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VOLUME 10, NUMBER 8

Correlation Measurement in a Turbulent Flow using High-Speed Computing Methods

Frangors N. FRENKIEL
Applied Mathematics Laboratory, Naval Ship Research and Development Center,* Washington, D. C.
AND
Parure S. KLEBANOFF

National Bureau of Standards, Washington, D. C.
(Received 24 February 1967)

Third-order time-correlations downstream of a grid were measured with a hot-wire anemometer
using high-speed computing methods. The ponlinear response of the hot-wire to the fluctuations
of velocities is taken into account as well as the effect of transverse velocities. It is found that the
correlations B21(h) = w2(iw/(t + h)/(w'2)3? and Ra2h) = w'(u'*(t + h)/(u2)*? are substan-
tially different from previous results and demonstrate that the assumption of isotropy is not adequate
for these correlations downstream of a grid. The nonlinear response does not significantly affect
the difference {(R2! — R.:2). Since previous conclusions concerning the nature of third-order cor-
relations were based on the measurements of such differences they masked the effects of nonlinearity
on the individual correlations. Correlations of fifth-order are also presented and their relations to
the third-order correlation are discussed. Although the nonlinear corrections are quite important
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for odd-order correlations they are negligible for correlations of even-order.

1. INTRODUCTION

HE turbulent flow downstream of a grid has

been the object of extensive studies sinece it
has been considered to approximate reasonably well
a field of homogeneous and isotropic turbulence.
Consequently measurements of grid turbulence have
served not only to obtain basic experimental results
for comparison of statistical characteristics of a
turbulent field with theory, but have been quite
important in the very formation and the develop-
ment of theoretical ideas concerning turbulence phe-
nomena. It has been customary to evaluate the
assumption of isotropy by measuring such quanti-
ties as the longitudinal and transverse intensities
of turbulence as well as the second-order correlations.
However, a rigorous evaluation of isotropy requires
a more detailed study of the validity of this funda-
mental assumption.

To-date measurement of third-order correlations
has been made using constant-current hot-wire ane-
mometry,"® which has a nonlinear response to the
fluctuating turbulent velocities. It was preferable
therefore, to determine third-order correlations by
measuring the differences of correlation coefficients
rather than their individual values, and thus mini-
mize the errors due to the nonlinear response. To
obtain the individual third-order correlation from
such differences the assumption of isotropy was
required. In order to adequately assess the validity
of this assumption, as far as the third-order cor-

* Formerly named David Taylor Model Basin.

! R. W. Stewart, Proc. Cambridge Phil. Soc. 47, 146 (1951).

? R. R. Mills, Jr., A. L. Kistler, V. O'Brien, and 8. Corrsin,
NACA Technical Note 4288 (1958).

relations are concerned, the effect of the nonlinear
response must be determined. In the past this cor-
rection would have been difficult to make since it
would have required a knowledge of higher-order
correlations which were not available. However, an
estimate’® of the magnitude of possible errors
showed that a significant error could be made even
at moderate turbulent intensities and emphasized
the necessity for such a correetion. The successful
application of high-speed computing methods* makes
possible the direct measurement of third-order cor-
relations and enables one to make the corrections
for the nonlinear response when necessary. It should
be noted that the use of constant-temperature-
linearized hot-wire anemometry, which has a linear
response to the fluctuating velocities, would avoid
this type of difficulty.

In the present paper high-speed computing
methods are applied to a re-evaluation of the third-
order correlations. Our results demonstrate the in-
adequacy of the assumption that the turbulent field
is isotropic, and the quantitative values for the
third-order correlations are quite different from
those obtained previously. Some additional results
are also given for other statistical characteristics of
turbulence including the fifth-order correlations.

2. EXPERIMENTAL PROCEDURE

The measurement of the turbulence character-
istics was made at a distance 2z = 48.5 meshes

¢ . Comte-Bellot, presented at the Colloque sur la contri-
bution de I’électronique au traitement statistique des mesures
en physique, Grenoble, France (1966).

4 F. N. Frenkiel and P. 8. Klebanoff, Phys. Fluids 10,
507 (1967).
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WIRE

Fig. 1. Hlustration of hot-wire response to the instan-
taneous normal component of velocity for a hot-wire positioned
normal to the mean velocity, . U is the instantaneous velocity
and wy is the effective instantaneous velocity.

downstream of a square mesh grid having a mesh-
length M = 2.54 em and woven of rods 0.5 em in
diameter. The wind velocity U as measured with a
Pitot-static tube was 15.4 m/sec. No attempt was
made to compensate for the boundary-layer growth
on the wind tunnel walls. Consequently there was a
slight increase in velocity with distance downstream
from the grid, U™ dU/dz = 0.038/m. However, this
is considered to be negligible from the point of view
of introducing a mean-velocity-gradient effect.’ A
constant current hot-wire anemometer was used,
and the measured voltage, representing the longi-
tudinal component of the turbulent velocity w'(#),
was recorded on magnetic tape. The root-mean-
square of this component was approximately 1.8
of the mean velocity and the Reynolds number,
based on U and the mesh length of the grid, was
25 600. The analog recordings were digitized at a
frequency of 12800 readings per second using
samples of 12.5-sec duration. Correlation coefficients
were then determined by applying high-speed com-
puting methods as described in Ref. 4. Four samples
of recorded data obtained under the same flow con-
ditions were used for the analysis and the average
value for the correlations was determined.

