is available as electronic
supplementary material at https://doi.org/10.6084/m9.figshare.c.5614089.

(1) 1956 Observations on a colony of Brünnich’s guillemot Uria lomvia in Spitsbergen. Ibis 98, 80–99.
(doi:10.1111/j.1474-919X.1956.tb03031.x)

(2) 1959 (With D. Webbe) Observations on the fulmar in Spitsbergen. Br. Birds 52, 321–332.
(3) 1960 Gliding flight in the fulmar petrel. J. Exp. Biol. 37, 330–338. (doi:10.1242/jeb.37.2.330)
(4) The physical basis of astro-navigation in birds: theoretical considerations. J. Exp. Biol. 37, 573–593.

(doi:10.1242/jeb.37.3.573)
(5) Sun navigation by birds. Nature 188, 1127–1128. (doi:10.1038/1881127a0)
(6) 1961 Sun navigation by birds. Nature 190, 1026. (doi:10.1038/1901026a0)
(7) 1964 Frog fast muscle. I: mechanical power in isotonic twitches. J. Exp. Biol. 41, 91–111.

(doi:10.1242/jeb.41.1.91)
(8) Frog fast muscle. II: a method of measuring internal series of compliance. J. Exp. Biol. 41, 113–118.

(doi:10.1242/jeb.41.1.113)
(9) Frog fast muscle. III: twitches with isometric and inertial load. J. Exp. Biol. 41, 273–289.

(doi:10.1242/jeb.41.2.273)
(10) Response of fast muscle fitness to series of impulses. J. Exp. Biol. 41, 291–298.

(doi:10.1242/jeb.41.2.291)
(11) 1966 (With G. A. Parker) Structural limitations on the power output of the pigeon’s flight muscles. J. Exp.

Biol. 45, 489–498. (doi:10.1242/jeb.45.3.489)
(12) 1967 The strength of the pigeon’s wing bones in relation to their function. J. Exp. Biol. 46, 219–233.

(doi:10.1242/jeb.46.2.219)
(13) 1968 A wind-tunnel study of gliding flight in the pigeon Columba livia. J. Exp. Biol. 49, 509–526.

(doi:10.1242/jeb.49.3.509)
(14) Power requirements for horizontal flight in the pigeon Columba livia. J. Exp. Biol. 49, 527–555.

(doi:10.1242/jeb.49.3.527)
(15) 1969 The mechanics of bird migration. Ibis 111, 525–556. (doi:10.1111/j.1474-919X.1969.tb02566.x)
(16) Methods of using light aircraft in wildlife biology. East African Agri. Forest. J. 34, 24–29.

(doi:10.1080/00128325.1969.11662343)
(17) 1970 (With J. Rudnai) A method of identifying individual lions Panthera leo with an analysis of the

reliability of identification. J. Zool. 160, 497–508. (doi:10.1111/j.1469-7998.1970.tb03093.x)
(18) 1971 Gliding flight of the white-backed vulture. Gyps africanus. J. Exp. Biol. 55, 13–38.

(doi:10.1242/jeb.55.1.13)
(19) Control of gliding angle in Rüppell’s Griffon vulture Gyps Ruppellii. J. Exp. Biol. 55, 39–46.

(doi:10.1242/jeb.55.1.39)
(20) Gliding flight of the dog-faced bat Rousettus aegyptiacus observed in a wind tunnel. J. Exp. Biol. 55,

833–845. (doi:10.1242/jeb.55.3.833)
(21) 1972 Soaring behaviour and performance of some east African birds, observed from a motor glider. Ibis

114, 178–218. (doi:10.1111/j.1474-919X.1972.tb02603.x)
(22) (With D. Western) An investigation of some sources of bias in aerial transect sampling of large

mammal populations. African J. Ecol. 10, 175–191. (doi:10.1111/j.1365-2028.1972.tb00857.x)
(23) 1973 The shadowmeter: a simple device for controlling an aircraft’s height above the ground. E. African J.

