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INTRODUCTION

The turbulence problem, which will quite generally form the subject
of the following investigations, has been treated in the course of time
in so many reports from so many different viewpoints that it is not our
intention to give, as an introduction, a survey of the results obtained
so far. For that purpose, we refer the reader to a report by Noetherl
on the present state of the turbulence problem, where most biblio-
graphical data may be found as well.

For our purpose, a rough outline of the present state of the tur-
bulence problem will be sufficient. The investigations made so far are
divided into two parts; one part deals with the stability investiga-
tion of any laminar motion, the other with the turbulent motion itself.

The first-mentioned investigations led, at the beginning, to the

negative result that all laminar motions investigated are stable.

V. Mises2 and L. H0pf3 proved, on the basis of a formula by Sommerfeldh,
the stability of the linear velocity profile corresponding to Couette's
arrangement, Blumenthal”® reached the same result for a profile of the
third degree, upon which Noether invited discussion. On the other hand,
Noether® later succeeded in specifying an unstable profile - a profile
which is unstable even in the case of a frictionless fluid can never be
realized as a steady state of motion for actual conditions. More

*'{ber Stabilitdt und Turbulenz von Flussigkeitsstrdmen." Annalen
der Physik, Band T4, No. 15, 1924, pp. 577-627.
INoether, F.: zeitschr. f. angew. Math. u. Mech. 1, 1921, p. 125.
2Mises, R. v.: Beitrag z. Oszillationsprobl.: Heinr. Weber-
Festchrift, 1912, p. 252.
3Hopf, L.: Ann. d. Phys. b4k, 191k, p. 1.
hSommerfeld, A.: Atti d. IV, congr. int. dei Mathem. Rom 1909.
DBlumenthal, 0.: ‘Sitzungsber. d. bayr. Akad. d. Wiss., 1913, p. 563.

€Noether, F.: Nachr. d. Ges. d. Wiss., Gdttingen 1917.
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recently, however, Prandtl! has shown that indeed profiles exist which
possess unstable characteristics only if the friction is taken into
consideration.

The other group of reports which achieved great success quite
recently by the calculations8 of Von Ké}mén, Latzko, and others
investigates the turbulent motion itself proceeding by a semiempirical
method using the laws of similarity. Theoretically, the reports of
this group are based almost throughout on Prandtl's boundary-layer
theory. Their most important result for our purpose is the so-called
yl T_1aw of turbulent velocity distribution which follows from Blasius's

law of resistance (examples can be found in Schiller's report9.)

The determination of the critical Reynolds number was always one
of the main aims of the first-mentioned reports, the stability inves-
tigations. So far, a satisfactory calculation of this number has not
been accomplished and it must be regarded as doubtful whether it could
be achieved by stability investigations. The tests of EkmanlO, Ruckesll,
and Schiller9, together with the negative results of Hopf concerning
the linear velocity profile, rather suggest the notion that the critical
Reynolds number does not indicate the point where the laminar motion
starts to become unstable, but the point where, for the first time, the
turbulent motion is possible as steady state. From the viewpoint of
theory, we must thus be prepared to find eventually two critical
Reynolds numbers, one corresponding to the beginning of turbulence, the
other to the breaking down of the laminar motion.

The present investigation also will be divided into two different
parts, the treatment of the stability problem on the one hand, that of
the turbulent motion on the other.

7Prandtl, L.: Physik., Zeitschr. 23, 1922, p. 19, and Tietjens, O.,
Dissert. GOttingen, 1922.

88ee Zeitschr. f. angew. Math. u. Mech., 1, 1921, p. 233f.

9Schiller, L.: Rauhigkeit und kritische Zahl. Physik. Zeitschr. 3,
1920, p. 412,

10Rman, V.: Turbulent Motions of Liquids. Arch. f. Mat. och
fysik 6, 1919. p. 12.
. 1lRuckes, W.: Dissert. Wirzburg 1907. See also Lecture by W. Wien,
Uber turbul. Bewegungen. Phys. Zeitschr. 8., 1904, and Verh. d. deutsch.
phys. Gesellsch. 9, 1907.
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The aim of the first part is to summarize all previous investiga-
tions under a unified point of view, that is, to set up as generally as
possible the conditions under which a profile possesses unstable or
stable characteristics, and to indicate the methods for solution of the
stability equation for any arbitrary velocity profile and for calcula-
tion of the critical Reynolds number for unstable profiles. This aim
can, of course, be attained only imperfectly by the use of approxima-
tion methods. Nevertheless, we hope to be able to clarify by such
calculations the qualitatively essential viewpoints. At first, the
investigation of any arbitrary profile seems physically meaningless
since only certain profiles actually occur; however, since we may
interpret any profile as finite disturbance of another, as for instance
Noether has done elsewhere, and since we must, on the other hand, later
extend the investigations to the (at first unknown) basic profile of the
turbulent motion, the investigation of an arbitrary profile seems, after
all, to be of great importance.

As application of the methods, the parabola profile will be cal-
culated completely.

In the second part, we shall attempt to derive, under certain
greatly idealizing assumptions, differential equations for the turbulent
motions and to obtain from them qualitative information about several
properties of the turbulent velocity distribution,

PART I: THE STABILITY EQUATION

1. Statement of the Mathematical Problem

The most essential limitation we impose on our calculations con-
sists in the exclusive consideration of two-dimensional laminar motions
and only two-dimensional disturbances of these motions. Taking a rec-
tangular coordinate system X, Y, Z as basis, we therefore assume that
the velocity in the Z direction is zerc and all remaining quantities
independent of Z. Furthermore, however, we shall only examine the sta-
bility of such laminar motions as occur between two straight parallel
walls. We assume the walls to be parallel to the X axis; therefore,
the laminar motion to be investigated also promises a velocity com-
ponent only in the X direction. This velocity w in the X direction
will, in some way, be dependent on y. Concerning the function
w = w(y) we reserve for later making a few assumptions about continuity,
symmetry, etc.; otherwise, however, this function is to be at first
quite arbitrary.
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If we put w = ay, our formulations become exactly identical with
those investigated by Hopf in the Couette case. The problem whether
the investigated profiles w = w(y) can be realized as steady motions
will not be dealt with for the present.

Before deriving once more the stability equation (already set up
elsewhere by Sommerfeld) briefly from Stokes's differential equations,
we introduce dimensionless variables in the known manner., Let h be
a characteristic length (for instance the distance between the two
walls), U a characteristic velocity of the profile, u the viscosity,

p the density, and HEB = R the Reynolds number; we introduce instead

M
of x, y, u, v, t, and p (u, v being the velocity in x or
y direction, respectively, t +the time, and p the pressure) new
variables Xqr Yo Uns Vi to, and Py according to the relations

u v U =
5 Yo=% Y=g Vo= to=t =P

If the index O 1is subsequently omitted, Stokes's equations read

du du ou 1 ( dp . d3u aeu) W
—+u—+vV = -— + -

= = — +

ot ox dy R\ ox dx2 dy2
, (2)

v dv v _1f dp . Fv

— +t U —+V—==]-—=+ — + —

dt dx dy R\ dy %% oy

J
Since we presuppose incompressibility, we write
L L

u ay; v 3% (3)

As is well known, we obtain by the elimination of p

S ¥ 9O W 9 -1
ot &y = y ox av - ox ay'Aw "R o8y (4)
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By A one understands here the differentiation symbol

2 R

— t —

M2 dy?

Equation (4) does not yet contain anything about our special

‘problem, the stability investigation of a certain laminar flow. Accord-

ingly, equation (4) will form also the basis for the calculations of
part II. In order to pass over specifically to the stability investi-
gation, we divide the motion and therewith also the vector potential ¥
into a basic flow and small oscillations superimposed over it. Thus we
set up the formula

v=0(y) + ply)el(Bt-ax) (5)
%3 - w(y) = w (6)

If we enter this formula into equation (%), omitting all terms not con-
taining ¢ (since we regard equation (k4) as satisfied for ¢ = 0),
furthermore omitting all terms quadratic in ¢ (since we assume ¢ as
small), the corresponding differential equation for ¢ reads

(o' - a2q>)( i g) St =L (9t - 2B +ate)  (T)

The fact that we regard equation (4) as satisfied for ¢ = O signifies
physically that we consider only such basic flows w which either, by
virtue of external forces, are really steady, or show a variation with
time which is slow compared to that of the small oscillationms.

Equation (7) is in this generality already derived elsewhere by
Noether, It is an ordinary differential equation for ¢ of the fourth
order. It corresponds to the fact that the function ¢ must fulfill
four voundary conditions; u and v, thus also @ and @', must dis-
appear at the two walls. If we put B/a = ¢ 50 that c¢ essentially
signifies the wave velocity, the mathematical problem may be formulated
as follows: The solutions of the equation
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(9" - «Bo)(w - c) - gu" = f;%ﬁ"'- 209" + o) (Ta)

are to be investigated with the secondary condition that at the bounding
walls (for instance, y =1 and y = -1) ¢ =0 and o' = 0. For each
value of a and R the corresponding value of ¢ and B 1is to be
calculated; let a for reasons of simplicity always be positive.
According to whether the imaginary part of B 1is positive, zero, or
negative, we are dealing with a stable, undamped (undamped oscilla-
tions = neutrally stable oscillations), or unstable oscillation. The
conditions for profile w are to be found under which equation (7a)
admits only stable oscillations or, respectively, also unstable ones.

Before turning to the methods of solution we want to point out a
special property of the equation (7a). In the limit of the frictionless
fluid, R = =, equation (7a) is transformed into a differential equa-
tion of the second order for ¢

(¢" - aPq)(w - c) - qw" = 0 (8)

Accordingly, only two boundary conditions must now be satisfied which
signify that the normal velocity component, thus v or ¢ Dbut no
longer ¢', is to disappear at the two walls.

The conditions for the solvability of equation (8) have already
been investigated in detail by Rayleigh.l Introducing a simple desig-
nation, one may distinguish basic flows "capable of oscillation" or
"not capable of oscillation" according to whether or not equation (8)
possesses a solution with real ¢ which satisfies the boundary con-
ditions. If solutions with complex c¢ exist, the stability problem
for these oscillations has, as will be shown later, already been
decided by equation (8), also in case of consideration of the friction;
the oscillations are then always unstable.

One is, however, beyond this led to the conjecture that the pro-
file w, under influence of friction, permits unstable or undamped

1215rd Rayleigh, Papers I., p. 361; III. pp. 575, 59%; IV. p. 203.

13Here, however, it is by no means sufficient to approximate the
profile by tangents polygons; the result with respect to possible
oscillations would thereby be completely falsified.
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oscillations only in one case: when it belongs to the basic flows
capable of oscillation.