The hot-wire was a platinum wire of 2.5-u diameter
and 0.75-mm length and was mounted perpendic-
ularly to the mean wind velocity. Under these
conditions the end-loss correction and the correction
for wire length are considered negligible. ‘‘Overheat”
ratios for the wire varied from 0.4 to 0.5 and for
this range the hot-wire heat loss rate is taken to be
linear with temperature rise. Since the turbulence
level was sufficiently small (1.8%), it is felt that the
compensation for the hot-wire thermal lag was quite
satisfactory. Consequently, the remaining major

5 G. Comte-Bellot and S. Corrsin, J. Fluid Mech. 25,
657 (1966).
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factors are the nonlinear response of the voltage
versus velocity characteristic of the hot-wire and
the effective velocity to which it responds.

For a wire mounted normal to the mean wind ve-
locity, @, (Fig. 1) the effective instantaneous ve-
locity is given by the expression

uy = Gy + uh = [@+ u)? + o'?], ¢))

where ¥’ and v’ are the longitudinal and transverse
turbulent velocity components, respectively, with
w = 0andy = 0, and where there is no effect of
the component w’. We first consider the effect of
the nonlinear response taking »’ to be negligible as
compared with v = @ 4 «'. It should be noted that
we are distinguishing here by different symbols the
wind velocity as measured with a Pitot-static tube, U,

and the true mean velocity, 4.

3. NONLINEAR RESPONSE OF HOT-WIRES

The fundamental relation used to characterize
thebehavior of hot-wires is the King equation,® which
for constant current can be written in the form

r/r — R = D + Fu?, 2)

where v is the instantaneous velocity (assuming v’
to be negligible), r is the instantaneous resistance
of the wire, R, is the resistance of the wire at ambient,
air temperature (taken here to be constant) and
where D and F are coefficients obtained by an ap-
propriate calibration. It should be noted that Eq.
(2) refers here to the instantaneous velocity and
not to the mean velocity as it is used most often
when referring to the King equation.

In order to determine the nonlinear correction,
it is convenient to express Kq. (2) in the inverted
form, from that which is customarily used,

o [ =1e— DE,,]“’
u = f(e) - l: F(e _ Ea) * (3)
where E, = iR,, and where the instantaneous voltage

e=¢e¢+¢e¢ =14, ¢ =0,

with & being the mean voltage, ¢’ the fluctuating
voltage, and 7 the current.

Referring to the Taylor expansion we can express
the instantaneous velocity as

u = f(&) + ae’ + be’* + ce’®,
where

_ 4@ _ 1d%@ _ 1d%@
e="% '=3 “=%

@°’ d@)*

6 L. V. King, Phil. Trans. Roy. Soe. (London) A214, 373
(1914).

=
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CORRELATION

and where the higher-order terms were omitted
thus considering that the hot-wire behavior can
be represented by a third-order curve. Taking the
mean value we find
@ = 1) + b€ + ce”,

and
Wo=u—1a=ae + bl —e% +cle? — €. @)
Taking the square and averaging we find
WP = e%{a’ + 2ab(E)1/28° + [(b* + 2a0)&" — b*le”®

+ 2be@® — )N + T - EVIEY], G
where & = ¢/(¢'®) %, If one assumes that the dynamie
response of the hot-wire to fluctuating velocity, and
the static response to a change in mean velocity are

equivalent, the coefficients a, b, ¢, can be determined
by an appropriate calibration to obtain D and F, and

. = 2D = DE,2 — 2DE;

Fz(é _ Ea)‘)‘ '
_ (2D + DE) - 2(D — DE.2
b - FZ(é — Ea)4 1] (6)
2D — DEg — 2D + DE?
¢ = F2(é _ Eva)5 y

In principle a, b, ¢ should be determined from a
calibration in a laminar flow, i.e., with no turbulence.
However, the calibration was performed in the tur-
bulent flow under the same conditions at which the
measurements were made. Figure 2 represents a
typical set of calibration curves where the ratio
#(z — E,)”" is given as a function of the square root
of the wind velocity as suggested by the King equa-
tion. The wind velocity U, was measured with a
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Fre. 2. Typical calibration of a hot-wire normal to the wind
velocity as represented by King’s equation.
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F1e. 3. Comparison of second-degree and third-degree
approximations to the nonlinear response of the hot-wire
with its calibration.

