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Abstract. Higher-order moments of turbulent velocity gradients and their behavior with Reynolds 
number were measured in the nearly isotropic turbulent field generated by a square-mesh grid and in 
a turbulent boundary layer along a flat plate with zero pressure gradient. Hot-wire anemometry and 
instrumentation combining analog and digital methods were used to measure moments up to the 
fourteenth order. Measurements of such high-order moments required that particular attention be. 
given to their validity. Involved herein was the evaluation of such effects as nonlinearity, averaging 
intervals, and the adequacy of the statistics for the tails of the probability density distributions. The 
results obtained are compared with those of other investigators for a variety of flow configurations 
in the laboratory as well as in the atmosphere. The concept of the intermittency of the small-scale 
structure and the theoretical approach involving lognormality of the probability density distribution 
of the dissipation rate are evaluated. 

1. Introduction 

Although the results obtained by fluid dynamicists in the laboratory have been 
extensively applied to atmospheric investigations, the converse has not generally been 
true. The application of high-speed computing to the measurement of turbulence 
characteristics in both the atmosphere and the laboratory makes it possible for such 
studies to play a more coordinated role in our understanding of turbulence phenom- 
ena. The present paper is concerned with the investigation of the small-scale turbulence 
structure which is significant in both fluid dynamic and atmospheric turbulence. 

The present view of the physical nature of the small-scale turbulence is that it has 
a spotty or intermittent character in space and time and that decreasing scales are 
increasingly more intermittent. This intermittent character of a turbulent field can 
play a major role in many turbulent phenomena such as mixing and chemical kinetics 
of pollutants in the atmosphere, production of aerodynamic noise, propagation 
through turbulent media, and other problems involving the nature of the structure 
of a turbulent field. The concept of small-scale intermittency (which should be 
distinguished from the intermittencies associated with the outer boundaries of jets, 
wakes, and boundary layers) was introduced by Batchelor and Townsend (1949) in 
their studies of grid turbulence at low turbulence Reynolds numbers. A similar con- 
cept has been introduced in both theoretical and experimental studies of atmospheric 
turbulence for which, because of the higher Reynolds number, such concepts are 
considered more applicable. Kolmogoroff (1962) and Obukhov (1962) took inter- 
mittency into account by considering the spatial randomness of dissipation which led 
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to a modification of their earlier theories of turbulence. Yaglom (1966) and Gurvich 
and Yaglom (1967) extended these ideas leading to log-normal probability distribu- 
tions for the fluctuations of the rate of energy dissipation giving a statistical model 
characterizing the physical process of a cascade-breakdown of turbulent eddies. 
These concepts involve the need for information about the statistical properties of 
turbulent velocity gradients and more particularly about the relations for higher- 
order moments and their behavior with Reynolds number. The energy dissipation rate 
is given by 

E=+v -+?3 
ihi 

( > 

2 

axj axi 

which would involve the measurements of a complex combination of nine derivatives 
of spatial gradients of turbulent velocity components all of which, in the present state 
of the art, are not measurable. However, as have other investigators, it is assumed 
that a representative measure of the dissipation is obtained by measuring (au/at)2 
involving the assumption of isotropy and Taylor’s assumption of space-time equiv- 
alence. Obtaining reliable data on the behavior of high-order moments of velocity 
gradients in a turbulent field, particularly for the atmosphere, presents difficult prob- 
lems of measurement (Tennekes and Wyngaard, 1972). For the atmosphere, such 
measurements have been limited to the fourth-order moments which, apart from the 
large scatter they exhibit, are not of sufficiently high-order to permit an evaluation 
of the type attempted in the present paper. On the other hand, in the laboratory, 
higher-order moments for both velocity and velocity-gradients have been measured 
(Frenkiel and Klebanoff, 1967, 1971, 1973; Van Atta and Chen, 1968). 

In this paper an effort is made to evaluate the afore-mentioned concepts by experi- 
mental studies of the turbulence downstream of a grid and in the boundary layer. 
Some of the early measurements of wind-tunnel turbulence using high-speed digital 
computing methods (Frenkiel, 1952) indicated the importance of the use of suffi- 
ciently long sample-recordings of data, which in turn required much more advanced 
computer facilities than were then available. Such measurements were further ad- 
vanced in 1965 using more appropriate computer facilities and some results were 
reported using a 12.5-s sample recording digitized at a rate of 12800 sample-points 
per second (Frenkiel and Klebanoff, 1965). In the present paper, the measurement 
of higher-order moments of turbulent velocity gradients, which are substantially 
higher than the fourth-order moments, impose severe requirements involving many 
millions of sample-points, and considerable attention is given to the validity of such 
measurements. The results obtained are compared with those by others for the atmos- 
pheric boundary layer and in the laboratory using various flow configurations. 