This supposition is the more obvious as it has been confirmed for
all profiles investigated so far.ll‘L Nevertheless, it is by no means
motivated by the fact that equation (8) results from equation (7a) in
the 1limit R = ~ since it has been proved, for instance, in the reports
of Oseenl® that the limiting process R = » has led more than once to
false results in the differential equations, particularly with respect
to the boundary conditions of the frictionless fluid, and that one may
therefore apply the limiting process only to the integrals of equa-
tion (Ta). Moreover, it can by no means be decided beforehand whether
the friction modifies the undamped oscillations of equation (8) in the
sense of a damping or an excitation.

Following, we shall attempt to prove our surmise mentioned above by
showing that the systems capable of oscillation are shown to possess
above a certain value of the Reynolds number and in general unstable
character, whereas all systems not capable of oscillation are shown to
possess a stable chiaracter.

By this principle the problem of the stability of a profile is
quite considerably simplified since, as is well known, the solutions of
equation (8) may be directly written down for very small values of a.

2. The Methods of Solution and the General Behavior of
the Integrals of Equation (7a)

The most important property of equation (7a) which permits an
approximate representation of its solutions consists in the fact that
R may be regarded as very large., It will become evident that if a
stability limit exists, this limit lies, in general, at very high values
of R. Since it is, moreover, physically quite improbable that for
small values of R 1instability of the respective profile could occur,
it is sufficient for our next purpose to regard R as very large.

This assumption makes it possible to approximate the solutions of
equation (7a) by development in negative powers of R or, as will be

shown, of \aR. Furthermore, we shall assume a as small and shall
develop the solutions in a glven case in positive powers of al.

ll*Compare also Prandtl, Physikalische Zeitschrift.

15Com.pare, for instance, C. W. Oseen, Beitrage z. Hydr. Annalen
der Physik 46, pp. 231 and 623, 1915.




8 NACA ™ 1261

Both methods of development in (OLR)'l/2 and a2, respectively,
seem contradictory insofar as in the first case aR 1is assumed large,
in the second case a2 small; however, the contradiction is eliminated
by the fact that R mcy be regarded, in general, as extraordinarily
large so that for instance for R = 2000, a = l/lO, aR becomes equal
to 200, al = 1/100 which is fully sufficient for a satisfactory con-
vergence of the two developments. However, the convergence properties
of these approximation methods must be considered more exactly. The

investigation shows that the series in (oLR)’l/2 are generally diver-
gent, yet show the well-known characteristics of the semiconvergent
series, that is, that the terms first decrease, then again increase,
and that one obtains the optimum approximation if one breaks off the
series with the smallest term. Our approximation method has, there-
fore, convergence properties similar to those of the series of the
perturbation theory used in astronomy, the behavior of which is
described in detail by Poincar€, Meth. nouv. d. 1. mec. cel. II.

The use of the semiconvergent developments is rendered con-
siderably difficult by the fact that they lose their validity in the
neighborhood of a certain point so that it cannot be immediately
decided in what manner the approximate solutions on both sides of the
point must be joined in order to approximate a certain integral of the
equation (7a) on both sides. This question will be discussed in detail
in section 3.

The development in positive power series of a? seems, in general,
to be actually convergent. For special profiles this development may ‘
be strictly proved (for instance, for the linear profile); however, we
have not carried out an investigation of the problem under what con-
ditions for the profile w this convergence actually occurs.

We start with the derivation of the approximate solutions of
equation (7a)

(@" - o) (v - c) - w'p = (g™ - 202" + ato) (7a)
For this purpose we first put
jgdy 1
q)::e ’gz@g0+gl+ﬁgE+"' (9)
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We shall limit the development to the two highest terms in \’@R. There
follows

aRgy2(w - c) + @(go‘ + 2898 ) (W - ¢) = ichgol*+ ijoR (hgo3gl + 6g02go‘)

a® and Ww" are presupposed to be of the order of magnitude 1 or, at

any rate, << \aR. By means of simple calculation there now results

& = q‘i(w - C); €1

Thus we obtain two particular integrals of the equation (7a)

t YJ:T‘_‘;:E'
)'5/heL[;O IGR( )

&' __5
o dy = - 5 log g, (10)

oo

=(w-c¢c (11)

1,2
The point Yo is to be determined by w being =c¢ for y = Yo-
Thus yy may, under certain conditions, be complex. The sign of the
root is to be chosen so that for

) ifw+ X
w -c = -aet®, -iaR(w - c) = aRae ( 2)

the root becomes

(ﬁa)l/eei(%+ ﬁ)

A remarkable fact about these two integrals is that a2 in P
does not appear in this approximation (that is, only in the combina-
tion aR which, as follows from equation (7a), could in a certain
sense, be called the true Reynolds number).

As we shall see later, the two integrals (11) determine the
behavior of ¢ in the boundary layer, and the nonoccurrence of a2
in equation (11) signifies physically that we consider only oscillations
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the wave length of which is large compared to the boundary-layer thick-
ness, which is certainly the case for the empirically observed unstable
oscillations.

For a complete system of solution of equation (Ta), however, we
need two further integrals; naturally, we shall choose those which
result from the integrals of equation (8) by the development of

(aR)~! in a power series.

For this purpose we first solve equation (8) by the development
of a2 in a power series., Thus we put

(cp" - ach)(w -c) - =0 (8)

P = ol0) + a20(1) + atel2) + . L. (12)
Hence follows
cp(o)"(w -c) - qa(o)w" =0
o(1)"(w = o) - ol = {0 (w - ¢)

o2 (v = ¢) - 2" = ol V(v - ¢

By the method of variation of the constants the two integrals

= (w - o? __ii_y___ w-c)? o+
P2 Ree) = ( c)(l + f(w KT fdy( c) .. )

(v - e _dy > (13)
Pp(R=w) = ( ) f(w _ c)2<1 M

o@fdy(W-c)gf—d—y—g+...)
(w - ¢) y

~
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result. TIn addition, these integrals have now to be corrected by

quantities of the order (aR)~l, . . . etc., if they are to satisfy
equation (7a).

Without writing the corresponding series development down in
detail, we give as result ¢ with the quantities of the order (aR)-1

cp3=(w-c){l+a,2 f(—w%y—c)—e—fdy(w—c)2+cx.u. . .+

. 3
4 &y 47 v+,

aRy (w - ¢)° ay3

f (14)
oy = (w - ¢) —dY 4y 42 dy(w - c)zllq dy +
(v - ¢)2 (w - )@
L i a3 dy
e e o+ — == (w-2c) R
a +a.Rdy w Cf(w—c)e
-

With equations (11) and (14), a complete solution system of the equa-
tion (7a) has been found approximately.

Before applying this system of solution for satisfying the boun-
dary conditions, it will be useful to clarify the physical significance
of the four integrals P10 Py @3, and Py, and to anticipate a few

results which we cannot establish until later.

The integrals P, @, are very rapidly variable for the high
values of R which are of interest to us, as can be seen from the
exponent of the order \faR. If, therefore, for instance P 1is at

one wall of the order of magnitude 1, it will vanish exponentially at
some distance from the wall. (In itself, it also could become extraor-
dinarily large; however, this is naturally prevented by the boundary
conditions.) Consequently, ¢ 1is composed, except for the immediate
neighborhood of the wall, of @3 and ¢ alone, that is, is

very similar to the behavior of ¢ 1in the frictionless fluid.
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The fact that o does not explicitly occur in Py Py (com-
pare equation (11)), but does appear in P3Py (compare equation 14))

must evidently be interpreted physically to signify that, if a2 is

assumed to be not very large 012 <;JE§) compare equations (7Ta) and (9)),
the wave length may be considered as infinitely large compared to the
boundary-layer thickness, but not compared to the width of the channel.
The characteristic difference between the "boundary-layer integrals"

P15, @, On One hand, and the integrals corresponding to the friction-

less fluid P3, @y, on the other, is therefore significantly expressed

in the occurrence or nonoccurrence of ag.

Concerning the convergence of the development in power series
of q?, we may hope that for values of a2 of the order of magnitude 1
it is still amply sufficient to enable a good approximation, since for
a linear profile the series for P35 Py become series of the type of

power development of cos a which in the neighborhood a = 1 still
converges very rapidly.

The flow pattern to be expected after all these conclusions corre-
sponds to the formulations made in Prandtl's boundary-layer theory.
Except for the immediate neighborhood of the walls, the motion obeys
very nearly the differential equation of the frictionless fluids. To
the walls themselves, however, adheres a boundary layer the thickness

of which is of the order of magnitude (a,R)'l/ 2, In this boundary
layer the velocity u decreases toward the wall rapidly toward zero
whereas v 1s almost zero even outside of the boundary layer.

3. The Connecting Substitutions

If we want to study the course of the integrals of equation (Ta)
from one bounding wall to the other, we must take into account that,
at a point y =y, in the chammel w - c =0 (or that at least the

the real part of w - c 1is zero), therefore the wave velocity there
agrees with the velocity of the basic flow. At this point, the
approximation formulas (11) and (14) for the integrals of equation (T7a)
cease to be valid.

Thus it is necessary to know the connecting substitutions for ¢,
P55 @3, and P, which have to be applied for the transition from

Re(w - c) >0 to Re(w - ¢) <0. For this purpose, we develop W

L S
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and ¢ 1in the neighborhood of the critical point Yo 1n the power
series cf (aR)"l/3 and put therefore

¥ - ¥y = a(er)1/3

Furthermore we assume the imaginary part of Yo to be of smaller

order of magnitude than (aR)‘l/3. If it is of higher order of magni-

tude, the connecting substititions are self evident because then
nowhere in the entire range of real y does a "critical point" appear.
If the imaginary part is of the same order of magnitude, the behavior
of ¢ and W may be easily interpolated from the two limiting cases
just mentioned. At first we may even put

In(yo) = 0

since ¢ 1in our case
In(yg) << (oa)71/3

may be developed in power series of Im(yo) and at first only the
behavior of ¢ for Im(yo) = 0 1s needed.

Thus we now put
= @y + €Py + € P, +
? =% 1 o T .

€ = (Q,R)-l/3

w - C = €an + egb'q2 + . . .
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Then there results from equatién (7a)

nt 0 2
cpon + GCP]_"" + . . . = ‘1[(@0" + 5@1" + . . _)an + GCPO"bT] -
26@05] + . 0. .
Thus in first approximation
Po " = -igy'na (15)
in second approximation
wee " " 2 -
P = i[cpl na + 9,01 2ch€| (15a)

For the integrals @, @, equation (11), we infer from equa-

tion (15) that they behave in the critical range (n order of magni-
tude 1) like the integrals found by Hopf for the linear profile, that
is, like certain cylindrical functions. Thus, we may conclude at
this point that the connecting substitutions for P10 9 from equa~

tion (11) except for quantities of the order (aR)-l/3 must be the
same as for the linear profile

q:’l — q)l + 1@2
(16)

P - 10 — ¢

corresponding to a transition of

Re(w - ¢) <0 —3 Re(w - c) >0
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However, for the study of the integrals P35 @y in the neighbor-

hood of y - Yo = 0, the simple calculations made so far are not suf-

ficient since for the latter the approximate solution (15) would
read @' = O; however, we know from equation (14) that, in the limit
R —w, @h" in general, becomes logarithmically infinite at the

point y - yy = 0. Equations (15) and (1%a) are therefore in this
form unsuitable for expressing this singularity.