Pitot-static tube which at the turbulence level of the
present experiment may be considered to be equal to
#. Calibrations were made before and after recording
of the turbulence signal. In addition, the wind
velocity Ug, and the ratio [é(z — E,) '] were deter-
mined at the time of recording. In general there was
a shift between the calibration before and after
recording, and the procedure adopted was a pro-
portional interpolation of the coefficients D and F
obtained from the two calibrations and based on
the measured value of [2(z — E,) 'z at the time of
recording. As an example of the order of magnitude
of the coefficients a, b, and ¢ we find for the calibra-
tion given in Fig. 2 that _a(e'z)% = —27 em sec™’;
b(e"*) = 0.304 cmsec™; ¢(e”*)** = —0.0029 cm sec™
with (¢%)} = 1.40 mV.

It can be shown that the correction resulting from
determining a, b, and ¢ by calibrating in the tur-
bulent field is on the order of ¢ in the measurement,
of the odd-order moments. A computation with and
without the coefficient ¢ showed that its effect is
negligible, and since the nonlinear effect as will be
shown later is negligible for the even-order moments
the effect of calibrating in the turbulent field rather
than in the laminar flow is considered negligible
under the present conditions.

The calibration data of Fig. 2 are presented in
Fig. 3 in a more convenient form in terms of the
difference ¢ — &y, as a function of U — Uy, where
yy i the mean voltage corresponding to the wind
velocity Uy at the time of recording. The solid curve
represents the interpolated calibration curve and
the open circles and open squares represent the
“before’” and “after” calibrations, respectively. The
calibration curve can be compared with the approxi-
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F1c. 4. Comparison between the uncorrected third-order
correlations R 21(h) and R 2(h) as measured by a constant
current hot-wire and the correlations corrected for the non-
linear response. The curves for the uncorrected and corrected
difference ® 24(h) = 3[R 24 h) — R12(h)] are identical and
are represented by the dotted curve.

mate expression for the turbulent velocity given by
Eq. (4), by determining the numerical values for

ul = u — f(Eg) = ae’ + be’” + ce’’.

Figure 3 presents the curve corresponding to the
above approximation as well as to the approximation
by a second-degree curve

2
ul = ae’ + be’”.

The degree to which these approximations are re-
quired to fit the calibration curve can be determined
by noting the range within which the turbulent
velocities are observed to fluctuate. Both approxima-
tions cover the range of fluctuating velocities very
satisfactorily as can be seen in Fig. 3. Equation (4)
can now be used to correct the recorded fluctuating
voltage ¢'(¢f) and thus to obtain the turbulent ve-
locity u/(f). It should be noted that in some recent
experimental studies’ on the hot-wire response a
variation of King law was proposed where the hot-
wire heat loss varies as u**® instead of 4°°. In this
connection it should be emphasized that the non-
linear coefficients, a, b, ¢, as determined by our
procedure are based on the experimental calibration
and Eq. (2) is merely a convenient intermediary
in obtaining Egs. (6). In fact, the resulting numerical
values of the nonlinear coefficients obtained directly
by numerical differentiation of the voltage-velocity

7D. C. Collis and M. J. Williams, J. Fluid Mech. 6, 357
(1959).

F. N. FRENKIEL AND P. S KLEBANOFF

calibration curve agreed very well with those ob-
tained from Eqgs. (6).

4. THIRD-ORDER CORRELATIONS

The correction for the nonlinear response can be
obtained by first computing the turbulent velocities
() from the digital values according to Eq. (4)
and then determining the correlations

72 ’ /7 12

u (t)u_,(zt l—|~ h) R = u (t)u_’(zt 1+ h)
W) @W')?
directly from the corrected values using high-speed
computing methods. In Fig. 4 the corrected values
of the third-order correlations obtained in this man-
ner and shown as solid curves, are compared with the
uncorrected correlations represented by the dashed
curves, The difference between the corrected and
uncorrected third-order correlations is particularly
significant at the smaller values of 4. In the case of
isotropic turbulence R;'(h) should be equal to
—R}*(h), and +"*/"®)** should be equal to zero.
The nature of the corrected third-order correlations
emphasizes the lack of isotropy since

R = —R*(h),

R'(h) =

and
R¥0) = RY*0) = «/Wt = 0.

Particularly noticeable is the fact that the corrected
value of the third-order moment «"%/(x%)*”* is rela-
tively large, and is not only different in magnitude
but also of opposite sign than the uncorrected
value. Thus, it is apparent that the assumption of
isotropic turbulence does not adequately represent
the behavior of the third-order correlations in grid
turbulence even for a small time delay or for small
spatial separation as has been considered the case.

It is interesting that the difference (R — R}'?)
for the corrected correlations and the difference
(R3'' — R}®) for the uncorrected correlations are
practically indistinguishable from one another, and,
therefore,

®:'(h) = 3R — RiF(R)

shown in Fig. 4 manifests the same behavior as
observed by others.''* However, it should be em-
phasized that obtaining the individual third-order
correlations R:' and R;'* by measuring the dif-
ference and assuming isotropy is not justified.