2. Experimental Procedure and High-Speed Computing Methods 

The investigation was carried out in the nearly isotropic turbulence field generated 
by a square-mesh grid woven of iron rods, 0.5 cm in diam, and a mesh of 2.54 cm 
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and in a turbulent boundary layer along a flat plate with zero-pressure gradient. 
Both the grid and boundary-layer measurements were performed in the test section 

of the 1.37-m wind tunnel at the National Bureau of Standards. The grid was placed 
perpendicular to the flow at the beginning of the test section and the measurements 
presented in this paper were made at 48.5 mesh lengths downstream of the grid at wind 
velocities, U,, of 7.6 and 15.3 m s -I. The turbulent boundary-layer (with the tur- 
bulence grid removed) was established on an aluminum plate 3.66 m long which was 
mounted vertically and centrally in the tunnel. A false wall mounted on the tunnel wall 
opposite the working side of the plate was adjusted to give a zero-pressure gradient 
along the plate. The pressure distribution was determined by means of a static tube 
mounted on a carriage that could be moved and positioned from outside the tunnel. 
The first 0.61 m of the plate was covered with No. 16 floor-sanding paper to increase 
the thickness of the boundary-layer (Klebanoff and Diehl, 1951). 

Measurements were made in the boundary-layer at 3.2 m from the leading edge 
and at free-stream velocities of about 3.8, 7.5-7.8, and 15.3 m s-l, for which the 
boundary-layer thickness 6 ranged from about 7.4 to 8.1 cm. Since all the measure- 
ments were made at the 3.2-m station, the measuring probe was supported by a rod 
extending through the plate to a 0.634-mm (0.025 in) micrometer screw traversing 
device mounted on the non-working side of the plate, and remotely controlled from 
outside the tunnel. The initial distance from the surface was obtained by using a prism 
to reflect the images of the surface and the probe on the calibrated scale of a microscope. 

Instrumentation combining analog and digital methods, similar to that described 
previously (Frenkiel and Klebanoff, 1967), was used. Most of the data were obtained 
using constant-current hot-wire anemometry. Generally, the hot-wires were platinum 
wires 1.25 pm in diam and 0.32 and 0.7 mm in length. Wires 0.63 ,um in diam and 
0.16 mm in length were also used. This permitted an evaluation of the effect of wire 
length, I, on the measurements. No corrections for the nonlinear response of the con- 
stant current hot-wire have been made to the data given in the present paper. An esti- 
mate of the effect of the nonlinear response on the moments of the velocity derivatives 
up to the fourteenth order was made for some of the boundary-layer data using 
linearized constant temperature hot-wire equipment. The effect was found to be not 
very significant for even-order moments within the experimental dispersion. 

The fluctuating voltages corresponding to the temporal gradient of the longitudinal 
component of the turbulent velocity, au/at, were recorded on magnetic tape, at a tape 
speed of 152.4 cm s-i using an Ampex FR- 1300 * multichannel tape recorder. Timing 
signals of 12 800 and 25 600 Hz were recorded simultaneously. The differentiation was 
accomplished using an operational amplifier in the differentiating mode for which 
the departure from linearity with frequency was 1% at 10000 Hz and 4% at 20000 Hz. 
To improve the signal-to-noise characteristics, a low-pass electronic filter was used with 
varying cut-off frequencies, f,. However, there are restrictions imposed on f, by the 
requirement to include all the frequencies of interest and by the signal-to-noise ratio. 

* Brand names of equipment are used solely to provide a reference for performance characteristics 
and do not represent an endorsement. 
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TABLE I 

Frequency response data 

(a) Constant current hot-wire 
Cut-off frequency fe, kHz 
Relative amplification (at A) 

(b) Linearized hot-wire 
Cut-off frequency fe, kHz 
Relative amplification (at h) 

3.5 4 6 8 10 12 20 
0.83 0.81 0.78 0.82 0.81 0.78 0.72 

5.5 15.5-18.5 
0.84 0.82 

The various values of cut-off frequency which were used and the amount by which the 
frequency response is down at the cut-off frequency are given in Table I. This amount is 
not constant and appears to vary inconsistently. This is because it incorporates the 
frequency response of a variable filter in the hot-wire amplifier and the frequency 
response of the differentiating circuit in addition to that of the low-pass filter. 