Instead, we now set o =0 and w' =0 (that is, we break off
the development of w with the second term); otherwise, however,
integrate equation (Ta) exactly at first. In doing 8o, we notice that
@ = w - ¢ must be a particular integral of this simplified equa-
tion (7a) and we make, therefore, for ¢ the stetement familiar from
the theory of linear differential equations

q>=(w-c)fwdy

CP"" = _iqR(q)"(w - C) - V“CP)

Then there follows from

for

q);(w-c)J’uray

V" (w - ¢) + Ly'w' o+ 6w = -iG.R(ZW'(W -c)¥ + (w - C)2W')

which after repeated integration becomes

V(v - c) + 39w + 3" = -iaR((w - ¢)2y - C) (17)
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C 1is an integration constant. If one now again introduces
n=(y - yo)(aR)l/3, ¢ = (ar)"1/3,

W - c = €an + ¢°bn2, Vo=t er + ..

there results

Vo'an + 3p'e = -1 (82n2»4;0 - C) T
W'an + 3u'a vy T+ bp"on + Byb = ¢ (17a)
-i(2abx|;on + agngwl)

Of course, these differential equations still contain all solu-
tions of equation (7a). We intend to study particularly Py ( ®3

shows for o = O at the point y = Yo regular behavior); therefore,
we select the one solution of equation (l?a) which behaves at some

distance from Yo» thus for large (w - c)aR, like ————l——-—, since
(w - c)
we know from equation (1L4) that ¢, at some distance from ¥o is
given by
dy
(w-c) | ——
(w = c)

Thus we obtain according to equation (l7a)

C
V. =
0 a2n2

and

" 2b
W'+ 3y = —i(gg— Cn + angwl) (18)

-
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Wl is again fully determined by the fact that it is to behave "at
b
infinity" like -ELE.

a3n

We now ask for the transformation substitutions for Py, (and ¢3),

meaning thereby the following: In the asymptotically valid repre-
sentations for o3, @ (equation (14)), we always find the integral

Jrz——fgi—;g which loses its sense if it is to be extended beyond the

w~-cC

point y = Yo (w - c=0). Actually, Z——E——sg is, near the critical
wW-_c

point, replaced by the function V. Thus the behavior of V¥ (partic-
ularly Wi) in the critical neighborhood is the solely decisive factor.

If this behavior and therein the magnitude of the integral wa'dy

(extended beyond the critical point) be known, this knowledge is
equivalent to knowing the transformation substitutions for P35 Py

The solution Wl characterized by equation (18) and the boundary

condition at infinity reads:

y ki
‘Vl(n) = - ;Zgn H2/3(1)[%(-iaon)3/é]f H2/3(2)712dn -
+00

n
H2/3(2) He/s(l)ﬂzdﬂ (19)

Therein Hankel's cylinder functions of the index 2/3 and the
argument %(-iaon)3/2 appear (“O = al/3). The sign of (—iaon)3/2
re(ni)/z_

ag

A closer investigation of equation (19) shows that wi behaves in the

2 ‘s
is to be taken so that (—iaon)s/ becomes positive for n =

entire upper semiplane, and partially, even in the lower one, namely,

i i in P s .
for n = reif within the limits --%£'< 3 <-Zg— at infinity like
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2bC

3 , if @y Or a is positive. If a 1is negative, the upper and
a-n

lower semiplane are interchanged

. 2vC 5irn 13nd
lim wl(re1§)== -3 is valid, if — < E <
r—-oo a-n 6 6
a<?0
in . Trdi
or - —_ F < —
& < 6
a>0
(20)
Hence we infer the important result:
2bC 0
— in a s>
© a3
Y1 dn = g
-0 20C |, 0
- ——a3 in a < (21)

Thus the transformation substitutions for P35 Py accurate up to the

magnitudes of the order (aR)'l/3, are now found for finite values
cf o also; we now know - and that is sufficient - what, according

to equation (21), the integral\jp———fgi———, extended from w - ¢ < O
, (w - c)
to w-c > 0, signifies.

The formulas (16) also may be derived once more from equation (17);
to the asymptotic solutions (11) of equation (T7a) correspond the
integrals

ECHC HEC (193)

of the homogeneous equation (18) (C = 0). The problem of finding the
transformation substitutions of the "asymptotic" integrals (11) and (1k4)
is therewith completed with the required accuracy (except for quantities

of the order (aR)'l/3.
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L, Fulfillment of the Boundary Conditions and the
Stability of the Oscillations Corresponding
to the Solution System I

Our considerations so far have been quite independent of the type
of profile except for a few limitations concerning the singular points
which had to be imposed on the profile. 1In order not to lose our-
selves in an excessive number of different possibilities, we shall
further specialize the character of the basic flow. The considera-
tions, however, have much more general validity. We thus assume that
the bounding walls are represented by the equations y = +1 and
y = -1, that, furthermore, the wall y = 1 possesses, with respect to
the other, a relative velocity in the positive X direction (of the
magnitude w(+1l) - w(-1)) and that the laminar flow adheres to the
walls (which corresponds to Couette's test arrangement); finally, we
assume that in the range -1 <y < +1, that is, in the fluid, Re(w - c)
once and only once is zero. Moreover, we shall presuppose in the
entire region continuity for w and the derivatives of w and, beyond
this, make the additional assumption that the functions w, w', W',
etc., always are of normal magnitude, that is, that they do not, for

instance, at certain points, assume a magnitude of the order (aR)l/E.

Furthermore, for the following calculations, we at first regard
a as so small and aR as so large that we may put with sufficient
accuracy

{ (1ka)
y dy

(w - ¢)
oA E 21 (w - c)?

The fixing of the lower 1limit of the integral in Py, obviously does

not signify a limitation of the generality of our solutions. Rather
we determine thereby ®, as that linear combination of @3 and Qh

which disappears at the point y = -1. 1In case Ww - c¢ should dis-
appear there also, @h obviously is replaced by the function

P3 =W =c which now for y = -1 Dbecomes zero,
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In order to satisfy the boundary conditions first at the wall
y = -1, we form two aggregates fl’ f2 from E qb, ®3, Py, for

which really ¢ =¢" =0 for y = -1

~
1 3 l
f = (p -+ _
b go(—l)Eﬂ(—l) - c:l - % wi(-1) | (-1 - ¢ o (-1)
> (22)
®3 il
f2 = q)4 - - 1 _
go(—l)[y(-l) - é] + % w'(=1) w(-1) - ¢ Ql(—l)

Therein we understand from now on by go the root V -iaR(w - c), not

as in equation (10), \'—i(w - c), in order to save writing down the
factor aR.

In order to satisfy the boundary conditions at the other wall as
well, cne must attempt to determine two constants A and B so that

Afl(+l) + Bf2(+l) =0
t 1] _
Af, (+1) + Bf, (+1) = 0

The condition for the possibility of such a determination is

fl(+l) f2(+l)

=0 (23)
fl'(+1) f2'(+l)
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By this condition ¢ or B, respectively, is determined if R and «
are given. Thus it is now a question of solving equation (23) for ¢
and of determining the sign of the imaginary part of pB. Equation (23)
forms the perfect analogue to Sommerfeld's turbulence equation for the
linear profile.

From equation (16) we infer

fl(+l) = CP)-J-(+1) + 1 { @3(4'1) :
go('l)EﬁT(-l) - c:] - %W'(—l) 1"("1) -cC
@1(+l) + igy(+1)
q)l("l)
o' @3’ (+1)
£ (+1) = @,"(+1) + 1 )
: * go(-l)[w( -1) - c] - % w'(-1) [w(-l) -c
@p'(+1) + iq>2'(+l)]
P, (-1)
> (2k)
@3(+1)
T,(+1) = q(+1) - 1 [j )
i ) go("l)E’(—l) - E_‘l + %w’(-l) w(-1) - ¢
p(+1)
@2(‘1)
' @3' (+1)
£.1(+1) = ,'(+1) - 1 [ _
° ) go(-l)[w(—l) —c] + %w'( 1) w(-1) - ¢
Py’ (+1)
Po(-1) ]
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We insert these values of fy, f2, fl', f2' into equation (23)

after having made an estimate of the magnitude of the individual terms
in order to eliminate unnecessary complications of the calculation by
writing down unessential terms. For this purpose we note that there
will be, in general, either @,(+1) << @2(-1) or q>2(+1) >> @2(-1).

This is caused by the factor VaR in the exponent of Py Po in
equation (11) if there does not exist the equality

-1

1
Re -i(w - ¢c)dy = ReL/w d—i(w - ¢)dy
70

J0

which we exclude.

Which one of the two cases will occur cannot be decided before-
hand; generally, both are possible and yield both solutions. In the
case of an obliquely symmetric profile, one case gives the solutions
symmetrical to that of the other. At any rate, the two possibilities
behave principally quite analogously and it is therefore sufficient
to investigate one of the two. Thus we assume

Py (+1) << 9,(-1)

that is (compare page 9), the point w = c 1is to lie nearer to
w = w(+1) than to w = w(-1).

