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Optimization of Airfoils for Maximum Lift
ROBERT H. LIEBECK*

Douglas Aircraft Company, Long Beach, Calif.
AND

ALLEN I. ORMSBEEf
University of Illinois, Urbana, III.

The pressure distribution which provides the maximum lift without separation for a mono-
element airfoil in an incompressible flow is determined using existing boundary-layer theory
and the calculus of variations. The airfoil profiles corresponding to these pressure distribu-
tions are determined using second-order airfoil theory. The results indicate maximum lift
coefficients as high as 2.8 for Reynolds numbers between five and ten million, and the corre-
sponding drag coefficients are on the order of 0.01. Compressibility has not been considered
directly, however the form of the optimum pressure distributions suggests that the critical
Mach numbers should be on the order of 0.35.

Nomenclature

c = airfoil chord
CL = airfoil section lift coefficient, CL ~-
CLU = upper-surface lift coefficient
CD = airfoil section drag coefficient, CD = D/%pVm

2c
GDI = lower-surface drag coefficient
CDU = upper-surface drag coefficient
Cp = pressure coefficient, Cp = (p — p^/^pV^
Cp min = minimum value of Cp on upper surface of the airfoil
C_Pi = defined in Fig. 7
Cp — modified pressure coefficient Cp = (p —
Is = function defined by Eqs. (12) and (15)
ki = defined by Eq. (9)
kip = defined by Eq. (14)
kir = defined by Eq. (14)
kt = defined by Eq. (9)
p = static pressure

= freestream Reynolds number, Re^ = Vm(
= Reynolds number defined by Rexo =
= velocity on the airfoil surface
= Cartesian coordinate (see Figs. 3 and 4)
= defined in Fig. 7
= defined by z = X/XQ
= value of z at airfoil trailing edge
= airfoil angle of attack
= kinematic viscosity
= density

Rexo
V
X,x
Y V 1.A i,-A.2j^

Z
Z
a.
v
P

Subscripts
te
u
y
o

condition at airfoil trailing edge
airfoil upper surface
differentiation with respect to y
conditions when Cp = Cp min

surface
freestream conditions

on airfoil upper
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1. Introduction

A~sT optimization procedure is developed to determine the
maximum lift which may be carried by a monoelement

airfoil. Well established boundary-layer and airfoil analysis
methods are used, and the flow is assumed steady, two dimen-
sional, and incompressible.

The problem can be divided into two related subproblems:
the viscous problem of obtaining a pressure distribution
which provides the maximum lift without separation, and
the inviscid problem of determining the particular airfoil
which corresponds to the desired pressure distribution.
These two problems are coupled since a particular pressure
distribution may not provide a physically possible or struc-
turally practical airfoil.

The lift coefficient in terms of the pressure coefficient is
given by

CL =
dx~\

upper
Jsurface

where the freestream is aligned with the x axis. The lower-
surface contribution has a maximum when Cp = 1, although
evidently complete stagnation can only occur at a single point
near the leading edge. The upper-surface contribution is
limited by boundary-layer separation because of the adverse
pressure gradients. In addition, the pressure distribution
must be continuous at the leading and trailing edges. The
procedure will be to optimize the pressure distribution for
maximum lift while satisfying these constraints, and then
modify the result in order to obtain an acceptable shape.

2. Formulation and Solution

2.1 General Form of the Upper-Surf ace Pressure
Distribution

Referring to Fig. 1, the upper-surface pressure distribution
will initially be taken to be made up of two basic regions:
1) a region of acceleration from the leading-edge stagnation
point to the maximum velocity (Cp min) and 2) a pressure
recovery region from Cp min to the trailing-edge pressure
coefficient Cpte. Two cases will be considered a) a turbu-
lent boundary layer over the entire upper surface and b) a
laminar boundary layer in region 1 with instantaneous transi-
tion at the point of maximum velocity to a turbulent bound-
ary layer in region 2. Thus, cases a and b are distinguished
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410 R. H. LIEBECK AND A. I. ORMSBEE J. AIRCRAFT

PRESSURE RECOVERY
TO Cp,c

while for a laminar boundary layer, it yields

Fig. 1 General form for upper-surf ace pressure distribu-
tion.

by the different state of the boundary layer at the start of
the pressure rise region.