The analog tapes were digitized and the digital tapes processed using the computer 
facilities of the Computation and Mathematics Department at the Naval Ship Research 
and Development Center. The analog data were digitized at a rate of about twice the 
cut-off frequencies yielding sample-recordings of digitized data corresponding to 
about 12.5 s of analog recording. Thus, the number of individual points for which 
the instantaneous turbulent velocity gradient values were used in the analysis varied 
from 90000 to 500000 per sample-recording depending on the digitizing rate selected. 
In most cases more than one sample-recording was used to determine the turbulent 
characteristics for the data measured under the same general conditions. The gain 
used during digitizing was adjusted to cover the full range of the fluctuating voltage 

e and of its gradient ae/dt over an appreciable number of standard deviations J7 

and J(aeiat)“, respectively. At the same time attention was given to minimizing any 
possible errors from fluctuations in voltage extending outside of the range of the 

digitizer. For the data used in the present paper the range varied from 4.2 to 9.0~‘3 

for the voltage and from 7.3 to 28.1 J(&/&)’ for the derivative of the voltage. 
Data pertaining to the calibration of the hot-wire amplifier and to the noise were 

also recorded and digitized. The digitized data were plotted and inspected to deter- 
mine any obvious interference with meaningful turbulence data or improper opera- 
tion of the recorder or digitizer. 

3. Higher-Order Moments of Turbulent Velocity Gradients 

The higher-order moments, 

--p- 0’” 
f - [o”]“’ (11 
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Fig. 1. Fourth-order moments for the gradient of the longitudinal turbulent velocity component 
in the boundary-layer at a free-stream velocity 7.5 to 7.8 m s-l. 
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Fig. 2. Same as for Figure 1, but at a free-stream velocity of 15.3 m s-l. 

were determined for both grid and boundary layer turbulence. Figures 1 and 2 present 
the values of the fourth moment, II,, a in the boundary-layer for varying distance y 
from the wall at free-stream velocities of 7.5-7.8 and 15.3 m s-l, respectively. The 
distance from the wall is represented non-dimensionally as y* =u,y/v, where U, is 
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the wall friction velocity and v is the kinematic viscosity. The values of u, at the dif- 
ferent free-stream velocities were obtained by fitting the logarithmic law (Kline et al., 
1969) 

u* = u = 5.0 + 5.6 log,, y* 
% 

to the measured distributions of mean velocity U. 
The selected frequency response and wire length of the hot wire, in particular as 

they relate to the measurement of derivatives, are always important considerations 
and at best represent a compromise between frequency response and the ratio of 
signal to noise. Figures 1 and 2 illustrate the effect of these variables on the experi- 
mental measurements at two different mean velocities. These show the measurements 
of3 for three different cut-off frequencies and three different wire lengths, as well as a 
comparison between data obtained by constant current hot-wire equipment (i= const) 
and the linearized constant temperature equipment (DISA). At the higher mean wind 
speed, higher cut-off frequencies were used, since the turbulence frequencies increase 
accordingly. For the selected cut-off frequencies and wire lengths the differences are 
small for the measurements of the fourth-order moments except close to the surface 
for the higher free-stream velocity, where much smaller turbulence scales are present. 
The wire length was selected as short as practical compared with the Kolmogoroff 
length (see Wyngaard, 1968) insuring that an adequate response would be obtained. 
Figure 1 also includes a comparison of values of 2 obtained from the same sample- 
recording of data using two different digitizing rates (s= 12.8 and 25.6 kHz forf,= 8 
kHz and Z=O.7 mm). The results are almost identical. 

The data of Figures 1 and 2, except for those corresponding to the wire length 
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Fig. 3. Comparison of fourth-order moments in the boundary-layer for different 
free-stream velocities. 
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1=0.7 mm at U, = 15.3 m s-l, are replotted in Figure 3 together with additional data 
for 3 obtained at Vi = 3.8 m s- i. The data for this lower free-stream velocity were 
obtained for 1=0.7 mm withy,=4 kHz and s= 12.8 kHz except at y=O.8 (y*=335) 
for which s= 8 kHz. The number of sample-recordings used to obtain each experi- 
mental point shown on Figures 1 to 3 ranged from 1 to 10; however, no distinction 
has been made as to the number of sample-recordings since the dispersion in the values 
of 3 was small.: For subsequent data involving moments of higher order than the 
fourth, where the dispersion may be significant, only averages over a number of 
sample-recordings are used. The figures show that there is a strong variation of 3 
with distance from the surface. For a proper evaluation of the concept of the inter- 
mittency of the small-scale structure, as well as for comparison with other investi- 
gators, it is desirable to avoid the influence of the surface. It is also necessary to avoid 
a different type of intermittency, characteristic of the outer region of the turbulent 
layer, which affects the fourth-order moment z as shown by the dashed curves in 
Figure 3. Values of y* of 340, 600, and 1100 for U, = 3.8, 7.5-7.8, and 15.3 m s-l, re- 
spectively, correspond to y/6 of about 0.4 at which position the intermittency of the 
outer region is considered to begin (Klebanoff, 1954; Corrsin and Kistler, 1954). In 
the inner region of the boundary-layer, meaning at y/6 less than 0.4, the fourth-order 
moments scale reasonably well with y*. The region of the boundary-layer of particular 
interest in the present study is that where $ is fairly constant extending from y* of 
about 150 to y/S of about 0.4. The wire lengths, cut-off frequencies, and other pertinent 
data for the measurements obtained by the present authors for this region in the bound- 
ary-layer and for grid turbulence are given in Table II. As suggested by Kuo and 
Corrsin (1971), f, for these measurements was selected so as to be of the order of the 
Kolmogoroff frequency, f *= U/27tr~ [where q = (~~18)~‘~ is the Kolmogoroff scale 
with E being the rate of dissipation per unit mass]. The values listed for the Kolmo- 
goroff scale q and Kolmogoroff frequency f * assume an isotropic relation for the 
rate of dissipation which leads to the relation 

