Lecture 4: CS677

September 3, 2020

Admin

- Office Hour appointments (15 minutes) for Professor and TAs at:
- https://docs.google.com/spreadsheets/d/1vqgLOSXbrg8xstRK MA5HY3VgWh5zeaF15V6aei1Mz48/edit?usp=sharing
- Appointments outside office hours also available, especially for students outside LA
- DEN students added to "online" Slack channel
- Exam Dates: Exam1: October 13; Exam2: November 24
- Waiting list cleared
- Interaction
- Visual feedback is weak, rely on speech and chat
- Will try to post approximate assignment schedule soon
- First assignment out Sept 8, due Sept 17
- In the first part of the course, we will follow FP book but skip many details

Review

- Previous class
- Some example state-of-art apps
- Human visual system (very briefly)
- Image formation intro
- Today's objective
- Image formation: projection equations
- Homogeneous coordinates
- Intrinsic and extrinsic parameters
- Orthographic and weak perspective projection

Image Formation

- Geometry
- Where is the image of a point formed?
- Photometry/Colorimetry
- How bright is the point?
- What is its color?
- Ideal camera models
- Real lenses

The equation of projection

- Note: k-axis towards the camera (right handed coordinate system $\boldsymbol{k}=\mathbf{i} \times j$).

Let $\mathrm{P}=(\mathrm{X}, \mathrm{Y}, \mathrm{Z}), \mathrm{p}=(\mathrm{x}, \mathrm{y}, \mathrm{z})$

- We know that $\mathrm{z}=\mathrm{d}$, find values of x and y
- Op $=\lambda$. OP for some $\lambda, \lambda=\mathrm{d} / \mathrm{Z}$
hence:

$$
\left\{\begin{array}{l}
x=d \frac{X}{Z}, \\
y=d \frac{Y}{Z} .
\end{array}\right.
$$

Comments on the Projection Equation

- Note: if X is a positive number, x will be negative since Z is negative
- If image plane is in front (virtual plane), image is not inverted; change signs of x and y.
- Some authors (e.g. Szeliski book) assume that the z-axis points towards the object; change signs to accommodate
- How to compute image of a curve?
- Project points along the curve
- How many points to sample?
- Analytical equations may be possible in some cases if the original curve has an analytical equation
- How to project a surface?
- All points on the surface? All points may not be visible.

Projections of Certain Shapes

- Projection of a straight line
- Straight line
- How to show/prove? Geometrically? Algebraically?
- Projection of a circle?
- A conic section
- How to show/prove? Geometrically? Algebraically?
- Image of a sphere
- A conic?
- Images of a set of parallel lines?
- Do images remain parallel?

Converging Lines

Back Projection

- Given an image of an object, what can we infer about the 3-D object casting the image?
- Given a single 2-D image point?
- A line (orientation) along which the 3-D point must lie, but we can not fix a unique distance
- Given a straight line in the image?
- Must the object also be a straight line?
- Not necessarily, but likely (except for accidental viewpoints)
- Constraints on the object line?
- Must line in a specific plane (given by pinhole or lens center and the image line)
- Back projection of an ellipse
- Another ellipse; if we assume it is projection of a circle, we can estimate the orientation of the plane
- Is back projection of more complex shapes more constrained?

How do we see Depth in Simple Drawings?

From:
http://www.drawinghowtodraw.com/stepbystepdrawinglessons /2014/01/how-to-draw-a-house-with-easy-2-point-perspective-
techniques/

- What assumptions do we make?
- 2-D properties are not accidental: parallel lines in image also parallel in 3-D; intersections are real; symmetry/simplicity of objects...
- Significant theories developed but applicable only to very clean drawings as shown here; not topic of serious study at this time.
- Will color, intensity help? We will address this a bit later.

Multiple Cameras

- Each camera specifies a line on which the 3-D point must lie
- Point must be at intersection of these rays
- Issues: How to find the corresponding points? What if camera relative positions are not known?

Homogeneous Coordinates

- Add an extra coordinate
$-(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=>\left(\mathrm{X}_{\mathrm{h}}, \mathrm{Y}_{\mathrm{h}}, \mathrm{Z}_{\mathrm{h}}, w\right)=(w \mathrm{X}, w \mathrm{Y}, w \mathrm{Z}, w), w$ is any constant (in the FP book, w is usually set to 1)
- Advantage: allows perspective transformation to be linearized, i.e. expressed as a matrix equation