2.2 Separation

In order to shape the pressure recovery region, it is neces-
sary to have a method for testing for boundary-layer separa-
tion. Stratford's paper1 does this and provides a basis for
the precise determination of the entire pressure recovery re-
gion, giving a distribution which just avoids separation
along its entire length. The basic result is derived for a
pressure distribution of the form shown in Fig 2, where the
boundary layer is taken to be turbulent over the entire region.
Defining

CP = (p — po)/ipF0
2 and RexQ =

the basic result of Ref. 1 is given by
3, CP < f (2)

For pressure recovery beyond CP = y, Stratford suggests
using a constant form parameter solution with zero shearing
stress at the wall. This yields, for a form parameter of 2 as
suggested by Stratford,

where the constants a and 6 are chosen to match Cp and its
derivative when Cp = f. Equations (2) and (3) define the
imminent separation pressure recovery distribution of Fig. 2.

The airfoil problem requires a stagnation near X = 0 with
the velocity monotonically increasing to VQ at X = XQ as
suggested in Fig. 1. Stratford has provided two straight-
forward relations which modify the previous result to account
for an initial region of favorable pressure gradient where the
boundary layer may be laminar or turbulent by using an
effective origin XQ in Eqs. (2) and (3). For a favorable
gradient with a turbulent boundary layer, this gives

= r°(-YJo \vj

(5)

X is the distance from the actual leading edge, and x is the
distance from the effective leading edge on which Eqs. (2)
and (3) are based.
2.3 Application of Stratford's Result
to the Airfoil Problem

Stratford's result provides a pressure distribution which
recovers a given pressure difference in the shortest possible
distance. As applied to the maximum lift problem, this
means that for a given pressure difference Cpte — CP min, the
chordwise position of Cp mm can be located as far aft as possible
by using the Stratford pressure recovery distribution. Cer-
tain modifications are necessary, however, before it becomes
usable in the present problem.

Defining the conventional pressure coefficient as

and using Eq. (1), the relation

CP = (70/7co)2(C, - 1) + 1
is obtained. Conditions at the trailing edge give

(Fo/Fco)2 = Cpte - l/Cpt. - 1 (6)
so that the relation between Cp and CP may be written as

Cp = [(I - Cpte)/(l - Cpte)}(CP - 1) + 1 (7)
Similarly, RexQ is related to the freestream Reynolds number

e^ by

(8)

For a given pressure distribution from X = 0 to X\ = X0,
Eqs. (4) and (5) may be considered as having the forms

XQ =

XQ =

kt > 1

ki > 1
(9)

dX (4)

for case a and case b, respectively, where kt and ki are con-
stants. For the analysis which follows, it will be convenient
to define a new independent variable for Eqs. (2) and (3) as
z = X/XQ whose value at the trailing edge is Z = (X/XQ) te.

2.4 Proposed Upper-Surf ace Pressure Distributions

A more specific form for the upper-surface pressure dis-
tribution may now be examined using the Stratford distribu-
tion for the pressure recovery region. Figure 3 describes
the proposed pressure distribution for case a. An arbitrary
favorable pressure gradient rooftop is assumed for the region
from X = 0 to X = X0, and the Stratford distribution is
assumed from X = X0 to X = c. Using the relation X0 =

H0V.2

TURBULENT BOUNDARY LAYER

PRESSURE RISE

Fig. 2 Pressure distribuiton used by Stratford (Ref. 2).

o
(+)

1.0
- X 0 = k t x 0

STRATFORD PRESSURE
RECOVERY DISTRIBUTION

Fig. 3 Proposed pressure distribution for airfoil upper
surface with entire boundary-layer turbulent (not to

scale).
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SEPT.-OCT. 1970 OPTIMIZATION OF AIRFOILS FOR MAXIMUM LIFT 411

ktxQ, Eq. (4) is rewritten in terms of the pressure coefficient as

Since Cp > Cp min, as the pressure distribution from X = 0 to
X — XQ approaches a flat rooftop (Cp = const = Cp min),
then X0 -* XQ and kt -> 1.