The use of high-speed computing methods makes it
possible to correct the velocity fluetuations for the

nonlinear response of the hot-wire directly. This
digital method of correction can, therefore, be re-
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CORRELATION MEASUREMENT IN A TURBULENT FLOW

garded as carrying out the same function as the
constant-temperature-linearized hot-wire® in the ana-
log method which often has the inconvenience of a
higher noise to signal ratio than the constant-current
equipment.

Instead of using the nonlinear correction of the
fluctuating voltage e'(f) to obtain the turbulent
velocity w’(¢) from which the correct correlations are
determined, one can first determine the uncorrected
correlations and then apply the relations derived
from Eq. (4) to obtain the corrected correlations.
This latter method may be of particular interest
when a constant current hot-wire anemometer is used
without appropriate high-speed computing equip-
ment or when previously obtained uncorrected data
(or data obtained making an insufficiently justified
assumption of isotropy) are to be corrected for the
nonlinear response. Introducing the nondimensional
variables

. u'(1) = w(t+ k)

e W

0 )
)’ CH

and noting that v* = 1; 8 = 1, from Eq. (4) we find

vy =Q@8 +®RE — B, v, = Q8 + B®E — &, (7)

where

N 73
=%a, (B='e?2;b.
") ")

The coefficients @, ®, are determined from the
calibration coefficients a, b. Equations (7) can then
be used to determine the correlations between the
turbulent velocity components

WO+ h) _

T2\ (mtn) /2 1z,
@)

a

R:(0) =

as functions of the correlations between the fluctua-
ting voltages

e™(He"(t + h)

T2\ (m+n)/2
(6 m+n

R} (k) = = §76;.

Thus we find the third-order correlations
R = @R} + @’®[RY® + 2R} — (2R + )],

RI* = @RI + @GR + 2R\ — @R\ + 1)),
(8)

8 The nonzero value of %3/(u?)! and the inequality
R2Yh) # — R1%h) have been confirmed by recent experi-
ments of V. G. Harris and 8. Corrsin (Johns Hopkins Univer-
sity) using constant-temperature linearized hot-wire anemo-
metry.

1741

which, for h = 0, give
= @ + 3¢°®(E" — 1). ©)
Using the definition
&) = R — B"(0)]

with the appropriate subseripts we find from Egs.
(12),
R/ = @RI+ 2¢°RR1. (10)
Thus, we find that the nonlinear correction for the
third-order correlation can be made by using the
measurements made with a constant-current hot-
wire so long as we measure the correlations between
the voltages of the second, third, and fourth orders.
A. Approximate Relations for quasi-Gaussian
Probability Distribution
We now assume that the measured voltages ¢'(f)
are distributed according to a quasi-Gaussian prob-
ability density distribution for which the odd-order
correlation coefficients other than the third-order
are neglected, and the even-order correlations can
be expressed as functions of the second-order cor-
relation according to the relations corresponding to

a Gaussian distribution. Therefore, we have the
relations

RY? =1+ 2R, R =R® = 3R,
which applied to Egs. (8) gives

R = &R + 20°R((R. ) + 2R."],

R)* = @R + 2[R + 2R,

The curves in Fig. 5 represent the third-order

correlations corresponding to the quasi-Gaussian

(11)

0.06 s

c R:'z
— QUASI-GAUSSIAN
ASSUMPTION
FOR €'(t)

0.04

0.02

-0.02- o
-004 -
00BL——L 11V vy
s} 04 0.8 1.2 1.6 20 24 2.8

Fia. 5. Comparison of third-order correlations corrected
for the nonlinear response of the hot-wire using the high-speed
computing method with that obtained by a simplified pro-
cedure assuming the fluctuating voltage to be Gaussian,
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Fig. 6. Comparison between corrected and uncorrected
correlations of eighth-order, R #4(h), illustrating the negligible
effect of the nonlinear response of the hot-wire on measure-
ments of even-order correlations.

assumption obtained from Egs. (11) and the open

circles and open squares represent the correct values

of B?' and R;?, respectively. As can be seen these

approximate equations represent the third-order cor-

relations quite well except for a relatively small

departure for the small values of the time interval A.
For h = 0 we find from Eqgs. (11)

P = @ + 66°®. (12)

The above equation can also be obtained by intro-
ducing the Gaussian value ¢* = 3 in Eq. (9).

5. OTHER CORRELATIONS

Other correlations than those of third-order can
be determined using similar methods. The nonlinear
correction is performed easily by using the high-
speed computing after the fluctuating voltage is
multiplied by the appropriate calibration coefficients.
If the nonlinear correction is to be made after the
correlation for the non-corrected fluctuating voltage
is obtained, then we can determine the expressions
for R™" as functions of R;". Thus, for the second-
order correlations we find

R, = GR. + GBER:' + RY). (13)

Here we will not give the expressions for R7?, R?®
and R** explicitly; however, it should be noted
that these correlations are very close to the cor-
responding correlations R??, R{®, and R;**. The
differences between the corrected and uncorrected
correlations are too small to be represented by
different curves except possibly for the uncorrected
correlation R*'* represented on Fig. 6 by dashed
curves and compared with the open circles which
represent the corrected R;'*.