q = (15)-l’” ---, 
t 

where A is the Taylor microscale and R, = J-? u J/v. The ratios l/v vary from 0.86 to 3.2 
and Figures 1 to 3 indicate that these ratios should be adequate. 

An important question related to the concept of intermittency of the small-scale 
structure has been the dependence of 3 on the turbulence Reynolds number R,. 

Figure 4 shows the variation of 3 with R, for the present investigation together with 
the results of other investigations for several types of flow configurations in the labo- 
ratory (Batchelor and Townsend, 1949; Comte-Bellot, 1965 ; Wygnanski and 
Fiedler, 1970; Wyngaard and Tennekes, 1970; Kuo and Corrsin, 1971; Antonia, 1973) 
and in the atmosphere (Pond and Stewart, 1965; Gibson et al., 1970; Wyngaard 
and Tennekes, 1970; Sheih et al., 1971). 
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Fig. 4. Variation of fourth-order moments with the Reynolds number of turbulence. 

In the present study, R, is given as J1 u n/v where ZJ (t ) is the longitudinal component 
of the turbulent velocity and 

AZ = [Z/ (au/q2] u2. 

In an isotropic field of turbulence and assuming the equivalence of space-time 
(Taylor’s assumption) the above relation for 1 corresponds to that for the Taylor 
microscale. In general, however, for nonisotropic flows, there is some ambiguity in 
the definition for R,. It was desirable, therefore, wherever possible, in order to be 
consistent for the purpose of comparison, that values of R, for different investiga- 
tions be presented in a similar manner. For the most part, the R, shown in Figure 4 
was obtained according to Equation (3). However, for the data of Gibson et al. 
(1970) R, was estimated by the authors (private communication) from the relation 
R,=0.48 (Uy/v) 1/2 . The R, for the single point of Pond and Stewart is that estimated 
by Sheih et al. (1971) and values of R, for the atmospheric data of Wyngaard and 
Tennekes (1970) used the vertical component of the turbulent velocity instead of the 
longitudinal component; however, I was obtained using Equation (3). 

It should be noted that there is relatively small scatter for the values of V$ for the 
various laboratory measurements as compared to the atmospheric data. In general, 
the laboratory data, with perhaps the exception of the data of Antonia, support the 
view of a certain universality of structure for small-scale turbulence. In fact, the 
atmospheric data, within their scatter, are consistent with the extrapolation of the 
laboratory data. However, the manner in which this extrapolation should be made is 
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uncertain. Corrsin (1962) and Tennekes (1968) have proposed some simple models of 
the intermittency of small-scale structure which indicate that $ is proportional to 
R:‘5 and R,, respectively. The data presented in Figure 4 indicate a smaller variation 
with R, than do either of these models, an observation which has already been noted 
by other investigators (Wyngaard and Tennekes, 1970; Gurvich and Zubkovskii, 
1963). The expected dependence of 3 on Reynolds number can be seen from the 
hypothesis (K&lmogoroff, 1962; Obukhov, 1962) that the variance of the logarithm 
of the locally averaged dissipation is given by 

a*=A(x,t)+~ln(L/r), (4) 
where L is a macroscale of turbulence, r is a characteristic dimension of the averaging 
volume, A(x, t) depends on the nature of the very large-scale structure, and p is a 
universal constant. If it is assumed that T-Q where q is the Kolmogoroff microscale, 
Llv+ . 3’2 At very large Reynolds numbers, for which A (x, t ) can be neglected, 

a* = ,u In R:“. (5) 
For a log-normal probability distribution rr* = In $, and with this assumption 

3 = R~WP. (6) 

For higher-order moments, the Gurvich and Yaglom (1967) model can be generalized 
to give 

~CCR~3/4)Pdn-l) f (7) 
Attempts to determine the Reynolds number dependence of 3, i.e., ?cxRT, have 
yielded, either from direct measurement of 3 or from the slope of the spectrum of 
(&/at)“, values of m ranging from 0.13 to 0.85 (Pond and Stewart, 1965; Gibson et al., 
1970; Stewart et al., 1970). 