The distance from X = Xo to X ~ c is determined by the
values of Z and Cpte. This can be demonstrated by using
Eq. (6) and writing

Cp mm = 1 - (TV/TV) = 1 - (C,,. - !)/(<?,,. - 1) (11)

and recalling that Cpte is determined from Eqs. (2) and (3)
when z = (x/xo)te = Z. ZXQ represents the distance from
X = XQ to X = c for the arbitrary rooftop distribution, as
can be seen from Fig. 3.

The lift coefficient for the upper surface is given by

-U C, d( -

rjkt
Z - 1)

where, from Fig. 3, the chord is c = (kt + Z — l)xQ. The
second integral in the previous equation represents the con-
tribution to CLU from the Stratford recovery portion of the
pressure distribution. In this region, Cp is given by Eqs.
(2), (3), and (7) as a function of z = X/XQ and the three param-
eters RexQ, Cpte, and Z. Furthermore, from Fig. 3, z =
X/XQ — (kt — 1) and dz = d(X/xo), therefore,

/
(kt -

'«
Cpd

/X\ rz
(- ) = li X\XQ/ J i

CP(z,Cpte,Rex0)dz = Is(Z,Cpte,ReXQ) (12)

The expression for CLU now becomes

CLu = - 7.(Z,CP

(13)
Equations (10) and (13) define CLu for case a as a function
of the pressure distribution from X = 0 to X = Xo, and the
parameters Z, Cpte, and ReXQ, where Cp min is given by Eq.
(11). It remains to determine the optimum distribution and
values of the parameters.

The development of the equivalent of Eqs. (10) and (13)
for case b is quite similar to that of case a. The proposed
pressure distribution for case b is shown in Fig. 4. An
arbitrary favorable rooftop is assumed for the region from
X = 0 to X = X0, however, in this case the boundary layer
in this region is assumed to be laminar. Instantaneous
transition at X = XQ is assumed, and again the Stratford re-
covery is prescribed from X = X0 to X = c. The same
relationships for Cpte, ReXQ, z, and Cp min apply here to case b
as were discussed earlier for case a, and again Z, Cpte, and
RexQ are not specified at this time.

It is convenient to rewrite Eq. (5) in the form XQ =
kiP(kirX(\) where

= (flex0)3/8/38.2 > 1

x 1
(14)

kir is a function of RexQ only. The existence of a laminar in-
stead of a turbulent boundary layer from X = 0 to X = XQ im-
plies an increase in the distance X0, and ktr accounts for this
as shown in Fig. 4. kip is dependent on the pressure dis-
tribution from X = 0 to X = X0, and has an effect on the
distance X0 which is quite similar to kt of case a.

STRATFORD PRESSURE
RECOVERY DISTRIBUTION

Fig. 4 Proposed pressure distribution for airfoil upper
surface with boundary-layer laminar from X = 0 to X =

Xo, and turbulent from X = Xo to X = c (not to scale).

Referring to Fig. 4, the chordlength for case b is c =
(kipkir + Z — l)xo, and the upper-surface lift coefficient is
given by

<- - -
f

klpklr + Z — 1

Also, from Fig. 4,

z =
and therefore

ir - 1), dz = d(X/x0)

kiPkir
ripfei,

_Ay\
[ - } = I X
\XQJ Jl

CP(z',CPte,Rex*)dz = Is(Z,Cpte,RexQ) (15)

The functions Is of Eqs. (12) and (15) are seen to be identical,
and the expression for CLu for case b is now given by

Is(Z,CPte,Rex,)~]/(klpklr + Z - 1) (16)

kip is more conveniently defined by rewriting Eq. (14) as

*„ to.*»/ l -C,

Equations (16) and (17) define CLu for case b as a function of
the pressure distribution from X = 0 to X = X0 and the
parameters Z, Cpte) and RexC.