FRENKIEL AND P. S

KLEBANOFF

Since the only appreciable difference between
R7™ and R™™ for even values of (m -+ n) appears
to be at small time intervals h, the following approx-
imate expressions for v* = R7""(0) are given:

Sl

= @'st + 4@'®(s — &),
= Q% + 6a°®(E — &), (14)

W= @ 4 8a'®(g’ — ¢&).

<

While the even-order correlations for turbulent
velocities are quite close to the corresponding cor-
relations for voltages this is not the case for the
odd-order correlations as has already been seen
for the third-order correlations. Thus, in the case
of the fifth-order moment v, we find the approximate
relation

v = &% + 5a'®(" — &) (15)
in which the first term on the right hand side may
be considerably smaller than the second term. Thus,
we find that the fifth-order moment for the turbulent

velocities will be quite different from the correspond-
ing fifth moment for the voltage.

6. NON-GAUSSIAN PROBABILITY DISTRIBUTION

Now let us assume that the turbulent velocities
¥'(t) are distributed according to the non-Gaussian
joint-probability density distribution

i+tk=4

Py, vs) = Polvy, vs) E

0

Ai.kHi.k(Uly Uz)y (16)

where P, is a Gaussian joint-probability density
distribution, H, ,(v;, vs) are the Hermite poly-
nomials of two variables and A; , are coefficients
defined in terms of the higher-order correlations
R7" according to the distribution law suggested by
J. Kampé de Fériet.® Under this assumption the
correlations of fifth order can be expressed as fune-
tions of the measured (and corrected for the non-
linear response) correlations of lower orders. Pre-
viously* we gave the appropriate relations for R
and R?® and we list them here together with the
remaining correlations of fifth order

Ry* = R + 6R.R!" + 3R;”,

R?® = R + 6R.R)* + 3R},

RI" = 4R.R}° + 6R.", a7
R* = 4R.R}® + 6R,?,

R = RY® = 10R}° = 10R}".

¢ J. Kampé de Fériet, David Taylor Model Basin, Report
2013 (1966); also see Ref. 4, p. 514,
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CORRELATION

Figure 7 presents the curves for R}'* and R?'%, and
Fig. 8 the curves R:'' and R}* obtained by the
above equations from the measured correlations of
lower order. These curves are compared with the
corresponding correlations as measured directly and
corrected for nonlinear response.

7. EFFECT OF TRANSVERSE VELOCITIES ON THE
RESPONSE OF A HOT-WIRE NORMAL TO THE
MEAN VELOCITY

In the previous sections we have taken into ac-
count the nonlinear response of hot-wires assuming
that the effect of the transverse component of the
turbulent velocity »'(f) can be neglected in com-
parison with the instantaneous component of the
velocity parallel to the mean velocity u(f). Now we
determine the effect that the transverse component
of the velocity has on the results obtained with a
hot wire normal to the direction of the mean velocity.
First let us note that the nonlinear correction which
we have used remains the same if we replace the
expressions for the correlations between the longi-
tudinal components of the turbulent velocities
WU+ h)
T —s o = vy

12\ {m+n)/2
(u

R () =

by correlations between the components u; defined
by Eq. (1):

RyW(h) = -Lzaiéf;::;;‘* (18)
In order to determine the correction due to the
effect now considered we express the correlations
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Fre. 7. Measurements of fifth-order correlations, R ;2:2(h)
and R23(h), corrected for the nonlinear response of the
hot-wire compared with curves obtained for the fourth-order
non-Gaussian probability distribution.
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Fie. 8. Measurements of fifth-order correlations, R #(h)
and R;'#(h), corrected for the nonlinear response of the
hot-wire compared with curves obtained for the fourth-order
non-Gaussian probability distribution.

B3 in terms of the correlations R7'". However, the
effect of transverse velocities on the hot-wire re-
sponse are independent of the nonlinear effects, and
therefore, they also apply to the linearized constant-
temperature hot wires.

Expanding (1) and neglecting terms of a higher
order than the fifth we find

uy _ogooow o 1o 1w 1w

g -ttt et o
Lot 1wt 3wt
SU° "2 07 T8

Taking the average and subtracting it from the
above equation we find

v =Tk + 3T — 1) — 7%’ — E)
+ T30 — Vb)) — %Mt — c?)