Using the data from the present study, giving higher-order moments p, a 
direct evaluation of Equation (7) is presented in Figure 5. In this figure log,,7 (for 
IZ = 2, 3, and 4) for grid and boundary-layer turbulence from the present investigation 
are presented as a function of n (n - 1) log,, R,. In addition, comparison is made with 
some of the data which are available for n = 2 from investigations in the atmosphere. 
Gurvich and Yaglom (1967) proposed the value of 0.4 for p, which was obtained 
from spectral measurements in the atmosphere of (&v/at)* made by Gurvich and 
Zubkovskii (1963) and of (&/at )* made by Pond and Stewart (1965). This oft-quoted 
value is shown in Figures 4 and 5. Also shown in Figure 4 is an extrapolation of 
laboratory data as inferred from the behavior in Figure 5. This extrapolation considers 
the possibility that the atmospheric data are consistent with the trend of the higher- 
order moments as obtained in the laboratory and as shown in Figure 5. In this con- 
nection it should be noted, in view of the trend with distance from the surface shown 
in Figures 1 to 3, that the atmospheric data reported by Wyngaard and Tennekes 
(1970) were measured at 5.6, 11.3, and 22.6 m above the ground, while that of Sheih 
et al. (1971) were measured 108 m above the ground. The measurements of Gibson 
ef al. (1970) over the open ocean were made at heights from 2.3 to 11.6 m. In addition, 
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Fig. 5. Comparison of measured moments up to eighth-order in a form suggested by lognormality. 

the possibility of dust and water drops affecting the atmospheric measurements and 
resulting in values for 3 which are too high, cannot be completely discounted. On the 
other hand, the data by Sheih et al. (1971) may be too low due to an overloaded signal 
(Lumley, private communication). Thus, it is reasonable to infer, from Figure 5, that 
the atmospheric data are consistent with the trend exhibited by the higher order 
moments measured in the laboratory. It is also reasonable to infer that the deviation 
from Equation (7) and the fact that p is not constant are not due to an insufficiently 
large Reynolds number. However, apart from the question of the Reynolds number 
in the comparison between experiments and theory, there is also the consideration, 
referred to later, of the appropriate size of the averaging volumes over which the 
measurements of (au/i% )2 should be made. 
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Fig. 6. Cumulative probability density distribution of ho:. 

Figure 6 presents the cumulative probability density distribution of Ino: for the 
averages from 10 sample-recordings obtained with the constant current hot-wire at 
y=20.3 mm and U, = 15.3 m s-l. In this figure a log-normal distribution would be 
represented by a straight line, and it is clearly evident that such is not the case. How- 
ever, it is interesting that the data of Figure 5 appear to correlate in a form suggested 
by Gurvich and Yaglom but not as required by log-normality of the distribution of 
energy dissipation; i.e., if one considers the Reynolds numbers to be sufficiently high 
for Equation (7) to be valid, then p does not appear to be constant but varies with the 
order of the moment 2n or the Reynolds number R,. In fact, the measured eighth- 
order moments shown in Figure 5 evidence a significant departure from a constant p 
which does not appear to be due to experimental scatter. This is of some interest from 
a theoretical point of view, for as shown by Orszag (1970), the log-normal distribution 
of energy dissipation is inconsistent with theories of turbulence in terms of moments. 

In order to assess the reality of the departure from a constant ,u, some measurements 
of higher-order moments up to 2n = 14 were made and these are presented in Figure 7. 
The departure from a constant p is clearly evident and, perhaps more important, the 
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Fig. 7. Comparison of measured higher-order moments up to fourteenth order in a form suggested 
by lognormality. 

consistency of the data defining a general curve is maintained. This consistency may 
be significant since it indicates that even for the higher-order moments of velocity 
gradients the measurements in a grid-produced turbulence and in the boundary- 
layer compare very well. Also, the measurements obtained using linearized constant 
temperature hot-wire equipment compare well with those obtained using constant 
current equipment thus confirming that the measurements of even-order moments 
of gradients of turbulent velocities are not significantly affected by nonlinearization. 