2.5 Application of the Calculus of Variations
to Maximize CLU

The form of the equations which specify CLU for both cases
a and b suggests the use of the calculus of variations to deter-
mine the function CP(X) and the parameters Z, Cpte, and
Rex0 which maximize CLU. For given values of Cpte and
Rex0, Eqs. (10) and (13) of case a, and Eqs. (16) and (17)
of case b define a problem of the form

Maximize H[y(x);K,N] =

[fQ
Kf[y(x)]dx+J(N)~]/G2(K,N) (18)

with the constraint

G(K,N) + f* g[y(x)]dx = 0 (19)

That is, it is desired to find the function y(x) and the values
of K and Af which maximize the functional H subject to the
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412 R. H. LIEBECK AND A. I. ORMSBEE J. AIRCRAFT

L.E. FOR
LAMINAR
ROOFTOP,
CASE (b) —

FLAT ROOFTOP

I.E. FOR
TURBULENT
ROOFTOP,
CASE (a)̂

X0 = k|rx0-

STRATFORD PRESSURE
RECOVERY DISTRIBUTION

»-X0=x0

Fig. 5 Optimum pressure distribution for airfoil upper
surface, case a and case b (not to scale).

constraint given by Eq. (19), where the functions/^), J(N),
ft(K,AO, G(N), and g(y) are known. Introducing the
Lagrange multiplier X, Eqs. (18) and (19) may be combined
in the form

and letting Gi(K,N,\) = J(N) + \G(K,N) and

I[y(x);K,\] = f*(f+\g)dx

this becomes

#[j/(z);K,tf,X] = {7[2/(o;);7C,X] + Gi(K,N,\)}/G*(K,N)
The first variation of H is

m = (d#/c>7)57 + (d#/c)ft)5ft + (d#/dft)5ft (20)
577 = 0 is a necessary condition for an extremum of H. The
second variation of H is

*\n ^si ' ^^Y ^sidftdft dftdft/ +"»+
and the condition for a maximum is 527? < 0. It is important
to note that_on an extremum, the partial derivatives (d#/d/,
dtf/dft, c>2#/d72, d2#/57dft, . . . ) of Eqs. (20) and (21)
are constants, and the actual variation is accounted for by
the variations [67, 5ft, (57)2, 5'7, . . . ].

The variation 57 is given by

-//•(fy X0) . SK (22)

for arbitrary variations 5i/ and 5K, and the variations 5ft and
5ft are given by

5ft = (dft/d7Q57C + (dGi/t)N)5N

5ft =

(23)
(24)

for arbitrary variations 5K and 5N.
Using Eqs. (22), (23), and (24), Eq. (20) becomes

5ft_
5ft

dft .577 dft

(25)

Since 57^ must vanish for every admissible set of variations
dy, dK, and 5A^, Eq. (25) breaks up into the three separate
conditions <

*a(f+\d / ( / + X

(dtf/bffi)

A + = 0 (26)

v ;ZGrdK

+ (d/?/£X?2) d(?2/dJV = 0 (28)

where Eq. (26) is the Euler equation for 5i/, Eq. (27) is the
transversality condition for dK, and Eq. (28) represents the
vanishing of the derivative of H with respect to N.

Applying Eq. (26) to Eqs. (10) and (13) of case 2 yields

-1 + |X(1 - (7P)1/2 = 0 (29)

which indicates that the solution CP(X) from X = 0 to X =
XQ is a constant. Therefore,

CP(X) = CP (0 < X < XQ)

since continuity requires Cp(Xo) = Cp min, and thus, from
Eq. (10), kt = 1. This means that the only admissible
variation of kt is dkt = 0, and therefore it is not necessary to
satisfy Eq. (27). In order for the previous solution to pro-
vide a maximum of CLU, it must satisfy 52H < 0 where 5277
is given by Eq. (21). Since 57 = 0 and dkt = 0, Eq. (21)
reduces to the two conditions

527 < 0 =)/„„ + \gvv < 0 (30)

d2#/dN2 < 0 (31)

Referring to Eq. (30),

f y y + X<^ = -fX(l ~ CP)~V* = -fX(l - C^in)-1/2

This quantity is negative since Cp min is negative, and from
Eqs. (10) and (29), X is positive. Before applying Eqs. (28)
and (31) to determine the optimum value of N (Z in the
actual problem), it will be convenient to apply the previous
procedure to case b.