Hence it follows that

1
9 (-1) ~——
1 @2("1)
1
is extraordinarily small, thus ——Yf——; is very large. Thus there
Ppi-1

remain in f; and f1' only the terms which have @l(-l) in the
denominator; in fp and fp' the terms containing ®p are eliminated.
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From equation (23) we thus obtain

[§1(+1) + 1@2(+¥ﬂ @' (+1) -

@3‘(+1)

[go(-l)[w(-l) - c] + %w'(—l)} Ef(—l) - c]

Epl'(+l) + iq>2'(+l}-] 9, (+1) -

@3(+1)

[ Ef(l-gl+—-w—][':v(l—c:l

(25)

Even in this form the equation for ¢ is still rather complicated.
We therefore further simplify equation (25) by cancelling now not only

quantities of the order of magnitude e-JaR, but also gquantities of the
order (dR)'l/z.
For this purpose we determine that go(+l) is of the order

(aR)l/2, thus at first excluding the possibility of w(+1) - ¢ being
very small, and that furthermore

@l'(+l) + img'(+1) = 2 ;%—S:E;—— [§1(+1) + 1¢é(+13] +

go(+1) [@(+1) - 19 (+1)]

Thus we retain only those terms -of equation (25) which are multiplied
by the factor go(+l).
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Thus the simple result is found

[p2(+1) - 19,(+1)] @ (+1) = 0
or
y=+1
2 \I -iaR(w-c)dy 1
yo : dy — _
-i N o c)2 0 (26)

This equation possesses two completely different solution systems

y=+1
%J; -iaR(w-c)dy

e =00 = 1 (1)

1
dy
2

—_— . =0 11
sy (11)

System I represents the perfect analogue to the solutions Hopf
obtained for the linear profile and has discussed in detail elsewhere,
section 4. Actually it is shown that the oscillations corresponding
to system I always are of stable character. From

1
%[\\'-iaR(w-c)dy
Y

0 .
e = i

follows

2 fl \’-‘L&R(w - cay = m’@- + 2n> (27)
Yo
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where n is a positive (compare page 9) integer. It is easily seen
that this equation can only be satisfied when ac = B possesses a
positive imaginary part. Thus the oscillations characterized by equa-
tion (27) are actually damped, the amount of the damping being of the
order of magnitude w(+1l) - c, and therefore by no means need be small,

5. The Solution System II and the Conditions for
Instability of a Profile

‘ The solutions in the system II are identical with the solutions
of the Rayleigh equation (8) and satisfy the condition

dy -
N 0 (23)

or (compare the remark to equation (1la), page 19) quite generally

y dy
qJ)+=(w-C)f(T_—C—)-§=O

for

and

y=-1

The latter form differs from the first in certain exceptional cases
which will be discussed later; moreover, equation (28) represents, of
course, only a first approximation (a = O). For the solutions of
equation (28) one must now distinguish four different possibilities:
Either, (1) equation (28) has solutions with complex c, then the
profile is always unstable since the conjugate complex value of ¢
also always represents a solution; (2) there exist solutions of equa-
tion (28) with real c. Then we designate, as Prandtl did elsewhere,
the profile as "capable of oscillations.” This can, according to
equation (21), occur only if, at the point (w =c¢), w" =0, if,
therefore, the profile either possesses a point of inflection or is
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composed of linear pieces; (3) real values of c¢ exist which make
at least the real part of

1 dy

1 (w-c)?

zero; or, finally, (4) if none of these three cases occur, equation (28)
has no solution. In cases (3) and (4), we call the profile "not

capable of oscillations." We contend that case 1 always results in
instability, cases (3) and (4) always in stability, case (2) generally
in instability of the profile taken as a basis. For cases (1) and (4),

this has already been proved above. In case (3), we put c = cp + icy

with c¢, signifying that real value of ¢ for which the real part of

1 gy
g (w- c)?

disappears. Then we know from section 3 that for cj S 0, the imaginary

ni, for c; >>|(aR)—l/3', however,

part of the integral becomes i

a

- TE%T xi. Thus, for reasons of continuity (compare section 3), a
a

point ¢y > O must exist where the imaginary part of the integral (28)

also disappears. The four solutions of equation (28) thus character-
ized yield therefore a quantity ¢ with a positive imaginary part,
thus stable oscillations.

Case (2) finally requires somewhat more detailed calculations.
Before performing them we note that to case (2) pertain two types of
solution for equation (28) which cannot be represented in the form

1 4
5 =0
(w - ¢)

-1

1f w(+l) = w(-1) a solution of equation (28) is ¢ = w - w(+1); in
fact, here @ =0 for y =+1 and y = -1l. Furthermore, it
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may happen that, for instance, w' becomes infinite for w = w(+1).
Then

y
o =|w - w(+l) dy
l: :I -1 EJ - W(+1H2

also is a solution of equation (3) which satisfies the boundary con-
ditions. We shall not treat this case here in more detail since it
will be discussed more thoroughly in part II; however, it must be
noted as essential that the difference between cases (2) and (3) is
very large and that it is, for instance, by no means sufficient to
approximate, according to Rayleigh, a curved profile by a polygon.

For an illustration of this difference

1

dy
Re[?(ci] = Re . z;fj—zgz

is represented qualitatively as a function of ¢ 1in figure 1 where

the 50l1id curve corresponds to the curved profile, the dashed curves

to the one consisting of linear pieces. One sees that every break
causes a new root Re(J) = O because J at the point ¢ = Wpreak OT

the broken profile varies like —————}————% This corresponds to

W = Cyreak
Rayleigh's well-known theorem that there are as many oscillation roots
as breaks, Nevertheless, the curved profile does not possess an oscil-
lation root. After this comment, we revert to our contention that the
profiles capable of oscillation generally become unstable if the fric-
tion is taken into consideration.

For a proof of this instability, we return to equation (25) and
to the more exact solutions in system II. Since we know that ¢ is

real, except for quantities of the order of magnitude (aR)'l/z, we
may assume

Pp(+1) >> o, (+1)
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If we furthermore neglect the terms of the order (aR)'l/2 in equa-
tion (25), we obtain after slight transformations

1
dy 1 1

1 (w- 92 g(-D[-1) - 2 gle1) [u(+1) - 2

We put further c¢ = cq + d where o is- the zero of J, ©® a small

quantity of the order (aR)_l/E. We assume for reasons of simplicity
a to be positive; then we may on the right side replace c by co

and may develop the left side into a Taylor series in 8. Thus there
results, if we break off the Taylor series with the second term which
we presuppose as sufficient approximation

and from equation (25) because of

J(co) =0; gy = \J-mR(w - c)

(concerning the sign, compare page 9)

. 4d 1l - 1+ 1
O o=

2aR = i +
de (CzCO) \I—‘ [:CO - w(—l):|5/2 EJ(+1) - CJ5/2

Hence follows, because of

cy - w(-1) > w(+1) - <
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(cO is to lie nearer to w(+1)) that the imaginary part of & and
thus also that of ¢ and of B has the same sign as

aJ

ac (c=co)
and that oscillations corresponding to a negative value of %% have
an unstable character, If therefore our partly linear profile still
has the property that %%‘< O at the point w = c, it is unstable.

This condition %£-< O, however, is satisfied very frequently, for
c

instance, always when the point w = ¢ 1lies near one wall (for
instance, y = +1) and the profile is linear from the point w =c¢ to
the boundary.

Summarizing, we conclude: The instability or the stability of a
profile can be decided for all profiles considered so far by their
behavior in the case of frictionless fluid. Profiles which are capable
of undamped oscillations in the latter case and where the friction is
taken into account become, under certain presuppositions, unstable.

The latter profiles must have very special properties as shown above;
they must, for instance, be partly composed of linear pieces or they
must have a point of inflection w" = 0. (Compare above.)

At the same time, however, these profiles of type 2 are the only
ones still to claim physical interest since they are the only ones
whose behavior with respect to their stability corresponds approximately
to Reynolds' conjectures. Following, we shall show that these profiles,
in general, really have a critical Reynolds number (with the exception
of the broken profiles).

6. The Reynolds Number of the Stability Limit; Numerical
Calculation on the Parabola Profile

If, therefore, a profile is prescribed which, for frictionless
fluid, permits undamped oscillations and with friction is unstable,
the question arises, for what minimm value of the Reynolds number does
instability occur? The simplified equations (25), (26), etc., do not
suffice for answering this gquestion. We must revert to equation (23)
and to the forms (11) and (14) for the integrals P P P35 and

D), 3 however, it is, of course, quite impossible generally, for an
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arbitrary profile w, to represent the critical Reynolds number as a
function of w and of integrals over w; 1t will only be our task to
indicate the way by which one arrives at the critical velocity and
then to perform the calculation on a special example.

Since in our last calculations « and R had appeared only in
the combination aR (because we had assumed of as small), these
calculations can yield at best a critical value for aR o¢nly, not
for R alone. Thus we must first investigate the behavior of the
roots of equation (23) for increasing a?. Of the roots of equa-
tion (23), only those in the solution system II which satisfy the
equation @u(+l) = 0 are of. interest.

Instead of equation (23) we must therefore discuss the equation

- dy 2 2 dy
q) = (W - C) -(-W—?—C——)E(l + Q dy(w - C) m + . . .
(28a)

=0 for y=-1, y=+1

If the profile consists, as in Rayleigh's example, of linear pieces,
there exists (compare page 27) always a root of equation (28a) for
every break and these roots remain in existence for every value of
e, Thus, the broken profile yields no maximum value of a® and
therefore cannot ever lead to a critical Reynolds number, 16

This is different if (cf. pp. 26 and 27) a solution of equations (28)
or (28a), respectively, with real c¢ is possible for the reason that
either somewhere in the profile w" = 0 or that w(+1) = w(-1),

@ = w - w(+1) represents a solution of equation (28). These latter
types of solution always yield a solution of equation (28a) only for

a very definite value of a2, For w" =0, c is determined by the
very fact that for w" = 0, w is to be w = c; thus the equation (28a)
defines a quite definite value of a2; however, for the case

w(+1) = w(-1) a solution of equation (28a) obviously exists only

for a2 = 0.

lbIt is still presupposed that R and aR are large and o << R.
Thus critical Reynolds numbers will possibly appear if these presup-
positions are no longer valid; however, the respective Reynolds num-
bers R would then probably assume values so small that they certainly
would be of no physical significance.




NACA TM 1291 31

For this type of solution of equations (28) or (28a), which are
characterized in the limit R = » by a very definite value of a2, we
shall expect that, with the friction taken into consideration, a also
may vary from its definite value only by small amounts., For these
profiles the appearance of a maximum value (and in the case w" =0
also of a minimum value) for a is very understandable. Thus all
oscillations, the wave length of which is smaller than a certain
critical wave length, are in such cases damped for all values of aR.

After having found an upper limit for. a2, one will attempt to
determine the approximate magnitude for the lower limit of aR. A
simple investigation of equation (25) shows that essential variations
in the imsginary part of ¢ occur only after the exponent of e in
the approximate representation (11) in @l(+l), @2(+1) has decreased

to values of the order of magnitude 1; However, if this is the case,
we very soon reach the critical value (for which the imaginary part

of ¢ 1is changed from negative to positive values) as will be shown
in the numerical example. If we assume that w is essentially linear
between W = cq (cqg = real part of c) and w(+1) the condition for

the approximate magnitude of oR reads

(aR) Y2 (41 - ] ¥/2

w'(+1)

1 (29)

or

~

(ar) /3 W (+1)2/3
w(+l) - ¢

0

Since in the cases of interest to us w(+1) - c will probably be

0]
small, we may by assumption form a conclusion as to high critical
Reynolds numbers. At the same time we note that for a certain value
of R there will always exist not only a maximum value but also a
minimum value for « of the unstable oscillations. This follows from
the fact that we did find a minimum value of aR (not R).