Ecol. 11, 109–112. (doi:10.1111/j.1365-2028.1973.tb00076.x)
(24) (With G. A. Bartholomew) The flamingo and pelican populations of the Rift Valley lakes in 1968–69.

African J. Ecol. 11, 189–198. (doi:10.1111/j.1365-2028.1973.tb00082.x)
(25) (With G. A. Bartholomew) Energy budget of the lesser flamingo (Phoeniconaias minor Geoffroy).

African J. Ecol. 11, 199–207. (doi:10.1111/j.1365-2028.1973.tb00082.x)
(26) Wing profile shape in a fruit-bat gliding in a wind tunnel, determined by photogrammetry. Periodicum

Biologurum 75, 77–82.

https://doi.org/10.6084/m9.figshare.c.5614089
http://dx.doi.org/10.1111/j.1474-919X.1956.tb03031.x
http://dx.doi.org/10.1242/jeb.37.2.330
http://dx.doi.org/10.1242/jeb.37.3.573
http://dx.doi.org/10.1038/1881127a0
http://dx.doi.org/10.1038/1901026a0
http://dx.doi.org/10.1242/jeb.41.1.91
http://dx.doi.org/10.1242/jeb.41.1.113
http://dx.doi.org/10.1242/jeb.41.2.273
http://dx.doi.org/10.1242/jeb.41.2.291
http://dx.doi.org/10.1242/jeb.45.3.489
http://dx.doi.org/10.1242/jeb.46.2.219
http://dx.doi.org/10.1242/jeb.49.3.509
http://dx.doi.org/10.1242/jeb.49.3.527
http://dx.doi.org/10.1111/j.1474-919X.1969.tb02566.x
http://dx.doi.org/10.1080/00128325.1969.11662343
http://dx.doi.org/10.1111/j.1469-7998.1970.tb03093.x
http://dx.doi.org/10.1242/jeb.55.1.13
http://dx.doi.org/10.1242/jeb.55.1.39
http://dx.doi.org/10.1242/jeb.55.3.833
http://dx.doi.org/10.1111/j.1474-919X.1972.tb02603.x
http://dx.doi.org/10.1111/j.1365-2028.1972.tb00857.x
http://dx.doi.org/10.1111/j.1365-2028.1973.tb00076.x
http://dx.doi.org/10.1111/j.1365-2028.1973.tb00082.x
http://dx.doi.org/10.1111/j.1365-2028.1973.tb00082.x


Colin James Pennycuick 27

(27) The soaring flight of vultures. Sci. Am. 229, 102–109. (doi:10.1038/scientificamerican1273-102)
(28) 1975 Mechanics of flight. In Avian biology, vol. 5 (ed. D. S. Farner, J. R. King & K. C. Parkes), pp. 1–75.

New York: Academic Press.
(29) On the running of the gnu (Connochaetes taurinus) and other animals. J. Exp. Biol. 63, 775–799.

(doi:10.1242/jeb.63.3.775)
(30) 1976 Breeding of the lappet-faced and white-headed vultures (Torgos tracheliotus Forster and

Trigonoceps occipitalis Burchell) on the Serengeti plains, Tanzania. African J. Ecol. 14, 67–84.
(doi:10.1111/j.1365-2028.1976.tb00153.x)

(31) 1978 Fifteen testable predictions about bird flight. Oikos 30, 165–176. (doi:10.2307/3543476)
(32) 1979 (With T. Alerstam & B. Larsson) Soaring migration of the common crane Grus grus observed by radar

and from aircraft. Ornis Scand. 10, 241–251. (doi:10.2307/3676347)
(33) 1982 The ornithodolite: an instrument for collecting large samples of bird speed measurements. Phil. Trans.

R. Soc. Lond. B 300, 61–73. (doi:10.1098/rstb.1982.0157)
(34) The flight of petrels and albatrosses (Procellariformes), observed in South Georgia and its vicinity.