Application of Eq. (26) to Eqs. (16) and (17) of case b
yields

-1 + f(l - C,)3/2 = 0 (32)

which gives

Cr(X) = CP (0 < X < Z0)

as in case a, and therefore the only admissible variation of
kip is 5k ip = 0, and thus, Eq. (27) need not be satisfied. Re-
ferring to Eq. (30) once again

fyy= X<^= -V5X(1 ~ C,^)1/2

which is always negative as in case a.
Referring to Fig. 5, CLU may now be written in the form

LU = - [CP I8(Z,Cpte,Rexo)]/(Z + klr -

where kir = 1 for case a, and kir is given by Eq. (14) for case
b. Cp min as a function of Z is obtained from Eq. (11) as

and therefore

CLU — — [Cp min(Z)Cpte)Rexo)klr +

Is(Z,Cpte,RexQ)]/(Z + klr -

The conditions of Eqs. (28) and (31) become

5CLtt/dZ = 0, &CLu/dZ* < 0

(33)

(34)
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SEPT.-OCT. 1970 OPTIMIZATION OF AIRFOILS FOR MAXIMUM LIFT 413

1.0

FLAT ROOFTOP —Cpmin

STRATFORD
DISTRIBUTION

STAGNATION

-Cpt.

Fig. 6 Optimum airfoil pressure distribution according
to variational analysis.

as conditions on Z for a maximum. Application of Eqs.
(34) to Eq. (33) yields an analytic expression for Z as a func-
tion of Cpte and ReXQ. This completes the variational analysis

Table 1 Coordinates for airfoil at design angle of attack
(Laminar rooftop, Rem = 5 X 106)

Lower

x/c

1.0
0.999
0.996
0.991
0.984
0.975
0.964
0.951
0.936
0.919
0.900
0.879
0.856
0.831
0.805
0.778
0.750
0 721
0.691
0.660
0.628
0.596
0.564
0.532
0.500
0.468
0.436
0.404
0.372
0.340
0.309
0.279
0.250
0.222
0.195
0.169
0.144
0.212
0.100
0.0810
0.0640
0.0490
0.0360
0.0265
0.0195
0.0130
0.0095
0.0055
0.0025
0.001

surface

y/c
0.0
0.00035
0.0014
0.0032
0.0057
0.0090
0.0131
0.0180
0.02375
0.0304
0.0381
0.0468
0.0566
0.0676
0.0793
0.0919
0.1053
0.1197
0.1349
0.1511
0.1682
0.1857
0.2036
0.2217
0.2399
0.2580
0.2756
0.2916
0.3047
0.3144
0.3201
0.3231
0.3243
0.3241
0.3228
0.3202
0.3163
0.3109
0.3041
0.2961
0.2870
0.2782
0.2731
0.2718
0.2717
0.2730
0.2743
0.2775
0.2810
0.2870

Upper

x/c

1.0
0.999
0.996
0.991
0.984
0.975
0.964
0.951
0.936
0.919
0.900
0.879
0.856
0.831
0.805
0.778
0.750
0.721
0.691
0.660
0.628
0.596
0.564
0.532
0.500
0.468
0.436
0.404
0.372
0.340
0.309
0.279
0.250
0.222
0.195
0.169
0.144
0.121
0.100
0.0810
0.0640
0.0490
0.0360
0.0250
0.0160
0.0090
0.004
0.001

surface

y/c
0.0
0.000483
0.001935
0.00437
0.0078
0.00123
0.0178
0.0245
0.0323
0.0413
0.0517
0.0634
0.0766
0.0913
0.1071
0.1240
0.1420
0.1612
0.1818
0.2036
0.2268
0.2508
0.2754
0.3008
0.3268
0.3544
0.3828
0.4119
0.4419
0.4657
0.4811
0.4906
0.4961
0.4988
0.4983
0.4961
0.4920
0.4862
0.4781
0.4679
0.4551
0.4405
0.4210
0.3950
0.3668
0.3352
0.3075
0.2870

STRATFORD PRESSURE
RECOVERY DISTRIBUTION

X = c

Fig. 7 Modified form of optimum pressure distribution
for airfoil upper and lower surfaces, case a and case b

(not to scale).

of the upper-surface pressure distribution with the param-
eters Cpte and ReXQ left unspecified at this time.