As numerical example for our general calculations made so far, we
select the parabola profile because it is physically the most
interesting one. It is to be classified as "profile capable of
oscillation” of the type w(+1l) = w(-1).
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Here too we shall consider only the two-dimensional motion, that
is, not Poiseuille's flow in tubes but the flow prevailing between two
parallel walls at rest (y = +1, y = -1) under the influence of a
constant pressure gradient. Thus we put

w=1l-7y° (30)

The symmetry of w and W - ¢ Dpermits the deduction that ¢ must
be an even function of y.l7 Thus we single out, from among the solu-
tions of equation (7a), two symmetrical particular integrals and attempt
to satisfy the boundary conditions at one of the walls, for instance,

y = -1. Those at the other wall then are fulfilled automatically.
Obviously we may take simply 3 as one of those symmetrical integrals.
For the other we choose

CDl(y) @2(}’)
+
9, (0)  9,(0)

It follows from equation (29a) that for our profile near critical

velocity ¢ will be small of the order (aR)_l/3; in the following

calculations we shall thus cancel terms of higher than first order
in c. Furthermore, we state that @o(0) will be >> ¢,(0)  so that

in the neighborhood of w =0 and w = ¢ the second symmetrical
function ¢ simply is reduced to @l(y). From equation (16) then

follows that we have the two integrals ?3 and P - i@g at disposal

for fulfillment of the boundary conditions for y = -1. Equation (23)
is therewith transformed into

17If one divides ¢ 1into a part even in y and a part odd in Y,
each part of ¢ by itself must satisfy the differential equation (7a)
and the boundary conditions because of the symmetry of w - ¢ and w.

For the general stability investigation of the profile 1 - y2 it is
therefore sufficient to treat the two cases "¢ even" and "odd"
separately and only these two cases; however, it may easily be seen
that the assumption of symmetrical oscillations, that is, "¢ odd" does
not lead to a solution of equation (23) and thus not to unstable
oscillations. The assumption "¢ even" therefore suffices for the
stability investigation. This is noteworthy insofar as, accordingly,
all symmetrical oscillations are stable and only unsymmetrical dis-
turbances unstable.
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p3(-1) ¢1(-1) - i (-1)

' =0 (31)
p3 (-1) 9y (-1) - igy' (-1)

In cp3 one must always take y = 0 as lower 1limit for the occurring
integrals in order to guarantee the symmetry of P3- Furthermore, we
shall develop in P3 only up to magnitudes of the order o:,)+ and in

the development in (ouR)"l break-off with the terms of the order

(aR)™L. We now write equation (31) in the form

91'(-1) - 1g2'(-1)  g3'(-1)

, ; (32)
e1(-1) - ipy(-1) p3(-1)
If one inserts equations (11) and (14t), there results
-1 ’
2f V—ia.R(w-c)dy
Yo )
© t iaRc = - i +
2c
-1
gf \j -iaR(w-c)dy
hf
e ° : - i
2 -1 ) ) i
QE dy(w - ¢)< +a° . +§
¢ 0
(33)

Since c¢ becomes very small, we assume in first approximation w
from O to c¢ as linear; w~ 2(y + 1). Then we obtain

[y
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e vay=-1 :3/2 (34)

If we put

z = & 03/2(2aR)l/2

w

there arises from equation (33)

-1
L[\ dy(w - c)2 + ...
EE 0
c
1 + aELlw. . .

This equation is perfectly analogous to equation (26). We are
interested, above all, in the limiting value R or 2z, respectively,
for which the unstable oscillations are transformed into stable ones;
thus the imaginary part of ¢ is exactly zero. This limiting value z
will, of course, also be a function of a. Thus we now assume c¢ as
real and thereby obtain the limiting value of 2z or R, respectively,
as a function of «. The minimum value of R on this R(a) curve
will be denoted as the characteristic Reynolds number for the parabola
profile. Detailed calculation shows that one obtains by means of the
form (35) of the stability equation only the upper part of the curve

R = R(a) (solid line in fig. 2) which was to be expected according to
the deliberations of section 6; however, one can calculate the lower
part of the curve R = R(a) only by using for P15 Do approximgtions

e'(lJ'i)Z + i 32(1 + 1) _

e—(l+1)z _ 2

(35)

S 2.
2

other (compare equation (19a)) than the asymptotic formulas (11). The
critical Reynolds number denotes Jjust the range where the asymptotic
formulas cease to be valid. Since this circumstance would lead to very
complicated numerical calculations and since we cannot attach, in
general, (compare section T7) any essential physical significance to the
type of instability here characterized, we used rough ectimates for
calculation of the lower part (dashed line in fig. 1) of the curve

R = Rla) which, of course, cannot yield quantitative results; however,
the qualitative behavior of the curve is surely reproduced correctly.
Thus, we conclude from figure 2:
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1. There exist both a maximum value of o and a minimum value
of R for instability.

2. For a definite value of R there exists a maximum as well as
a minimum value of «; instability prevails within these values, sta-
bility outside.

3. The maximum value of a lies approximately at o = 0.7
(q? = %); the magnitude of the minimum value of R 1is of the order
of 103. A calculation of this minimum value with some degree of
exactness is not possible from the figure.

7. Physical Discussion of the Results of Part I

Let us summarize once more in detail all results found concerning
the stability problem. Above all, it became clear in the course of
the calculation that the problem of the stability of a profile for a
viscous fluid can generally be decided by treating like Lord Rayleigh
the limiting case of frictionless fluid (equation (8)). Profiles which
are unstable then (that is, for R =w) remain so for sufficiently
large finite values of R (section ) as was.to be expected beforehand.
Likewise profiles which, in the frictionless case, are not capable of
oscillations are found to be stable (section 4) and profiles, which
according to the investigation by equation (8) permit undamped oscil-
lations, generally to be unstable (section 5). This latter case
obviously is the only one which, physically, signifies something new
compared to frictionless hydrodynamics; however, it should be emphasized
that this case, contrary to what one might conclude at first from
Rayleigh's reports, represents an exceptional case. If one disregards
the possibilities w(+1) = w(-1), W'boundary = o (section 5), it is

a necessary condition for the occurrence of this exceptional case that
somewhere in the fluid w" = O. The broken profiles consisting of
linear pieces introduced by Rayleigh belong to those exceptional pro-
files; however, the only permissible conclusion is that curved profiles
for the purpose of stability investigation may not be approximated by
polygons according to Rayleigh (page 27). It is true that one may
find also for profiles curved everywhere (w" # 0) (section 5) when
using the differential equations with friction terms oscillations
which are damped for every value of aR for which, however, in the
limit R = o the amount of the damping like (aR)-1/3 tends toward
zero; thus one has here also undamped oscillations for R = «, However,
these oscillation roots are lost if one takes the simplified differ-
ential equation (8) without friction terms as a basis. Insofar, there-
fore, this also is not a case of exception to the rule according to
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which consideration of friction, in cases where the frictionless equa-
tion (8) permits undamped oscillations, results in an excitation;
however, as said above, the possibility of undamped oscillations for
equation (8) must be regarded as an exceptional case. The parabola
profile belongs to these exceptional profiles (section 6). If we
investigate further for the unstable profiles concerning the range of
values for R within which instability occurs, it is found that
generally, too, only profiles of the last class may lead to critical
Reynolds numbers, that is, only profiles which permit without friction
undamped oscillations; however, among the latter, Rayleigh's broken
profiles nevertheless did not yield (compare also page 30, footnote 16)
a critical Reynolds number. For Rayleigh's profiles a minimum value
of aR does exist but no maximum value of «; therefore, no minimum
value of R for the neutral stability either (section 6). Only those
profiles of the last class for which in the frictionless case only a
definite value of « leads to undamped oscillations (for instance,
the types w"'" =0 for w=c, w(+1l) = w(-1)) result in a maximum
value of o and a minimum value of aR, thus also in a minimum value
for R. For a definite value of R there exists therefore for those
profiles a maximum as well as a minimum value of o for the unstable
oscillations. All these results are in agreement with the stability

investigations of hydrodynamic profiles made so far.18

The question is now how these mathematical results will manifest
themselves experimentally. It seems surprising that the stable pro-
files (for instance, Couette's!?) and the unstable ones (for instance,
Poiseuille's) empirically show exactly the same behavior. Above a
certain Reynolds number turbulence occurs in case of sufficient dis-
turbances; if the disturbances are made as small as possible, the
laminar profile may be obtained for arbitrarily high Reynolds numbers.
Especially the last fact, which has been tested by Ekman (footnote 10,
pP. 2), on the parabola profile seems to contradict the theory for
unstable profiles; however, it can easily be seen that this contradic-

tion is only illusory:go The smaller the external disturbances, the

18Compare the reports quoted in the introduction.

19However, compare the interesting investigations of Couette's
motion concerning its stability against three-dimensional disturbances.
G. J. Taylor, Stability of a Viscous Liquid Contained between Two
Rotating Cylinders. Phil. Transact. of the Royal Society London 223.,
pages 289-343, 1922.

20This possibility of interpreting Ekman's tests as a sort of
starting effect has been pointed ocut to me by Professor Prandtl. I
should like here to express my deepest gratitude to him for this and
many other valuable suggestions.
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longer it takes (particularly for high Reynolds numbers since the
excitation there is of the order (aR)™+ 2, compare section 5) until
they noticeably influence the motion. Thus it will always be possible
to postpone, for flow in tubes, this moment so long that the quantity
of fluid, the stability of which is dealt with, has already left the
tube when its instability becomes apparent. The Reynolds number we
calculated could therefore be tested only on a closed system of tubes
where the same quantity of fluid always flows. Cn the other hand,
the tests by Schiller (footnote 9, p. 2) which show that below a
certain Reynolds number only laminar motion exists cannot be included
at all in stability investigations. The original motion here is not
laminar; one rather deals with existence or nonexistence of a turbulent
form of motion. At any rate, one may conclude from all these con-
siderations only that a solution of the turbulence problem by stability
considerations alone is absolutely not possible.

Still, the previous investigations may yield important qualitative
results for our real purpose, the calculation of the turbulent motion.
If we interpret the turbulent motion as a certain basic flow with
superimposed undamped oscillations, we may conclude from our calcula-
tions that the minimum value R for which this type of motion is
possible probably alsc lies at values of the order of magnitude 103; that
the wave length of the undamped oscillations lies at 2nh/2, namely a
at values of the order 1, and that o for a prescribed R 1is confined
to certain occasicnally very narrow limits; that furthermore these
oscillations have the character of a wall disturbance as may be con-
cluded from the smallness of w(+1l) - c. These qualitative results
are quite independent of the special form of the basic flow; however,
beyond such qualitative criteria the calculations made so far do not
contribute anything toward the actual solution of the turbulence
problem,

PART II: THE TURBULENT MOTION

1. Statement of the Mathematical Problem

The Reynolds number usually denoted as critical (which is, for
instance, measured in Schiller's tests and indicates the appearance

21However, the disturbances in stability observed by Ruckes
(footnote 10, p. 2) for rather small Reynolds numbers are perhaps
caused by instability according to section 7. This would be quite
conceivable when the critical Reynolds number according to section 7
lies below the one for which turbulence (compare part II) is possible
for the first time.
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of turbulence in case of sufficiently large disturbances) has no con-
nection with stability problems and with the laminar flow; it is
absolutely a characteristic constant of the turbulent motion. Like-
wise, the Blasius drag law and the well-known conclusion derived from
it (that the turbulent velocity in the proximity of a wall increases
with the 1/7 power of the distance from the wall) show clearly that
the so-called turbulent motion has its own well-defined regularities
and that it represents a second possible form of motion of the viscous
fluids. Thus the only way to a solution of the turbulence problem is
to attempt to eliminate the indefiniteness of the turbulent motion
and to idealize it until it permits mathematical analysis by Stokes's
equations.