Phil. Trans. R. Soc. Lond. B 300, 75–106. (doi:10.1098/rstb.1982.0158)
(35) 1983 Thermal soaring compared in three dissimilar tropical bird species, Fregata magnificens, Pelecanus

occidentalis and Coragyps atratus. J. Exp. Biol. 102, 307–325. (doi:10.1242/jeb.102.1.307)
(36) 1984 (With K. D. Scholey) Flight behavior of Andean condors Vultur gryphus and turkey

vultures Cathartes aura around the Paracas Peninsula, Peru. Ibis 126, 253–256.
(doi:10.1111/j.1474-919X.1984.tb08005.x)

(37) (With J. P. Croxall & P. A. Prince) Scaling of foraging radius and growth rate in petrels and albatrosses
(Procellariiformes). Ornis Scand. 15, 145–154. (doi:10.2307/3675955)

(38) 1986 Mechanical constraints on the evolution of flight. Mem. Calif. Acad. Sci. 8, 83–98.
(39) 1987 Flight of auks (Alcidae) and other Northern seabirds compared with Southern Procellariiformes:

ornithodolite observations. J. Exp. Biol. 128, 335–347. (doi:10.1242/jeb.128.1.335)
(40) (With M. R. Fuller) Considerations of effects of radio-transmitters on bird flight. In Biotelemetry IX:

proceedings of the ninth international symposium on biotelemetry, vol. 16 (ed. H. P. Kimmich & M. R.
Neuman), pp. 327–330. Braunschweig: Doring-Druck.

(41) Cost of transport and performance number, on earth and other planets. In Comparative physiology:
life in water and on land, Fidia Research series vol. 9 (ed. P. Dejours, L. Bolis, C. R. Taylor &
E. R. Weibel), pp. 371–386. Padova: IX-Liviana Press.

(42) 1988 (With H. H. ObrechtIII & M. R. Fuller) Empirical estimates of body drag of large waterfowl and
raptors. J. Exp. Biol. 135, 253–264. (doi:10.1242/jeb.135.1.265)

(43) (With H. H. ObrechtIII & M. R. Fuller) Wind tunnel experiments to assess the effect of back-mounted
radio transmitters on bird body drag. J. Exp. Biol. 135, 265–273. (doi:10.1242/jeb.135.1.265)

(44) 1989 Bird flight performance: a practical calculation manual. Oxford University Press.
(45) 1990 Predicting wingbeat frequency and wavelength of birds. J. Exp. Biol. 200, 171–185.
(46) (With F. C. Schaffner, M. R. Fuller, H. H. ObrechtIII & L. Sternberg) Foraging flights of the white-

tailed tropicbird (Phaethon lepturus): radio tracking and doubly-labelled water. Col. Waterbirds 13,
96–102. (doi:10.2307/1521574)

(47) 1996 (With M. Klaassen, A. Kvist & Å. Lindström) Wingbeat frequency and the body drag anomaly: wind-
tunnel observations on a thrush nightingale (Luscinia luscinia) and a teal (Anas crecca). J. Exp. Biol.
199, 2757–2765. (doi:10.1242/jeb.199.1.57)

(48) Wingbeat frequency of birds in steady cruising flight: new data and improved predictions. J. Exp. Biol.
199, 1613–1618. (doi:10.1242/jeb.199.7.1613)

(49) (With O. Einarsson, T. A. M. Bradbury & M. Owen) Migrating whooper swans Cygnus cygnus:
satellite tracks and flight performance calculations. J. Avian Biol. 27, 118–134. (doi:10.2307/3677141)

(50) 1997 (With T. Alerstam & A. Hedenström) A new low-turbulence wind tunnel for bird flight experiments at
Lund University, Sweden. J. Exp. Biol. 200, 1441–1449. (doi:10.1242/jeb.200.10.1441)