4. Validity of Higher-Order Moments 

The higher-order moments p were determined by directly computing the averages 
of the individual (digitized) values of 7 according to Equation (1). However, it 
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should be noted that the validity of the moments p obtained in this manner depends 
on how well the relation 

+03 

(au/at)“” = 
s 

(au/at)‘” p @d/at> d (au/at)) 

where p(&/&) is the probability density distribution of au/&, is satisfied, i.e., the 
accuracy of such measures requires the closure of the tails of the probability density 
distribution p (au/at) for (c%@)~” p (au/at) at increasing &@t. With the nondimen- -- 
sional coordinates u, = (du/&)/J (~u/~Yt)~ and 

with 

-2 v, = of9 (0,) du, = 1 

and Equation (8) replaced by 

-2;; 
Ut = 

s 
u:“8 (v,) dv, . 

(9) 

(10) 
-CC 

The validity of moments similar to p, but for the turbulent velocities (rather than 
for gradients of turbulent velocities), has been discussed in a previous paper (Frenkiel 
and Klebanoff, 1973). In that case higher-order moments up to 2n = 8 were measured 
with both even and odd moments, and it has been noted that a relation similar to 
Equation (10) is satisfied. However, in the present case the fluctuating gradients of 
turbulent velocities are of much higher frequency and higher amplitudes (measured 
in standard deviations) than the fluctuating turbulent velocities and the measurements 
are made up to the fourteenth order. In fact, it was shown that for the atmospheric 
turbulence, condition (10) cannot easily be satisfied for the moments of turbulent 
velocity gradients higher than the fourth-order by the usual techniques (Tennekes 
and Wyngaard, 1972). 

The main difficulty in determining the probability distribution of the fluctuating 
derivatives of turbulent velocities is that they extend over a large number of standard- 

deviations J1 v, . In order to improve the precision of the measurements of the probabil- 
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Fig. 8. Schematic representation of interpolation procedure. 

ity distribution, a large number of sample-recordings and a high-digitizing rate are 
desirable; however, this would be inordinafely expensive. In order to determine the 
validity of the measurements of higher-order moments u, 2. up to 2n = 14 in the present 
study, a new method of analysis was used to improve an estimate of the probability 
distribution as it relates to the question of closure for the integrands u~“.~Y(u~) at in- 
creasing values of u, in Equation (10). This method is illustrated in Figure 8. In this 
figure the fluctuating signal is illustrated with the usual digitizing procedure shown 
in Figure 8(a) where the signal is approximated in a stepwise manner as determined by 
the digitizing rate (illustrated in the figure to be about 40 kHz) and the ordinates 
represent the digitized values which vary within the range between - 1024 and + 1024, 
of the fluctuating voltage. An interpolation [see Figure 8(b)] is produced by dividing 
the intervals between digitized points into steps corresponding to consecutive integer 
values within each interval, resulting in a considerably increased number of individual 
data-points. It should be noted that such a procedure will introduce a bias in that the 
signal is now approximated by linear segments joining successive digitized values. 
The rate of digitizing is close to twice the cut-off frequency and thus an increase in the 
digitizing rate would not provide much additional information about the statistical 
characteristics of the signal although it would reduce the bias. 

Figure 9 illustrates the values of nondimensional gradients of velocity u,=ui and 
u, = ui + 1 corresponding to two succeeding digital measurements A and B at times t, 
and t, separated by a time interval At. We will assume that the stepwise function is 
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approximated by the line AB and will find that at time fA+ K the nondimensional 
velocity gradient is equal to 

"i,z =Vi+Z(Vi+l-Vi), (11) 
where 

z = u/At 

and O<z< 1. For the square of the velocity gradients averaged over the time interval 
At, we obtain 

1 “2 = s “22 dz = 3V~+ 1 + 3”’ + ~ViVi+ 1. 

0 

Averaging over a large number N of intervals At we obtain a value for the second 
moment 

1 

& 

s 

v~Zdz=$(V~+ VT+ vivi+l). 

0 

Thus, noting Equation (9) and that by definition vy= 1, the interpolation represented 
in Figure 8(b) will lead to 

;; = 33 + &(t)v,(t + At) = + + J”,(t) vt(t + At) 

and, in general, 3 # 1. 

(12) 

Fig. 9. Illustration of linear interpolation between successive digital measurements. 
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In a similar manner we find 

1 

0; = 
s 

0;’ dz = 

0 

and, noting that t$(t)=u~(tfdt), 

m u*=-&[~+u,-l(f)u,(f+Llf)+ 

+u~-“(t)u:(t+dt)+-+u,(t)uyyt+dt)] 

m 1 . 

[ 

u~+l(t+dt)-u~+l(t) 
u* = __ 

- II& + At) - u,(t) I . m+l 

(13) 

(14) 

Let us now define a probability distribution 8, (u,) such that 

+a 
xi u* = 

s 
uf”9, (uJ du, . 