The turbulence problem of hydrodynamics is a problem of energetic,
not of dynamic stability. There exist two different forms of motion
of the viscous fluid, each of which has a certain range of values of
Reynolds numbers within which it is possible. Iaminar flow is possible
from R=0 to R = o but becomes, however, under certain conditioms,
above a certain value of R dynamically neutrally stable. The turbulent
motion on the other hand exists only above a certain critical value
of R and is alwaysee energetically more stable than the laminar
motion. Thus one may in the range of R in which both forms of motion
are possible always let the fluid drop from the laminar to the tur-
bulent state by means of sufficiently large disturbances.

In order to make approximate mathematical treatment of the tur-
bulent motion possible, we again consider the flow between two parallel
walls and make, first, the following assumptions:23 The flow is to
be (a) symmetrical about the X axis with the bounding walls at rest,
(b) periodic in the X direction with the periodgl+ Eﬂ/a, and
(c¢) periodic with time with the period 2x/B, and (d) all disturbances
are to propagate with a speed B/a relative to the X axis, that is
if the motion is developed into a Fourier series, only products of
i(Bt - ax) are to appear in the exponents of22 e,

22Compare F. Noether, elsewhere.

23This statement, too, which represents a simple generalization
of Sommerfeld's stability theorem was indicated, for investigation of
the turbulent motion itself, by F. Noether without further conclusions
in his paper entitled "Zur Theorie der Turbulenz" (Concerning the
theory of turbulence), Jahresberichte des deutschen Math. Vereins 23,
page 138, 191k,

21*‘I‘he assumption of a definite « 1is justified by the result of
part I that o is confined between certain limits which are, partic-
ularly in the proximity of the minimum value of R, very narrow.

on.. - . . . . . .
Z%We peed noi ewmplmoize Lhe parit that the actual motions are doubt-

lessly much more complicated; nevertheless, one may well expect these
Statements to permit qualitative statements concerning the turbulence.
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The Fourier development of the stream function should therefore
read

i(Bt-ax) 2i(pt-ax)

e'i(Bt-aX) + @2(Y)e + 0.

Vo= gq(y) + 9 (y)e + ¢l(y)

(36)
The mathematical problem then consists in the determination of the
odd (according to a) functions @q, @7, and @ (P, T . . . con-
Jugate to @q, @2). At first, the degree of convergence of the

series (36) is completely unknown; the question of convergence can be
decided only after calculation of @y, ®; . . . If we want to carry

accuracy so far as to the nth approximation, that is, if we want to

calculate Pg - o - Py WE obviously obtain (n + 1) simultaneous
differential equations for the (n + 1) unknown functions Py« + + Ppe

Following, we shall need partly the first, partly the second approxi-
mation. Thus we enter equation (4) with the statement equation (36),
compare the coefficients of the periodic functions on both sides, and

break off with the term e21(Pt-aX) .ng tuus with P2, @p. For g

we write w (as in equation (6) for ¢ ). Thus three simultaneous
differential equations are produced (the simultaneously obtained con-
jugate equations need not be written down)

A
z‘j'g‘ (o'31 - 51'@1) + 2(0'%; - 52'q’2ﬂ -

L (37)
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The first of these equations may be integrated twice and yields

: (¢ - c- c1y) (37a)

"D, - P, Py + 2(* -9, ==
PP """ PP = P q’e) R

C and Cy signify arbitrary integration constants.

Since the left side of equation (37a) and w are, according to
requirement (a), odd in y, C must disappear in our case.

If we go back from the second to the first approximation, our

system of equations is reduced to two simultaneous differential equa-
tions for w and @ ,

9P - = i("' - Cy)
L (39)

(cpln _ CLECP]_) (W _ g) _ W"q)l = %(cplnn _ 2(1'2@1" + a‘)-l.cpl)

By way of an interpolation we shall now reflect what replaces equa-
tion (33) if we do not consider a flow symmetrical about the X axis
(requirement a), (that is, the flow of a fluid under a pressure
gradient between two walls at rest), but instead a flow antisymmetrical
about the X axis (that is, a flow between two walls moved relative to
each other without pressure gradient as in the Couette case). Require-
ments (b) and (c) are to be maintained. The statement (36) will then
no longer be satisfactory since @y, Do etc., for arbitrary B/a

are no longer even functions; in order to obtain the entire flow
pattern in terms of odd functions, we must also include the symmetrical

oscillations of the form ei('Bt'“X) in the formulation for v, that
is, ¢ must start with the terms

9 + op()e P @1(-ye'i(5t’°”‘) v gy (y)e Pt
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As a consequence finally.all the terms of the form ei(th—nax)
appear in V¥ (elimination of requirement (d)).

In place of equation (33) there results

1

P1(Ner ()" - 01(3) 9 (y) + 9, (-y)p (-¥)" -

o (-y) oy (-y) = fE(W' - ¢) L (39)

(@1" - OL2Cp1)( } 5) - W = GLi_R(Cplw - 2af," + CLL‘c"l)

-’

The two equations of the system (38) and (39), respectively, are of
simple illustrative significance,

The second equation is none other than our former stability equa-
tion (7) which determines the amplitude of the oscillation superimposed
on a basic flow w and which formed the basis for our investigations
in part I. The first equation, however, represents the theorem of
momentum. The left side of this equation essentially indicates the
momentum transferred on the average by the turbulent vorticity26, the
term with w' on the right represents the laminar momentum transfer,
and the constant C or C1y, respectively, is the constant of the

momentum theoremn,

Due to the boundary conditions at the walls P = @1' = 0., There-

fore there w' =C or Ci¥wa1ls respectively; thus at the walls the lami-

nar momentum transport surpasses the turbulent one, W'wall will gen-

erally be very large. (Compare the next section.) At the channel
center, however, that is, in the entire tunnel outside of the immediate

26We are referring here to the mean momentum in the X direction
which, for our problem, is transferred in the Y direction. The
momentum in the X direction equals, on the whole u, the velocity of
the particle transporting the momentum in the Y direction is vj; thus
the momentum transferred during the unit time wuv, on the average uv
which for the case (36) results in

w = -ia(Fe, - B '0p)
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wall proximity, w' is of the order of magnitude 1, thus very small
compared to C or Cjy, respectively. The turbulent momentum trans-

port will therefore here completely overbalance the laminar one.

It corresponds to the structure of the systems (38) and (39)
that we are able to give immediately a trivial solution of them,
namely P = 0, v =¢C or, respectively, w' = C1y, that 1s, we thus

revert to the laminar motion.

Our problem now is to obtain definite results concerning the non-
trivial solutions of equations (38) and (39).

2. The Turbulent Motion in Wall Proximity and
the Law of Resistance

The most important result concerning the behavior of w in the
immediate proximity of the walls is the law derived by V. Kérmin
(elsewhere) from the Blasius drag law by means of considerations of

similitude that w 1in the proximity of a wall increases with nl/7

(1 representing the distance from the wall). We repeat briefly

Von Kirmdn's train of thought since we are thereby enabled to a general
visualization of what to expect, even without knowing the Blasius law,
concerning the behavior of w of the wall,

As can easily be seen from considerations of similitude, it must
be possible to represent the shearing stress T acting at a wall
(that is, the drag) in the form

T = nu-gf(R)

where x signifies a certain dimensionless constant.

If we specially assume a power law there is
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From equation (40) follows inversely

o ey
R \u

The velocity distribution in wall proximity must then be represented
by an equation of the form

1
o Ca R

(Here again (compare equations (1) and (6)) w has been selected
dimensionless and therefore contains U in the denominator; T denotes
the distance from the wall.)

We again assume in first approximation a power law (let o be a
dimensionless constant)

-0 T

If one now requires the velocity distribution in immediate wall proxi-
mity to be a function only of 7, u, p, but not of h which is
physically very plausible, there follows

[
1
v

= € (41)
1+ ¢
For ¢ = % as corresponds to Blasius' law there results ¢ = %.
In order to understand the physical significance of this result
we note: w A,nl/7 signifies that w' = %% is infinite at the

boundary, that therefore w infinitely clings to the wall; however,
it is clear that actually w' at the wall cannot be infinite since
w', on the contrary, essentially denotes the shearing stress at the
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wall and is therefore, according to equation (%0), to be equated

to Rg except for a numerical factor independent of R.

~ RE (42)

]
¥ edge

w' at the wall is therefore very large for the large values of R

which are of interest to us. Corresponding to its derivation the

velocity distribution w ~ ql/7 will be strictly valid only in the

limiting case of infinitely large distance from the wall or of friction-
less fluid (R = »). These facts can be still more easily comprehended

if the law W ~ nl/7 is written in the form 1 ~ wl. From the fact
that the shearing stress is finite we know that the first term of the
power development 7(w) must be of the form 7yw. This term, however,

is very small, essentially equalling the reciprocal value of w' and
thus being of the order R-% (compare equation (42)).

The meaning of the derived law w ~ nl/7 is thus obviously that
the series development of n(w) 1is to start with the terms

ﬂ=7lW+77W7+... ()4.3)

where 71 is extraordinarily small and that therefore the first

term 7y;w for somewhat large values of w may be cancelled compared

with the second 77w7.

According to the explanations above we expect independent of the
validity of the l/7-law for the basic flow of the turbulent motion
small curvatures at the centers, and in the wall proximity, clinging
of the basic flow tc the walls.