— %0 — ;?_’;5) + 3T% (e — 17)C‘T)]y (19)

where
— u{V . 2 1;7_ . 2 u/,z 2 2)12 2 7—)75
’Y_U’T_Ug’v:ﬁ’a_ﬁ"(:u_‘/i
Let us define
v, = u () e = uy(t + k)
U 2 U !

and thus the correlation measured with a hot-wire
normal to the mean velocity will be given by

s
‘§)<m+n>/2' (20)

Ry(h) =
¢
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Equation (19) will give for the second-order moment
Tve = T v, + 3003 + val)

- %TZKz(lE;f + iv_;‘é) + 1T% 4(0410‘2 -1

+ 3R] + vlad) — 3T [20ala; + vaied)
+ (i + viad) — de’] — TG + vivied)

+ 7% Bwsai + vaes) + 20iele: + vaoial)

4%F — 268

2TC[(@2ad + afal) — 2°]}. (21)

7 3
+ 2vveoioy —

In a similar way we obtain for the third-order
moment

Yors = Tl + 30 + 20 — 2uw, — 1)
2vv: + D]

1T Ruaial + vai — 2(dh + vad) — 2ud’]
AT 20000t + vives — (2uw, + DV’

— % 4(iebes + vveates) + buwsar + Vi

— 4ot + vsed) — 4l + veed + ve)ue’

— 4% — (v, + D'

+ 3T

— 7% [U1U2a2 + 2v%,a° —

+
+

@ - 21} (22)

and the third-order moment ,42 can be obtained
by interchanging the subseripts 1 and 2 in Eq. (22).
For the fourth-order moment %2 we find the ex-
pression

4 2
[aya; — 20(1042

yivi = THul} + T [(uwies + vivees)
— (o 4 vd)] — TR} + vivies

- (u1v2 + vlvz)va ]+ iT2K4[ Viy - uzal)
4(U1U20l% + Ulvzaz)
— (Rt + i) + 2(2vw, + D]}, (23)

2 3
+ 4011)2011012 -

and for 73"72,

vive = T'{vive
— %T%{z[(?)v?vﬁaf + v?vzaz)

(Bviv; — v°)]
— (30, + )]

+ 1T [3viveat + viad —

— (2v1v2a?

+ 3T% (et + viadad)
+ Pk 4 o) 4 (e + DI (24)

The fourth-order moment y,42 can be obtained by
interchanging the subscripts 1 and 2 in the above
equation.

By taking v =
(21), we find

n =v, and a = a; = a in Eq.

F. N. FRENKIEL AND P.

S KLEBANOFF

¥ = T*{1 + Tk%a® — T%%%d
+ %@ — 1) + T%%%° — 2T% (3
— 2ad) — THAQE + 1T% 6%’ — 2%’
— ()] = 3T%° — o)} (25)

In the same way from Eq. (22) we find the ex-
pression

Y= TP 4 T — 1) — 3% — ved)
+ 7%’ — %) + %0 — VD)
— % [5v'et — 4% — &' — 4(vdd)’]
+ IT%0° ~ 3a° + 2)}, (26)
and from either Eq. (23) or Eq. (24) we find
Y= T 4 2TE%E — ) — 2T e — P(ued)]
+ 3T% et — 20%7) + 11}, (27)

Equations (25), (26), and (27) can, of course, be
obtained directly from Eq. (19) as was done by
Comte-Bellot.> We also find directly from Eq. (19)
the expression for the fifth moment

v = T + T — ). (28)

In Egs. (21)-(28) we have neglected all terms of
higher order than T°. Using similar procedures we
can find the appropriate expressions for the cor-
relations 41y5 of still higher order, except that it
may be necessary to include in Eq. (19) terms of
higher order than T°. In fact, this may already be
necessary for Eq. (28).

In order to apply Eqgs. (21)-(28) it is necessary to
estimate the orders of magnitude of the different
terms and to determine under what conditions some
of these terms may be neglected. For that purpose
we refer to the various terms given in Eqs. (25)-(28)
for the values of the moments v* and more partic-
ularly to the cross correlations between the longi-
tudinal and transverse components of the turbulent
velocities at the same point of the field of turbulence.
In view of the experimental evidence as to the non-
isotropy and non-Gaussianity of the turbulent field,
it seems desirable to obtain some measure of these
various terms experimentally rather than be limited
to the assumptions of isotropy and Gaussianity.

A. Cross-Correlations between Transverse and
Longitudinal Turbulent Velocities

An X-wire arrangement consisting of two mutually
perpendicular wires was used with the wires placed
in the plane of the u and v’ components of the ve-
locity and at 45° to the direction of the mean velocity
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(Fig. 9). The voltage sum and voltage difference
corresponding to the fluctuating velocities () and
v'(t), respectively, were recorded simultaneously on
magnetic tape. Particular attention was given to
matching the sensitivities of the individual wires
$0 as to minimize the contamination of one com-
ponent by the other. A sample of data approximately
5.5 sec in duration was digitized at a rate of 28 800
per sec. The measurements were again made at a
mean velocity of 15.4 m/sec and at a distance of
48.5 mesh lengths downstream of the same 2.54-
cm mesh grid as for the previous measurements. The
intensity of the longitudinal component of tur-
bulence was, as before, 1.8, of the mean velocity,
and the ratio of the measured transverse to longi-
tudinal components of turbulence was 0.92. As a
first approximation we take 7' = 0.018 and « = 0.92
and neglect the correction for the effect of the
transverse velocities in the measurements with the
X-wire arrangement, which can be expected to be
rather small under our experimental conditions.
However, we will make the correction for the non-
linear response of the hot-wire since we have seen

TasLe 1. Measured cross—iorrela@ns_@ = umr
/)2y and moments v» = um/(u2)m2 and om =
v™/(v"2)7'2 at a point in a turbulent field downstream of a grid.