2.6 Final Form of Airfoil Pressure Distribution

The variational analysis provides an idealized pressure dis-
tribution of the form shown in Fig. 6. Additional constraints,
not employed in the optimization of the pressure distribution
thus far, are necessary at this stage: 1) the airfoil must
close at the trailing edge without having negative area, 2)
the leading edge must be rounded to permit operation over
an angle of attack range, and 3) the Kutta condition must
be satisfied. These constraints are accommodated by pro-
viding a large finite acceleration on the upper surface near
the leading edge, and a moderate acceleration on the lower
surface near the trailing edge as shown in Fig. 7. For a given
RexQ (and hence Rem), the parameters Xi, X2, Xs, Cpi, and Cpte
will be adjusted to obtain an acceptable airfoil.

It is essential to note that the variational problem formu-
lated in this study cannot lead to other than an infinite pres-
sure gradient at the leading and trailing edtes as indicated
in Fig. 6. The application of linear pressure variations near
the leading and trailing edges was done arbitrarily, and is not
part of the variational analysis. It is expected, however,
that the inclusion of formal constraints that would limit the
magnitude of the pressure gradient to some maximum value
would lead to a linear pressure variation at that value of the
gradient.

3. Results
Values of the upper-surface lift coefficient CLu calculated

from Eq. (33) are shown in Fig. 8 for 106 < Rem < 107 and
0.1 < CPte < 0.3. The range of Rem is obtained by varying
Rexo and using Eq. (8). CLU is seen to increase with Rem, and
is significantly higher for case b than case a. The value of
Cpte has a strong effect on CLu, and this influenced the pro-
cedure used in varying the parameters of the pressure dis-
tribution to obtain the airfoils. Actually, the selection of a
value of Cpte involves a careful judgment of boundary-layer

— — — TURBULENT ROOFTOP, CASE (a)
————— LAMINAR ROOFTOP, CASE (a)

2.0

1.0

0.1 __-

106 107

Re a

Fig. 8 Variation of CLU with Re^ case a and case b.
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414 R. H. LIEBECK AND A. I. ORMSBEE J. AIRCRAFT

-4.0

-2.0 -

1.0

Fig. 9 Airfoil geometry and pressure distribution, turbu-
lent rooftop, Rem = IO6.

effects at the trailing edge, and much work remains to be done
in this area.

Weber's inverse airfoil solution4 was used to obtain the
profiles. Xi, Xz, and Cpi were varied to obtain acceptable
leading-edge geometry. Cpte and X$ were used to control the
aft portion of the airfoil geometry. For a particular value of
Cpte, increasing X$ caused the thickness near the trailing edge
to decrease, and thus, the desired value of X$ was that which
just causes the airfoil to close. From Fig. 8, it is evident
that the lowest value of Cpte is desired. It was found that
if the value of Cpte was too low, the airfoil closed upstream of
the trailing edge resulting in a reflexed profile. Therefore,
the minimum allowable value of Cpte was considered to be
that where the profile was not reflexed, and for practical pur-
poses it was considered desirable to maintain a reasonable
thickness distribution over the aft portion of the profile.

Figures 9-14 present the profile shapes obtained and their
corresponding pressure distributions. Values of CL, CD,
CDU, and GDI are given for each. A list of coordinates for the
airfoil of Fig. 13 is given in the Table 1. These were ob-
tained by iterating from the profile predicted by the Weber
theory using the Douglas Neumann potential-flow program5

as a direct solution in order to obtain a more precise profile.
The exact pressure distribution corresponding to this shape
is also shown in Fig. 13.