For such a profile the investigations of part I do not directly
apply since there w', w", etc., had been presupposed as finite;
however, these investigations can easily be generalized to include
profiles like the one considered here. (Compare section 5, page 26.)
Particularly, the solution of the reduced equation (3) (thus lim R = )
with satisfaction of the boundary conditions becomes especially simple
here; the profile characterized just now belongs, according to sec-
tion 5, page 26, to those capable of oscillation; a solution of equa-
tion (28) with real c¢ exists. This is extremely important because
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it shows that the turbulent profiles are always unstable according to
section 5, or, in other words, that it is just the deviation (42) from
the laminar resistance law which makes an unstable profile and thus
makes turbulence possible,

The solution of equation (28) is for a = O

y dy
P = |w - w(+1) (Lh)
[ ] -1 [v - w(+1]]2

By selection of the lower limit of the integral we made ¢ become
zero for y = -1; that it becomes zero also for y = +1 due to
selection c¢ = w(+1l) can be seen easily from the following
transformation

W
P = [% - w(+%ﬂ L/' dw
w(-1) EJ - w(+l§| 2w'

The integral of the right side becomes at the point w = w(+1)

1

infinite of lower order than ————— since W' +there (in the

w - w(+1)
limit R = o) becomes infinite. Thus 9, =0 for y =+l. By equa-
tion (44) we have represented in the 1limit of frictionless fluid the
amplitude of the turbulent oscillations and derived from the boundary
conditions the value for B/a, namely B/a = w(+1). It is, however,
self-evident that the solution symmetrical to equation (44)

ey
T dh E”W(‘lﬂ

also satisfies the boundary conditions; thus ¢ = w(-1) is valid
here. 1In case of the Couette arrangement we therefore conclude from
equations (L44) and (4ka) that two mutually symmetrical oscillation
systems exist, the wave velocities of which agree respectively with
the velocities of the two walls (w(+1) and w(-1)).
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For the symmetrical flow between two walls at rest, on the other
hand, w(+1) = w(-1) = 0. From equations (L&) and (44a) we then con- .
clude that every integral of the form

o=v [Z
2

satisfies the boundary conditions; however, from the requirement (a)
that @ 1is to be odd there results that we must select as lower limit

4
of the integral L/“_% y = 0. Thus
w

Q=W 9% (4kv)
W

In the/case of symmetrical flow there is therefore, particularly
for B/a

w(+l) = w(-1) = (Lhc)

Q l»
1
O

In the turbulent basic flow, the type of its singularity at the
walls is of foremost interest to us; thus for the assumption w ~ 7€,
the exponent €. We shall attempt to show that from the differential
equations (38) and (39) respectively in the limit R = © at least in
immediate proximity of the wall such a power law with the exponent
€ = 1/7 actually follows. It is true that the domain of convergence
of the power series used is not established so that the conclusions,
as far as they apply to the shape of the profile at some distance from
the wall, are uncertain. We develop Py and w 1in the neighborhood

of m =0 1in integral and positive powers of n - this is possible for
any finite value - and then inversely n in integral powers of w.
Thus we are led directly to the formula (43) for n(w).

We contend, and this is the most important result we shall need
later, that ¢; in first approximation may be represented by a series

of the form

P = a2n2 + u5q5 + a8n3 + .. . .
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where Xpy Qg . . . BTre real, ac, Qyq ¢ - - purely imaginary con-

stants; furthermore, w 1is of the form

W = %ﬂ-+ﬁfﬂ-r.. . (145)

This contention may be proved for the differential equations (38)
directly by expressing ¢ and w in undetermined coefficients if
the terms Qys Gy Qo a3y and BO’ Bl are prescribed. Thus we

will, above all, attempt to determine these terms. First, ¢, and
@l' for n = 0 must be zero because of the boundary conditions; thus

the series for P starts with a2n2 (ao =ay) = 0). We can verify
afterward that, furthermore, the following term a3n3 is eliminated,

that is, becomes very small compared tc the other terms. By way of an
interpolation we shall prove here for this purpose by a single approxi-
mate integration of the second equation (38) that a3 assumes the

order of magnitude oR. For af = 0 eguation (38) reads

whence follows

@l'( _ 5)- (PlW' _ d_.lﬁcplm +A (46)

The constant A is here of the same order of magnitude as the left
side of equation (46) at the center of the tunnel, thus almost of the
order of magnitude 1. (Compare part I, section 2.) The term ¢l'"

at the edge is therefore of the order aR due to the boundary condi-
tions. The same is valid for 3.

Thus we shall meanwhile assume a3 as small and later attempt to

Justify that assumption. Of the constants B;, B;, the first, Bos
equals zero because of the requirement (a), section 1.
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The constants a, and B, are, at first, arbitrary27 and there

is no possibility of deriving them from the solution of the differential
equations (38) and (39) in the proximity of the wall. This possibility
would .arise only if we should succeed in continuing the solution (45)
analytically up to the other wall; however, this is an extremely com-
piicated mathematical problem if only for the reason that, as will be
seen, the simplified equations (38) and (39) are not sufficient for
determining ¢; and w at the center of the tunnel. Although we

must therefore forego the solution of this problem, we may still expect
to obtain, by merely developing ¢ and w in the proximity of one
wall with undetermined coefficients ap, PB;, those qualitative char-

acteristics of w and @7 in wall proximity which are, according'to
experience, quite independent of the behavior of the fluid at the
tunnel center as, for instance, the law w ~ nl 1,

We enter equation (38) with the statement

by a5n5 + e e

3
|

= B + Bgﬂ2 + B3ﬂ3 e o.

replacing the second equation by (46). We therefore again assume a
as very small which here only signifies (compare part I, section 2)
that the wave length of the oscillations is to be large compared to
the boundary-layer thickness; moreover, we put, according to equa-
tion (4kc)

Qe
I
(@}

For the first equation (38) we write furthermore

'i“R(@l' 9 - Eﬁ'¢d) = 2°3(¢1i'@1r - cP11‘91r') =w' - Cy

Therein ¢;,. denotes the real, P the imaginary part of q&.

2Tve shall assume ap as real. This does not imply a limitation
of generality since ¢ is determined only up to a factor of the form
elX g5 the initial point of the time coordinate in equation (36) may
be chosen arbitrarily.
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From equations (46) and (47) now follow the recursion formulas

n-2
n(n - 1)(n - 2)a, = -iaR s(n - 2s) oy 1-sBs-] (48)
s=
np, = 2aR ﬁ s(n - 2s)an_si§§r (49)
s=2
in addition
By N Clyedge
2By = Cy

Therein asr denotes the real, asi the imaginary part of Qg

From equation (U48) there follows first

d.h_=0

From equation (49) there then results

The term Bo may also be approximately equated to zero.

From equation (49) there follows
P1

Yedge

32-"
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For very small n the term 82n2 is therefore to be neglected com-
pared to the first term Bin; for larger n, however, the higher terms

B7n7 etc., are completely predominant.

Let us thus assume also Bg = 0 and thus calculate the higher

terms of the series for B; and w.

There follows

2
By 2 appBy
= - : = =O‘ = -
% 10['R3><b,x5’ %6 = %7 > 98 (aR) 3X5x6x7Xx8
ag = @10 = 0;
az3B 3
a1 = -(aR)3 > = - = >;
2X TX9X1I0xXx11l 3x5x6x%x8x9x10x11
0.12=0,13=0
2“2251
By = (aB)™ ap”P > i ayB) )
13 5X5X6Xx8x11x13x 14 7Tx10x 11 x 1

The representation (45) for w we contended is therefore proved and
it may easily be shown too that of the further terms only in every

sixth term has

B a finite value.

Hence follows for the representation of 1 as power series in w

T

UL AL LA 7l3wl3 + . 0. .

= (aR

2
2 2
708, 1

apt x 3% 3% 17 @,

2

L
(aR) (7

x 10X 10X 11 X13% 8113~ 5% 5% 6x8 x11x 13 x 1k xp, 1

>(50)

)

-
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The terms 75 to 76 7g to Y120 Y1) etc., all equsal
28

Zero.

The development (50) now actually completely agrees with equa-
tion (43) and we seem thus to arrive, even without knowledge of the

constants a, and By, to the law 1 ~ wl semiempirically derived
by von Kdrmén. The coefficients 71 and 77, however, cannot be

calculated. Inversely, we may perhaps conclude from the empirical
findings for the coefficients Bl and oo that 77 is of the order

-3/4 8
of magnitude 1, 7y; of the order (aR) 3/ , thus as ~ (aR)l3/ .
Subsequently, we thus also confirm our former assertion a3l << Gne

Raising the question of what order of magnitude are the values of w
for which the third term in equation (50) is small compared to the

second for which therefore the w' profile actually is valid, one
finds w ~ Bl'l/6, thus «R'l/e. Accordingly, the profile w ~ nl/7

follows from the differential equations (38) only qualitatively st
first. No information about the fact that the 1/7 profile has been
observed almost up to the tunnel center is given in our calculations;
however, this was not to be expected since the other constants entering
the law also depend on the behavior of the fluid at the opposite wall.

As an interpolation, we shall once more briefly summarize what
factors we have neglected in deriving equation (50) from equations (L48)
and (49) and attempt thereby to determine within what accuracy the
conclusions drawn from (50) are correct. First, we used system (38)
instead of (37), thus cancelled magnitudes of the order ¢2/w. Further-

more, we equated a3 = 0, B/a =0, Bp =0 and therewith neglected
a3n B Bon By
magnitudes of the order —, —, —, and
. o aw B1 B
The accuracy of our calculations will be determined by the largest of
the terms here neglected. Simple conslderations of the order of magni-

tude, not executed here, make it probable that of these terms @e/w
is the largest but that this term, too, goes toward zero with R-—) o,

, respectively.

8This power series n(w) may, of course, also be derived directly
from equations (46) and (47) without the detour over the series of w(n)
if w 1is introduced as independent variable; however, the calculations
required for this purpose are somewhat more complicated.
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Selection of a sufficiently large value for R will therefore make
it possible to carry the accuracy of the results derived from equa-
tions (48), (49), and (50) arbitrarily far.

As to Blasius' law of resistance, 1t can, of course, be derived
inversely according to the method described above from the law n ~ wl
by means of consideration of similitude if one assumes, as we did, that
the behavior of w in the proximity of the wall is independent of the
tunnel width; however, for the reasons stated above (impossibility of
analytical continuation) we must leave the question unanswered whether
this latter - physically very plausible - assumption also follows from
the differential equations (38) and (39), respectively.

We are, however, able to draw a noteworthy direct conclusion con-
cerning the law of resistance from equations (38) and (39) by means of
consideration of similitude. In the tunnel, except for immediate wall
proximity and the point y = O (compare below equation (66)) one may
write instead of the first equation (38) because of the magnitude of
€1 (compare pages 41 and 42)

iGR((Pl‘ﬁl - 51'@1) = Cyy (51)

Since the amplitude ®; cannot go toward infinity with R-—$ o - this

would render all our calculations devoid of physical sense - there
follows that C; is at most of the order of magnitude oR, that there-

fore the exponent ¢ of equation (40) must be <1 (which in a certain
manner also can be seen from equation (41)). Hence follows (compare
equations (42) and (40)) that the law of resistance 7 = const.U2
usually assumed in hydraulics represents an upper limit for all imagi-
nable laws of resistance of turbulence which is independent of the wall
characteristics. One may conclude as an assumption that the law

T ~ U7/u is valid only for smooth walls - it was for those only that
we obtained 1 ~ wl! - that the law of resistance for rough walls,

however, more and more approaches the'quadratic law.29 For rough walls
the amplitude @ will be independent of R and of the magnitude of
the wall disturbances; moreover, for rough walls the boundary conditions
will no longer cause P to be real in first approximation as corre-

sponds to equation (Lk4).