Not corrected Corrected for  Gaussian and

for nonlinearity®  nonlinearity* isotropic

v —0.102 —0.102 0
w» —0.0115 0.0556 0
Va 0.0048 0 0
val —0.0743 —0.0754 0

3 0.0062 0.0062 0
v 2.927 2.927 3
Pa —0.309 —0.309 0
Fal 0.9903 0.986 1
vad —0.255 —0.256 0
ot 2.935 2.935 3
¥ —0.128 0.508 0
v 0.0136 0.0976 0
ot —0.203 0.273 0
Vo 0.0618 0.049 0
vad —0.465 —0.465 0
b 0.0693 0.0693 0
v8 13.89 13.80 15
Voo —1.500 —1.504 0
viad 2.878 2.848 3
vl —0.800 —0.793 0
Pt 2.918 2.936 3
vad —1.176 —1.168 0
ab 14.18 14.18 15

» The signs depend on the selection of the positive direction for the
transverse component « (or »’). A change of direction results in a change
in sign for all cross-correlations and moments in which « has an odd
exponent.

1745

455,

Fra. 9. The X-wire arrangement formed by two wires
I and II perpendicular to one another in the plane of the
mean velocity #, with the wires at 45° from the direction
of 4. Plane OCDE is perpendicular to the direction of wire I;
U = (u + o2 + w2, 0C = (u + v')/+/2 and OD =
B(u + o' 2 + w7

that such corrections may be quite important. This
nonlinear correction has been applied in the same
manner as in the case of the normal hot-wire. How-
ever, in the present case the calibration for the
voltage difference between the two arms of the
X-wire shows that the response of the hot-wire to the
v’ fluctuations is practically linear within the limits
of the fluctuations of this velocity component. The
various cross-correlations

’ 4
e uy’"
“I2\m/2/ 12\n/2 !
@)™ 0)
and moments
Im “Tn
- U — v
"= and o = =

(172~ m/2 (1) 2)n/2
were obtained by analysis of the analog data using
high-speed computing methods as previously re-
ported. The numerical values for these cross cor-
relations and moments obtained using the sample
of recorded data are listed in Table I where both
the values before and after correction for nonlinear
response are given. It is immediately noticeable
and in fact somewhat surprising, that the cross-
correlation

o

W

is of the order of 0.1 and is not zero or at least not
negligible. We do not wish to emphasize the accuracy
of the experimental results since in this particular
case they are limited to those from a single sample of

recorded data and to measurements made at only"
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one position in the turbulent field. However, this
aspect merits further detailed investigation inas-
much as there is no a prior: reason why, in a de-
caying field of turbulence with a nonzero value of
%%, va may not exist. Similarly, it is premature to
assess the significance of the other cross-correlations
v"a" and the moments " and «” given in Table I and
the relations between them. Nevertheless, we feel
that the results may be of some interest since no
previous data are available for most of the data
listed in Table I and since they help to provide a
more direct evaluation of the corrections for the
effect of transverse velocities.

Let us now consider the case when the turbulent
field is isotropic and the probability distribution
densities of the velocity components «'(f) and v'(¢)
are Gaussian [such conditions are also considered by
Comte-Bellot’ in estimating some terms of Egs.
(25)—(27)]. For this case the values are also listed
in Table 1.

It is seen, at least for this particular sample of
data, that the even-order moments of v” and &" are
approximated fairly well by the assumption of
Gaussianity and isotropy. However, the odd-order
moments of v", o, and the odd-order cross-correla-
tions v"o" as well as even-order correlations »"a"
involving odd powers of v and « are not adequately
given by these assumptions.

We can also consider the case of a non-Gaussian
joint-probability density distribution of the com-
ponents v and « similar to the one represented by
Eq. (16). The resulting values for the higher-order
cross-correlations v do compare somewhat better
with the measured results. Such a comparison will,
however, be more appropriate when more extensive
results regarding the cross-correlations "a" are
available.

From Egs. (25)-(28) we can now estimate the
orders of magnitude of the corrections due to the
transverse velocities by introducing the values of
V"o corrected for nonlinearity, as they are listed in
Table I as well as the values of T and «. We find the
ratios

|
|

Uy u'y
1? = 0.99977, ﬁ = 1.02;
we ul
’;% = (0.981, ;—% = 1.03.