--a, 
(15) 

8, will represent the density distribution of the fluctuating values of ui,+ as defined 
by Equation (1 l), but expressed as a function of u,. It should be noted that, in general, 

The effect that the interpolation between the digitized data, referred to above, has 
on the resulting probability distribution is shown in Figure 10 where the probability 
distribution 8, (uJ is compared to B (I.+) for the average from 10 sample-recordings 
obtained with the constant current hot-wire at y= 20.3 mm and U, = 15.3 m s-l. 
The figure illustrates that the probability distribution g*(u,) has much less scatter 
for higher values of u, than the distribution P(u,) and therefore, will permit a more 
adequate evaluation of the closure of such probability distributions as they relate to 
the measurements of higher-order moments. 

With the definitions 

and 
P’t(uJ = P(+ II,) + 9(- II,) (16) 

9” (ut) = g* (+ u,) + 8, (- u,) 3 (17) 
00 

Zn 
0, = 

s 
I+‘+ (ut) do, 

and 
-0 

m 

(18) 

75 u* = s u:“P* (0,) do, . (19) 
0 
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Fig. 10. Comparison of interpolated and non-interpolated probability density distributions for 
velocity gradients. 

Figure 11 shows how well the values for $r and z can be obtained for 2n = 4 and 
2n = 8. Both integrals close reasonably well for the fourth-order moments. However, 
the very large scatter for $9’ (ut) at the larger values of u, makes the eighth-order 
moments 3 less well defined. On the other hand, the values of u,88* (0,) show much 
less scatter and ;;;g* is rather well defined. It should be noted that the number of mea- 
sured sample-points involved in determining the distribution of o:Bt (uJ and 
I$# (ut) in Figure 11 is 5 million and there is no reason a priori why the distribution 
of u,88’ (uJ should necessarily be extended to much larger values of u,; however, a 
question does arise as to whether, if more samples of data were used, the integrands 
I$@ (u,) and $8’ (uJ extend to further values of u,. It is therefore desirable to evaluate 
the effect of this possibility on the measured data by making an appropriate extrapola- 
tion. It is in this context, as seen from Figure 11, that the interpolated distribution 
function 9*(uJ can be used to best advantage, i.e., that due to the smaller scatter 
of the data it can be more appropriately extrapolated. The use of 8* (ut) for that 
purpose is limited to determine the effect of the extrapolation and closure but not 
to determine the correct values for the moments ~7. 

In order to increase the number of sample-recordings of data for evaluating measure- 
ments of higher-order moments from the closure point of view, 28 samples for the 
boundary-layer at U, = 15.3 m s-l listed in Table II and used in Figure 7 were com- 
bined. Figure 12 shows how the averages for @*(u,) from the sample recordings 
compare for each separate experimental condition. It should be noted that 8 of the 
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sample-recordings were obtained with a constant-temperature linearized hot-wire 
anemometer and the two groups of 10 sample-recordings each were obtained with a 
constant current hot-wire anemometer illustrating again that the effect of non- 
linearity on the measurements of turbulent velocity gradients with the constant cur- 
rent anemometer is not significant. The agreement for the three groups of data 
provided an adequate justification for combining them. The resulting average for 
the 28 sample-recordings is shown in Figure 13. Also shown in Figure 13 is the expo- 
nential extrapolation to higher values of u, which these data permit. Figures 14 and I5 
compare the extrapolated data with the nonextrapolated data for 

9, = f$“LP (II,) 

with 2n=8, 10, 12, and 14. 
TABLE III 

Ratio of extrapolated to non-extrapolated moments 

2n 4 6 8 10 12 14 

1.0054 1.023 1.056 1.133 1.324 1.755 

The ratios of the extrapolated moments (@$ex,r. to the nonextrapolated moments 
u?are listed in Table III. The justification for applying the same ratios to the directly 
measured data for p [as defined by Equation (l)] is given by Equation (13) which 
relates interpolated data for 3 to the directly measured ‘;;;;;. Implicit in this justifica- 
tion is the inference that Equation (13) is equally valid for the extrapolated case. 
For this purpose all the terms appearing in Equation (13) were directly measured for 
the 10 sample-recordings at U, = 15.3 m s-l and y=20.3 mm for At=0.025 m s-l. 
As seen from Table IV this relation is reasonably well satisfied. 