29Com.pare the more exact investigations by Von Kéfmén, elsewhere,
and the experimental investigations by Schiller, same periodical 3,
page 2, 1923.
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Nothing is changed in the conclusions of this paragraph if the
equations (39) are taken as a basis instead of the differential equa-
tions (38).

3. The Turbulent Motion Outside of the Immediate
Proximity of the Wall

It is essential for the motion at the tunnel center that @] here

is composed of those two integrals of (T7a) which appear in case of
frictionless fluid, thus for equation (8). (Compare part I, section 2.)
The most important characteristic of ¢ following from this fact is

that it satisfies - except for magnitudes of the order > and
(aR)-1 - the condition

9,'%, - ¥,'9, = Const. (52)

This results, according to Abel's theorem, from the fact that,
except for magnitudes of the order ¢, and (aR)‘l, P1pr 804 Ppy

(the real and imaginary part of Ql) are solutions of the differentisl
equation (8).

Hence it can be concluded that the equations (38) and (39) are not
sufficient for establishment of the motion over the entire tunnel width
but that we have to go back to equation (37) and to the system of equa-
tions which corresponds to it for Couette's case.

This, in general, involves a complication of the mathematical
problem. Only in Couette's case may the problem be solved comparatively
easily because the first equation (39), except for magnitudes of the

order w'/C, thus (aR)’3/h and ¢22, compare equation (37), agrees

with equation (52). Whereas, therefore, equation (52) in consequence
of its derivation from Abel's theorem is correct only up to magnitudes
of order @p, in Couette's case equation (39) should still be valid up to

magnitudes of the order ¢22. This requirement is satisfied if we put

?, =0 (53)
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This equation is therefore to be regarded as solution for Couette's
case, of the differential equation we took as a basis.

According to equation (53) it would fcllow for ¢, from (37)

q)lmq)]_ - q)l"q)l =0 (54)

The system applying to Couette's case is not equation (37) but a more
complicated one which we are not going to write down. We do, however,
state about it that it leads, like (37), for @, = O to the solu-
tion (54%) and thus to the result

¢, = ae?¥ + eV (55)

Here, a, b, and 7y are any complex constants, For w then follows
from the second equation (39) or, respectively, from its reduced
form (8)

7o¥

W - Cc = a;e + ble7ly

(56)

Since at one of the walls there should be w - ¢ = 0, and since, on
the other hand, w should be odd in the neighborhood of y = 0, it
follows that w, simply by the vanishing of 7y; and a suitable

increase of ay and bl’ must degenerate to a linear profile.

Thus, we obtain the important result that for Couette's case the
basic profile w of the turbulent motion takes an essentially linear
course over the entire tunnel width -~ however, strongly deviating from
the laminar profile, it will be much flatter than the laminar one -

[ihat, however, (compare II, section 2) at the edge it clings again
like nl/7 to the walls].

We shall now turn to the more complicated case of a flow between
two walls at rest, thus exactly to the system (37). For a solution
we must naturally be content with rough approximations. First, we
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can cancel in equation (37) the right sides of all three equations,
namely the friction terms; this is fully justified by the considera-
tions of Part I, section 2. Then we equate B/a = O (compare
equation (4kc)).

We thus obtain for ¢ in the place of the second equation (37)

m

P"v - w'ey - agwwl - CI’2'(651" - a26i) - 2®2651 - agﬁi') * 25i'(@2" B

ha2q>2> + 51(%"' - L*cngtpg') =0 (57)

If we develop P, as solution of the equation (57) in powers of ol
on one hand and powers of @, on the other, and if we further note

that ¢; 1is to be odd (compare (44b)) and write P = @5 *+ Py, there
results with only the linear terms taken into consideration
Y
dy
P,, = av == (58)
y Y
— dy 2 1 " "
P11 = awf _2f dy(“ "o * P2 P * ERP -
o v 0
t " "
@10 P2 7 P10%2 ) (59)

Naturally ¢; 1s herein not fully determined - the constant factor a
assumed as real which does not signify a limitation remains undetermined.

If we substitute this value of ¢ into the simplified first
equation (37), namely

@lﬁi" - 6i®l" = Const. (60)
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we obtain, with Py denoting the imaginary part of P55 the result

y
1 " e ' 1 " dy _

Now, however, as follows from the third equation (37) and from the
fact that @3 1is real in first approximation, Poi satisfies the

equation

Poy"'W - PoyW" =0 (62)

thus

J dy

If we substitute this value of @p; into equation (63) and if we

further consider that for y = O the left side of equation (61) and
therewith the constant on the right side is zero (this signifies for
the constant of the right side of equation (60) only that it is in

first approximation zero, that is, small of the order @1@22 or
a2®l¢2, respectively, or ahwl » we obtain

e " L
®10%0 P10 P10 = © (64)

which fully agrees with (54).

This equation, it is true, becomes, like equation (54), trivial
in the neighborhood of the point y = 0; it is there fulfilled
identically since ¢ 1is an odd function of y. Thus it cannot permit
there a determination of w. This leads for the symmetrical profile
(64) to a remarkable discontinuity at the point y = 0. (For the odd
profile such a discontinuity cannot be seen from the differential
equations.) If one integrates (37a) one obtains, as shown above,
after a single integration the equation

2“R[§1"@1 - 9Py ¢ 2(5é"¢2 - q>2""7’?) e {]

w -C (65)

I ‘ |
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where C (compare pp. 41 and 42), Blasius' law of resistance being valid,

is of the order of magnitude (aR)3/*, thus at any rate very large .
The left side of equation (65) disappears, however, with ¢ and Po

(which, as we know, are odd functions of y) at the point y = O. Thus

Wy=0" = C (66)

must be valid there. This signifies that wy:O" is very large

(~(aR)3/h) and that therefore w at the point y = O shows a sharp

break3° (radius of curvature ~(aR)'3/u). At a small distance from

this point the course of w must, according to equation (64), again
be essentially linear.

We obtain the result: For the flow between two walls at rest as
well - and surely this may be applied also to the flow in the tube -
the profile is linear approximately over the entire tunnel width; at
the center, however, it shows a sharp break (it clings to the walls

with the y1/T 1aw). (Compare figure 3.)

The physical cause of the sharp break is the fact that the gradient
of the turbulent momentum transfer for y = 0 disappears for reasons
of symmetry and that therefore, because the gradient of the entire
momentum transfer over the tunnel width is constant, the gradient of
the laminar momentum transfer, that is w", must be very large there.

4, Final Remarks and Summary of the Physical Results

Our investigations still show two important gaps. First, they do

not yield the transition from the nl/7 profile to the linear profile
valid in the center part. Second, they are limited to large values

of R and thus do not yield the minimum value of R, either, if such

a minimum value exists for which the turbulent motion is still possible.
The first of these two gaps is most difficult to £ill in (compare

page 48); we cannot even indicate a method which would satisfactorily

3OProfessor Prandtl was so kind as to point out this break to me
on the basis of empirical material, The break seems less sharp empiri-
cally than according to calculation results, which is easily explained by
the fact that the assumption (a), page 38, concerning the symmetry of the
vortices and disturbances also does not exactly correspond to actual
conditions.
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solve this particular problem. One may attempt to piece the two
approximations together that come from the wall and from the tunnel
center. This would have to be done by means of the condition that

at the respective junction o, @l', @l", @l"', w, and w' are to
be continuous; however, the convergence of the developments (45) and
(50) is hardly sufficient thus to guarantee a somewhat defined approxi-
mation. At any rate the ultimate result, the profile w, is still to
a great deal dependent on the type of joining the two approximations.
Finally, it must be regarded as dubious whether such an exact carrying
out of the formulation (page 39) would yield essentially new physical
results in agreement with experience since these statements certainly
represent a very strong idealization of actual conditions.

In contrast, filling in of the second gap does not offer any
basic difficulties whatsoever; all necessary expedients are contained
in Part I and once the profile w 1is completely known, the methods
described in Part I are, on principle, sufficient to calculate according
to Part I, section 6, the minimum value of R for which the turbulent
motion is possible. One could, for instance, calculate the critical
Reynolds number for a profile obtained, according to the method
mentioned above, by piecing together the two approximations, or one
could base this investigation on the empirically observed profile and
thus calculate the Reynolds number in a semiempirical manner. In any
case one will - the investigations in Part I made this probable and
direct calculations, here not reproduced, confirmed it - arrive at
the same order of magnitude of the critical Reynolds number, namely
R ~ 103, The exact value of R will, it 1is true, still be too
dependent on the manner in which the profile was obtained to permit
comparisons with experience. For that reason we did not perform here
such a calculation of R.

let us finally summarize what may be concluded as physical result
from our investigations concerning the turbulence problem. In Part I
we recognize that the laminar motion and its stability condition are
not of essential significance for the turbulence problem and the
critical Reynolds number. In Part II, however, we investigated the
turbulent motion itself and may hence give a few data on the turbulent
state of motion. In general, the velocity distribution over the
entire tunnel is of the simplest type; it is - according to the test
conditions - linear or constant (section 3). At the center there is,
for symmetrical flow between two walls at rest, a sharp break; at
the walls the flow clings, for the 71/7 profile, to the walls
(section 2). The calculations do not disclose anything about the fact
that the 1/7 profile is valid until far into the tunnel interior. The
turbulent oscillations are for Couette's case almost harmonic in the
interior of the tunnel (section 3, equation (53)); in the proximity
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of the walls all oscillations will occur. The velocity of the waves
agrees with the wall velocity (section 2, equations (L4k) - (klc)); for
Couette's case there exist two groups of turbulent oscillations, one
of which agrees, with respect to its velocity of propagation, with one
of the walls, whereas the other group possesses the velocity of the
other wall. Thus the turbulent disturbances show, superficially, the
character of a wall disturbance. It must, however, be emphasized that
these disturbances are capable of existence as free oscillations, inde-
pendently of wall roughness and similar influences. The amplitude of
the turbulent waves considerably increases toward the walls (this
follows from equation (44), section 2) and goes toward zero only
directly at the wall.

The wave length of the occurring oscillations (Part I, section 8)
is, with respect to order of magnitude, equal to (rather somewhat
larger than) the tunnel width. The minimum value of the Reynolds num-
ber (Part I, section 8) for which turbulence is still possible, lies -

with respect to order of magnitude - near 103. From the profile nl 7,

Blasius' T ~ u7 b seems to result, under certain presuppositions, as
the law of resistance for smocoth walls. For rough walls it probably
approaches (section 2) the hydraulic law T ~ u?. The purpose of the
present report was not so much to establish these regularities, to a
great part known before, as it was to prove that all results obtained
so far (seemingly partly contradicting each other) can be uniformly
described mathematically with the ald of simple basic assumptions.

I wish to express here my deepest gratitude to my revered teacher,
Professor Sommerfeld, for suggesting this report and for frequent
assistance.

Translated by Mary L. Mashler
National Advisory Committee
for Aerongutics
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