The drag coefficients were calculated using the relation
given by Thwaites in Ref. 3. The boundary layer was taken
as laminar over the entire lower surface for the laminar roof-
top airfoils, and turbulent for the turbulent rooftop airfoils.
In addition, the drag for the airfoil of Fig. 13 has been calcu-
lated using the Douglas turbulent boundary-layer program.6

4. Conclusions

The family of optimum upper-surface pressure distribu-
tions effectively represent the maximum amount of lift which

cp .4.0 •

X/c

-6.0

-4.0 - Re. = 10 x 106

= 1.78
CD = 0.020
CDu = 0.019
GDI =0.001
L/D = 91

-2.0 -

X/c

Fig. 11 Airfoil geometry and pressure distribution, turbu-
lent rooftop, Rem = 10 X IO6.

may be carried by the upper surface of a monoelement airfoil
without separation. Since the Stratford theory on which
they were developed has been verified experimentally in Ref.
2, such distributions and performance would appear to be
attainable under actual flight conditions.

The airfoil profiles obtained using the Weber theory are,
of course, only approximate. They do, however, indicate
that the proposed optimum pressure distributions provide
realistic airfoil sections. The leading-edge acceleration re-
gions required for the airfoils of Figs. 9-14 caused more of a
reduction in the lift coefficient than was expected, particularly
for the airfoils of case a. This is probably a result of using
the Weber method for computing the airfoil profiles, and
therefore steeper leading-edge accelerations should be accept-
able when a more accurate inverse technique is employed.
On the other hand, the lower-surface acceleration region
proved to be quite reasonable in its linear form. Attempts
to increase the lift coefficient by assuming more arbitrary
forms failed to provide any significant improvement.

The trend of increasing lift coefficient with Reynolds
number is as expected. Compressibility induced separation
effects have not been directly considered. However, since
the load has been spread over the maximum chordwise dis-
tance possible, the airfoils should have relatively high critical
Mach numbers at the design condition. Theoretical predica-
tion of the drag coefficients is somewhat speculative because
of the special form of the pressure distributions. Neverthe-
less, the agreement between the results obtained using
Thwaites' method and the Douglas turbulent boundary-layer
program for the airfoil of Fig. 13 suggests that these results
may be realistic.

In this analysis, separation has not been permitted any-
where on the airfoil. As a result, the drag coefficients pre-
dicted theoretically by Thwaites' formula are quite low, and

-6.0 r

Re« = 1
CL = 1.88
CD = 0.016

CDU= 0.014
CD* = 0.002

L/D =117

-4.0 -

1.0
X/c

Fig. 10 Airfoil geometry and pressure distribution, turbu-
lent rooftop, Rem = 5 X IO6.

Fig. 12 Airfoil geometry and pressure distribution, lami-
nar rooftop, Rem = IO6.
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CL =2.54
C0 = 0.010 (THWAITES)
CDu = 0.009
CD* = 0.001
CD = 0.013 (DOUGLAS)

-4.0 -

-2.0 -j

Fig. 13 Airfoil geometry and pressure distribution, lami-
nar rooftop, Rem = 5 X 106.

cp

Fig. 14 Airfoil geometry and pressure distribution, lami-
nar rooftop, Rem = 10 X 1C6.

thus, the airfoils provide a high L/D at high CL. Such
performance may be particularly useful in, for instance,
V/STOL, long endurance, and man-powered flight applica-
tions. On the other hand, CL max is classically defined as
that value of the lift coefficient when the slope of the lift
curve equals zero, and almost all airfoils are partially sepa-
rated at this point. Therefore, since it has been shown that
Cpte has a strong effect on CLU, it is possible that by designing
an airfoil with limited separation at the trailing edge, signifi-
cantly higher-lift coefficients could be obtained. Naturally,
these more sophisticated applications will require the inclu-
sion of boundary-layer thickness effects, particularly near the
trailing edge.

A planned extension of this work will be to apply an exact
inverse solution to obtain the profiles. This will allow a more
precise definition of leading and trailing-edge conditions and
should, if anything, improve the performance. The resulting
airfoils will then be evaluated in an experimental program.
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SYNOPTIC: Jet Circulation Control Airfoil for VTOL Rotors, S. W. Yuan, George Washington
University, Washington, D.C.; Journal of Aircraft, Vol. 7, No. 5, pp. 417-423.