$$
\begin{aligned}
& {\left[\begin{array}{c}
\mathrm{x}_{\mathrm{h}} \\
\mathrm{y}_{\mathrm{h}} \\
\mathrm{w}_{\mathrm{h}}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 / \mathrm{d} & 0
\end{array}\right]\left[\begin{array}{c}
\mathrm{X}_{\mathrm{h}} \\
\mathrm{Y}_{\mathrm{h}} \\
\mathrm{Z}_{\mathrm{h}} \\
\mathrm{w}_{\mathrm{h}}
\end{array}\right]} \\
& \mathrm{x}_{\mathrm{h}}=\mathrm{X}_{\mathrm{h}}, \mathrm{y}_{\mathrm{h}}=\mathrm{Y}_{\mathrm{h}}, \mathrm{w}_{\mathrm{h}}=1 / \mathrm{d}^{*} \mathrm{Z}_{\mathrm{h}} \\
& \mathrm{x}=\mathrm{x}_{\mathrm{h}} / \mathrm{w}_{\mathrm{h}}=\mathrm{d}^{*} \mathrm{X}_{\mathrm{h}} / \mathrm{Z}_{\mathrm{h}}=\mathrm{d} * \mathrm{X} / \mathrm{Z}, \mathrm{y}=\mathrm{d} * \mathrm{Y} / \mathrm{Z}
\end{aligned}
$$

Also common to represent focal length by variable f ;
write matrix as $\left[\begin{array}{cccc}\mathrm{f} & 0 & 0 & 0 \\ 0 & \mathrm{f} & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]$

Intrinsic Camera Parameters

- FP Figure 1.14

- Measurement in image coordinates may be in "pixel" units (x, y)
- Pixels may not be square
- Origin of image coordinate system may not be at the center of image (projection of lens center); axes may be skewed .
- Normalized image plane: parallel to physical retina but unit distance from lens center,
- Normalized coordinates: origin at projection of O, axis parallel to i and j

Normalized Coordinates

- FP Figure 1.14

- Origin at the intersection of normalized plane and the principal ray
- Image plane axes parallel to the i and j axes

Projection in Normalized Coordinates

- In the normalized coordinate system:

$$
\left\{\begin{array}{l}
\hat{x}=\frac{X}{Z} \\
\hat{y}=\frac{Y}{Z}
\end{array} \Leftrightarrow \hat{p}=\frac{1}{Z}\left(\begin{array}{ll}
(\mathrm{Id} & 0
\end{array}\right) P\right.
$$

- Both $\hat{\boldsymbol{p}}$ and \boldsymbol{P} are expressed in homogeneous coordinates with the last term being set to " 1 "
- Note $\hat{\boldsymbol{p}}$ is $3 \times 1, \boldsymbol{P}$ is $4 \times 1, \mathbf{I d}$ is $3 \times 3, \mathbf{0}$ is 3×1
- If we did not require the last term of homogeneous coordinates to be " 1 ", we would not need to carry $1 / Z$ in our equations
- Division would come when we converted to regular coordinates) t
- We will follow FP book's notation

Intrinsic Parameters

- We can go from normalized coordinates to actual image coordinates by a series of transformations.
- Let f be focal length, k and l be scale parameters along x and y directions

$$
\begin{aligned}
& x=k f \frac{X}{Z}=k f \hat{x}, \\
& y=l f \frac{Y}{Z}=l f \hat{y} .
\end{aligned}
$$

- Image coordinates commonly expressed not in meters but in pixel units; k and l take care of this unit transformation. Define $\alpha=k f, \beta=l f$.
- Image center need not be at $(0,0)$, let it be at c_{0} at position (x_{0}, y_{0}) in "retinal" coordinate system, then

$$
\begin{aligned}
& x=\alpha \hat{x}+x_{0}, \\
& y=\beta \hat{y}+y_{0} .
\end{aligned}
$$

Intrinsic Parameters

- Let θ be the angle between axes in image plane, then

$$
\begin{aligned}
& x=\alpha \hat{x}-\alpha \cot \theta \hat{y}+x_{0}, \\
& y=\frac{\beta}{\sin \theta} \hat{y}+y_{0} .
\end{aligned}
$$

- In matrix form:

$$
p=\mathcal{K} \hat{\boldsymbol{p}}, \quad \text { where } \quad p=\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right) \text { and } \mathcal{K} \stackrel{\text { def }}{=}\left(\begin{array}{ccc}
\alpha & -\alpha \cot \theta & x_{0} \\
0 & \frac{\beta}{\sin \theta} & y_{0} \\
0 & 0 & 1
\end{array}\right)
$$

- K is called the internal calibration matrix; ($\alpha, \beta, \theta, x_{0}, y_{0}$) are the intrinsic parameters.
- Including projection from P to p,

$$
p=\frac{1}{Z} \mathcal{K}\left(\begin{array}{ll}
\mathrm{Id} & 0
\end{array}\right) P=\frac{1}{Z} \mathcal{M} P, \quad \text { where } \quad \mathcal{M} \stackrel{\text { def }}{=}\left(\begin{array}{ll}
\mathcal{K} & 0
\end{array}\right)
$$

(Note: division by Z is an artifact of setting last term in p to be 1)

Object and World Coordinate Systems

- Previous transformation matrix requires object coordinates to be expressed in the camera coordinate system (with origin at lens center)
- This, in general, is not very convenient
- Object coordinate system
- Aligned with some components of the object, e.g. the three sides of a rectangular solid
- World coordinate system
- Chosen for global convenience, e.g. lines forming corner of a room , or earth coordinates (latitude, longitude, height)
- Coordinate transformations define relations between different coordinate systems
- Extrinsic parameters relate world coordinate system to camera coordinates