(51) Actual and ‘optimum’ flight speeds: field data reassessed. J. Exp. Biol. 200, 2355–2361.
(doi:10.1242/jeb.200.17.2355)

http://dx.doi.org/10.1038/scientificamerican1273-102
http://dx.doi.org/10.1242/jeb.63.3.775
http://dx.doi.org/10.1111/j.1365-2028.1976.tb00153.x
http://dx.doi.org/10.2307/3543476
http://dx.doi.org/10.2307/3676347
http://dx.doi.org/10.1098/rstb.1982.0157
http://dx.doi.org/10.1098/rstb.1982.0158
http://dx.doi.org/10.1242/jeb.102.1.307
http://dx.doi.org/10.1111/j.1474-919X.1984.tb08005.x
http://dx.doi.org/10.2307/3675955
http://dx.doi.org/10.1242/jeb.128.1.335
http://dx.doi.org/10.1242/jeb.135.1.265
http://dx.doi.org/10.1242/jeb.135.1.265
http://dx.doi.org/10.2307/1521574
http://dx.doi.org/10.1242/jeb.199.1.57
http://dx.doi.org/10.1242/jeb.199.7.1613
http://dx.doi.org/10.2307/3677141
http://dx.doi.org/10.1242/jeb.200.10.1441
http://dx.doi.org/10.1242/jeb.200.17.2355


28 Biographical Memoirs

(52) 1999 (With T. A. M. Bradbury, O. Einarsson & M. Owen) Response to weather and light conditions of
migrating whooper swans Cygnus cygnus and flying height profiles, observed with the Argos satellite
system. Ibis 141, 434–443. (doi:10.1111/j.1474-919X.1999.tb04412.x)

(53) 2000 (With A. Hedenström & M. Rosén) Horizontal flight of a swallow (Hirundo rustica) observed in a wind
tunnel, with a new method for directly measuring mechanical power. J. Exp. Biol. 203, 1755–1765.
(doi:10.1242/jeb.203.11.1755)

(54) 2001 Speeds and wingbeat frequencies of migrating birds compared with calculated benchmarks. J. Exp.
Biol. 204, 3283–3294. (doi:10.1242/jeb.204.19.3283)

(55) 2003 (With P. F. Battley) Burning the engine: a time-marching computation of fat and protein
consumption in a 5420-km non-stop flight by great knots, Calidris tenuirostris. Oikos 103, 323–332.
(doi:10.1034/j.1600-0706.2003.12124.x)

(56) The concept of energy height in animal locomotion: separating mechanics from physiology. J. Theor.
Biol. 224, 189–203. (doi:10.1016/S0022-5193(03)00157-7)

(57) 2008 Modeling the flying bird, Theoretical Ecology series vol. 5. New York: Academic Press.
(58) 2011 (With L. R. Griffin, K. Colhoum & R. Angwin) A trial of a non-statistical computer program for

monitoring fuel reserves, response to wind and other details from GPS tracks of migrating geese.
J. Ornithol. 152, 87–99. (doi:10.1007/s10336-010-0633-6)

(59) 2012 (With P. L. F. Fast, N. Ballerstädt & N. Rattenborg) The effect of an external transmitter on the
drag coefficient of a bird’s body, and hence on migration range, and energy reserves after migration.
J. Ornithol. 153, 633–644. (doi:10.1007/s10336-011-0781-3)

(60) 2013 (With S. Åkesson & A. Hedenström) Air speeds of migrating birds observed by ornithodolite
and compared with predictions from flight theory. J. R. Soc. Interface 10, 20130419.
(doi:10.1098/rsif.2013.0419)

(61) 2015 The flight of birds and other animals. In Aerospace, vol. 2 (ed. K. Kontis), pp. 505–523. Bristol: School
of Biological Sciences, University of Bristol.

(62) 2015 (With S. Pennycuick) Birds never get lost. Leicestershire: Matador.

http://dx.doi.org/10.1111/j.1474-919X.1999.tb04412.x
http://dx.doi.org/10.1242/jeb.203.11.1755
http://dx.doi.org/10.1242/jeb.204.19.3283
http://dx.doi.org/10.1034/j.1600-0706.2003.12124.x
http://dx.doi.org/10.1016/S0022-5193(03)00157-7
http://dx.doi.org/10.1007/s10336-010-0633-6
http://dx.doi.org/10.1007/s10336-011-0781-3
http://dx.doi.org/10.1098/rsif.2013.0419

	Colin James Pennycuick