It is, therefore, concluded that the correction for
the effect of transverse velocities can be neglected
in comparison with the correction for the nonlinear
response of the hot wire, at least for moderate in-

tensities of turbulence. At high intensities of tur-
bulence and when v is very different from »’%, the
transverse velocities may have a non-negligible ef-
fect. We indicated earlier that the effect of the
transverse velocities on the X-wire arrangement can
be expected to be rather small under our experi-
mental conditions, For the sake of completeness and
since the effect of transverse velocities on measure-
ments with X-wires may become important under
different experimental conditions,®'®'! it seems,
however, desirable to outline the corrections for
this effect.

B. Effect of Transverse Velocities on X-Wires

For the X-wire arrangement, in contrast to the
normal wire, the effect of the w’ component must
now also be taken into account. These two wires are
considered to be sensitive to the components of the
instantaneous velocity U normal to the direction of
the wire. Figure 9 illustrates the relation between
the components v = 4 + u, v/, w' of the instan-
taneous velocity U and the component of this veloc-
ity normal to the wire. Thus, for wire I whose
direction makes an angle of —45° with the direction
of the mean velocity, we obtain

) = [3@ + v + V) + WIZ]%,

and similarly for wire II, whose direction makes
+45° with the direction of the mean velocity, we
find

(e = 3@ + ' — o) + ]
Expanding the above two expressions into series
and neglecting terms of higher-order than the fifth we
find
72 e 2?2

w uw vw

U u’ v’
(uzv)x—\*@[l-}—ﬁ-i-ﬁ-i-

1,4 72 2 1242 292 3 42
P wl ’ !

1w u"w w'v’w u"w
2 U4 + U4 "‘ U4 + 2 U4 - Us
v | 3uw | 3vw
U’ 2 U° 2 U
112,12 12,702
and

10 W. G. Rose, J. Appl. Mech. 29, 554 (1962).
118, P. Parthasarathy and D. J. Trytten, ATAA J. 1,
1210 (1963).
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U u w?® ww? | v’
(uN)II = 7 [1 LT + U - —‘I—'JE— + (/’3
14 72, 12 72, 12 700 00?2 73,12
B AV A Y G T
2 U U U U U
n V| 3uwt 30w
vt T2 Ut 2 U
2,02, 12 127 42
-3+ 3 “——%—“’—] : (30)

where the mean velocity @ is considered to be equal
to the measured wind velocity U.

In order to measure the longitudinal component
of velocity with an X-wire the voltages from the two
wires I and I1 are added while the transverse com-
ponent of the velocity is measured by taking the
difference of the voltages. Thus, these velocity
components with the correction terms for the effect
of transverse velocities can be defined, respectively,
by the sum

U, = (uN)I + (uN)II,
and the difference
v, = (uwn): - (un) 1.

Taking the averages 4, and 7, and subtracting them

from the corresponding instantaneous velocities, we
find

u, = u, — 4, and v, =v, —7,.

Equations (29) and (30) give

= V2 Tl + «2T(8 — 1) — 2T*8° — vfd)

— LATE* — BY) + 2T°(8° — v6°)

+ T8 — o8°) — k208 — V')

+ 22T — uBY) — 3T (w8 — va’BY), (31)
and
T = V2aTle — kT8 — of)

+ 2% T waf® — @E) — kx
+ 3k, T* (B

where

I — o)
~ af) — 32T aB® — D)}, (32)

P 7
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72
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e
g

It is interesting to note that even for perfectly
matched wires there is in principle an effect of the

v" component on the measurement of the w' com-
ponent seen from the higher-order terms involving
a in Eq. (31). Similarly, there is an effect of ' on
the measurement of v in Eq. (32). However, these
secondary effects may become negligible since they
involve terms of higher orders in 7.

The effect of the transverse velocities on the
measurement of the cross-correlations

W)

(1;75)"[/2(?5)"/2

with the X-wire arrangement can thus be obtained
from Eqgs. (31) and (32) by forming the ratios

Im /In

u,"v,
(u )m/Z( /2)n/2

Since we are particularly interested in the third-

order correlations, we only indicate the corrections

for the fourth-order correction term, v’o?, in Eq.
(26). Thus, from Egs. (31) and (32) we find

7273
U, UV

U4
. K? 12[4W‘

+ K:T2(0£264

= 2T (V% 4 22T (a8 — vad)
20°0)(@f”) — 2(:a) 46%)]
— 22°6° + 1)}. (33)

No experimental information exists with which to
properly estimate the value of the correlation in-
volving the products of «/, +' and w’ in Eq. (33).
However, it does not seem probable that they would
be of such a magnitude as to introduce a significant
correction in the measurement of ’o’ under the
present conditions. For example, if one makes the
arbitrary assumption that o' and w’ are uniquely
correlated either positively or negatively, permitting
the use of the corrected values given in Table I (for
example va’8® = va' = —0.465) the correction is
still only about 1.59%.

In a similar way it can be shown that the correc-
tions for the effect of transverse velocities on the
moments and other cross-correlations measured with
the X-wire are negligible under our experimental
conditions.
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