Experimental Investigation of Circulation Control Airfoils by Means of Jets

Theme

This paper presents experimental investigations of the basic
aerodynamic characteristics of elliptical airfoils with jet
circulation control for VTOL rotors. The flow past an air-
foil with an oscillating blowing jet was also investigated.
These results were used to compare with available theories
as well as other experimental data.

Content

The purpose of this investigation is to study the basic aero-
dynamic characteristics of elliptical airfoils with jet circula-
tion control for VTOL rotors. Based on the potential flow
theory calculation, the capacity of the air supply, the limita-
tion of the compressibility effect of the jet stream at high
velocities, the elliptical airfoils of 18 and 12% thickness ratios
were designed and constructed. Experimental investiga-
tions for both models with trailing-edge jets include force
and pitching moment measurements. In addition, static
pressure measurements were made in both spanwise and
chordwise directions.

Circulation control with dual jets for the elliptical airfoil
of 18% thickness ratio was tested with very satisfactory re-
sults. The determination of the aerodynamic response of
the airfoil model to cyclic changes in jet mass flow was also
made. The cyclic results were very satisfactory and are pre-
sented in the form of pulsating lift coefficient, drag coefficient,
and pressure coefficient as a function of pulsating jet
coefficient.

The results of this investigation, performed in a 22 X 36 in.
wind tunnel at Reynolds number up to 106, can be summarized
as follows:

1) The maximum lift coefficient CL — 3.45 (Cj = 1.32),
at zero angle of attack was obtained for the elliptical airfoil
of 18% thickness ratio. However, at 4° angle of attack the
maximum lift coefficient increased to 4.2 at the same Cj.

2) Static pressure distributions in the chordwise direction
for elliptical airfoils of both 18% and 12% thickness ratios
were measured at various values of Cj. Several measured
pressure distributions were compared with the corresponding
theoretical values. These two sets of values for pressure
distributions were considered to be in reasonably good
agreement.

3) The section drag coefficient of the elliptical airfoil with
trailing-edge jet is obtained by taking the difference of the

50 100 150 200 250

Cj(Front)/Cj(Rear) (Percent)

Fig. 2 Total lift coefficient vs ratio of leading-edge jet
coefficient to trailing-edge jet coefficient (18% thickness

ratio).

measured values of the jet thrust coefficient and the corre-
sponding calculated values. It appears that the section
drag coefficient of the elliptical airfoil is comparable with
that of NACA 0012 airfoil for the range of lift coefficients
less than 1.4. Beyond this value of lift coefficient, the section
drag of the elliptical airfoil is much smaller than that of
NACA 0012 section (Fig. 1).

4) One of the most encouraging results was obtained from
an experiment performed on the elliptical airfoil of 18% thick-
ness ratio with dual jets (both leading-and trailing-edge jets
are used). The results indicated that the leading-edge jet
did not disturb the incoming flow and actually furnished some
additional reaction force to the lift (Fig. 2). As a conse-
quence, if the elliptical airfoil with dual jets is used for the
rotor blades, the loss of lift in the reverse flow region can be
completely eliminated.

200
TIME (milliseconds)

Fig. 1 Comparison of section drag coefficient.

Fig. 3 Pulsating lift and model pressure for elliptical
airfoil of 18% thickness ratio (valve speed = 360 rpm).

5) The results of aerodynamic response measurements of
the elliptical airfoil to cyclic changes in the blowing jet were
surprisingly encouraging. The cyclic valve was tested at
frequencies up to 12/cps and the response of the lift
was found to be excellent, with very little delay (Fig. 3).
The response of the drag as well as the chordwise pressure
distribution to the cyclic changes in the blowing jet were also
found to be good. These results clearly indicate that the
periodic variation of lift on the blade of a VTOL rotor can
be obtained by a cyclic variation of the jet momentum;
hence, the circulation control problem is reduced to simply
the problem of regulating the mass flow (both cyclically and
collectively) from the power source.
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