TABLE IV 

Comparison of values of z obtained by two different methods 

2n 2 4 6 8 10 12 14 

From Equation (19) 0.9292 4.992 79.89 2770 162.2 x lo3 13.36 x 10” 1.367 x log 
From Equation (13) 0.9283 4.984 79.34 2693 150.7x103 11.61 x 106 1.103 x 109 

Figure 16 shows the directly measured moments averaged over the 28 sample- 
recordings as well as those obtained by applying to the directly measured moments 
the appropriate extrapolation ratios given in Table III. The dashed curve is the 
same as the one given in Figure 7. It can be inferred from this comparison that the 
question of closure does not materially affect the conclusions previously drawn as to 
the deviation from lognormality and the departure from p = const. 
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Another aspect which is involved in comparison with the theory is the consideration 
of the appropriate size of the average volume over which the measurements of I$ 
should be made. This question has been, to some extent, evaluated by Chen (1971) and 
Gibson and Masiello (1972) using atmospheric data with inconsistent conclusions. 
Their procedure was to average sample values I$ over an increasing number of 
time intervals At and then using the resulting averages to determine the probability 
distributions. Chen found a considerable improvement in the agreement of experi- 
mental data with the lognormal probability distribution. Gibson and Masiello, on 
the other hand, found that similar averaging had little effect on the range of log- 
normality of the probability distribution. In the context of the present paper, it is of 
interest to examine what effect such averaging would have on the conclusions drawn. 
Rather than proceed in a manner similar to Chen, and Gibson and Masiello, an 
indication as to whether the lack of appropriate averaging could account for the 
departure from ,u= const can be readily obtained by a procedure similar to that il- 
lustrated in Figure 9. For this purpose, the average value of 0,” along the line AB is 
determined over the time interval At, namely 

t+At -- u?(t) = ; s u: (t) dt = u:. 
t 

Averaging over a large number of values for ($2)” the higher order moments 

0” = [$I: (t) + $u, (t) u, (t + At) + +u: (t + At)]” 

are obtained, and the fourth-order moment, for example, is given by 

4 (v=$[u, (t)+2u3(t)ut(t+At)+3uf(t)u;(t+At)+ 

+2u,(t)u:(t+At)+u;(t+At)]. 

(20) 

01) 

w 

Following this procedure, higher-order moments (I$)” for n = 2 to 7 were determined 
for one sample-recording at U, = 15.3 m s-l and y=20.3 mm. These are shown in 
Figure 17 for values of At ranging from 0 to 1.25 ms. After a very rapid change at 
small At, the various moments become approximately independent of At. Asymptotic 
values for large At (but relatively small as compared with the 12.5 s of the sample- 
recording) are obtained from Equation (21) assuming 

u:n-k (t) u; (t + At) = [u:“-k (t)] [u: (t + At)] 

with Lt=O and ;f = 1. These are indicated by the dotted horizontal lines on the 
figure. It is of interest to note that Chen obtained averages for his dissipation rates for 
a time interval corresponding to 8 cm in length which is about 80 times the Kolmogoroff 
scale for the data which he used. The averaging times At in Figure 17 correspond to 
length averages from 3 to 150 Kolmogoroff scales. A At= 6.75 ms corresponds to the 
same ratio of averaging length to Kolmogoroff scale as Chen’s. 
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The results obtained for (u;2>, at various At are plotted in Figure 18 in a manner 
suggested by Equation (4). The value of the time-scale of turbulence 

m 

L, = 
s 

R(h)dh, 

0 

where 

u(t) u (t + h) 
R(h)= - 

U2 

was 2.61 ms (see Frenkiel and Klebanoff, 1973; Figure 6) and was selected as the 
macroscale. It is seen that only for a limited range of L,/At may the data be considered 
to follow a straight line as required by Equation (4). Similar behavior was observed 
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Fig. 18. Variation of fourth-order moments with nondimensional averaging time interval Lb/At. 

by Gibson and Masiello although their scaling ratio and averaging procedure were 
different. From their data they inferred a value of ~=0.5 while the value of p cor- 
responding to the straight line in Figure 18 is about 0.7. However, the significance of 
a value of p inferred in this manner (from Figure 18) as shown in Figure 19 is question- 
nable. In Figure 19 higher-order moments (h”:)” for IZ = 2 to 7 are presented in a 
manner similar to that for $’ in Figure 7 for various averaging time intervals At. 
The dashed curve corresponds to the curve in Figure 7. For values of At corresponding 
to the linear range of Figure 18 there is no evidence from the measurements of higher- 
order moments of p = const. In fact, the effect of increased averaging time interval is 
in the opposite direction. 

5. Conclusions 

It is noted that, using appropriate numerical methods of improving precision, rela- 
tively reliable values can be obtained for higher-order moments of turbulent velocity 
gradients. Measurements of such moments in the nearly isotropic turbulent field 
generated by a grid and in the boundary-layer of a plate have demonstrated that they 
correlate in a form related to lognormality of the probability of the dissipation, but 
do not conform to the requirement imposed by lognormality of a constant p. It, is 
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also demonstrated that it is reasonable to infer that the existing atmospheric data 
can be considered to be consistent with measurements made in a laboratory and that 
the fact that p is not constant may not necessarily be due to an insufficiently large 
Reynolds number of turbulence. 
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