Rigid Transformations

- Notation

$$
\begin{aligned}
& F P \text { Point } P \text { in Frame } F \\
& (A)=\left(O_{A}, \boldsymbol{i}_{A}, \boldsymbol{j}_{A}, \boldsymbol{k}_{A}\right) \\
& (B)=\left(O_{B}, \boldsymbol{i}_{B}, \dot{\boldsymbol{j}}_{B}, \boldsymbol{k}_{B}\right)
\end{aligned}
$$

- In general, two coordinate systems can be aligned by
- Translation of origin (3 parameters)
- Rotation
- 3 rotations about the 3 axes (e.g. rotate about z -axes, then about the new y-axis, then about the new x-axis); called Euler angles
- One direction about which rotation occurs and one angle
- "Screw" representation, quaternions

Transformation Equations

- In non-homogeneous coordinates:

$$
{ }^{A} \boldsymbol{P}=\mathcal{R}^{B} \boldsymbol{P}+\boldsymbol{t}
$$

- Where t is translation vector (coordinates of origin of B in A); R is given by:

$$
\mathcal{R} \stackrel{\text { def }}{=}\left({ }^{A} i_{B},{ }^{A} j_{B},{ }^{A} \boldsymbol{k}_{B}\right)
$$

- Note that detailed matrix given in eq 1.8 of the FP book is wrong; correct answer is transpose of the given matrix

$$
\mathcal{R} \stackrel{\text { def }}{=}\left({ }^{A} i_{B},{ }^{A} j_{B},{ }^{A} k_{B}\right)=\left(\begin{array}{lll}
i_{A} \cdot i_{B} & j_{A} \cdot i_{B} & k_{A} \cdot i_{B} \\
i_{A} \cdot j_{B} & j_{A} \cdot j_{B} & k_{A} \cdot j_{B} \\
i_{A} \cdot k_{B} & j_{A} \cdot k_{B} & k_{A} \cdot k_{B}
\end{array}\right) \mathrm{T}
$$

- e.g. first column should be ($\boldsymbol{i}_{\mathrm{A}} \cdot \boldsymbol{i}_{\mathrm{B}}, \boldsymbol{j}_{\mathrm{A}} \cdot \boldsymbol{i}_{\mathrm{B}}, \boldsymbol{k}_{\mathrm{A}} \cdot \boldsymbol{i}_{\mathrm{B}}$)
- In homogeneous coordinates:

$$
{ }^{A} \boldsymbol{P}=\mathcal{T}^{B} \boldsymbol{P}, \quad \text { where } \quad \mathcal{T}=\left(\begin{array}{cc}
\mathcal{R} & t \\
\mathbf{0}^{T} & 1
\end{array}\right)
$$

Combined Projection Equations

- Let (W) be a world coordinate frame, (C) a camera coordinate frame
- World to Camera coordinate transformation given by

$$
{ }^{C} P=\left(\begin{array}{cc}
\mathcal{R} & t \\
0^{T} & 1
\end{array}\right){ }^{W} P
$$

- From camera coordinates to image cordinates:

$$
p=\frac{1}{Z} \mathcal{M}^{C} \boldsymbol{P}
$$

- Combining the two, we get

$$
p=\frac{1}{Z} \mathcal{M} P, \quad \text { where } \quad \mathcal{M}=\mathcal{K}(\mathcal{R} \quad t)
$$

where P is in world coordinate frame, p is in image coordinates frame

- We can also incorporate object coordinates to world coordinates transformation in the \boldsymbol{M} matrix

Expanded Matrix

- Let r_{1}^{T}, r_{2}^{T}, and r_{3}^{T} denote the 3 rows of R , and t_{1}, t_{2}, t_{3} denote the three components of t, then:

$$
\mathcal{M}=\left(\begin{array}{cc}
\alpha \boldsymbol{r}_{1}^{T}-\alpha \cot \theta \boldsymbol{r}_{2}^{T}+x_{0} \boldsymbol{r}_{3}^{T} & \alpha t_{1}-\alpha \cot \theta t_{2}+x_{0} t_{3} \\
\frac{\beta}{\sin \theta} \boldsymbol{r}_{2}^{T}+y_{0} \boldsymbol{r}_{3}^{T} & \frac{\beta}{\sin \theta} t_{2}+y_{0} t_{3} \\
\boldsymbol{r}_{3}^{T} & t_{3}
\end{array}\right)
$$

- Note M is 3×4, not 3×2 as may appear above as r_{i} are 3-D entities
- Let m_{1}^{T}, m_{2}^{T} and m_{3}^{T} denote the 3 rows of M, then $Z=m_{3} \cdot P$

$$
\begin{aligned}
& x=\frac{m_{1} \cdot P}{m_{3} \cdot P}, \\
& y=\frac{m_{2} \cdot P}{m_{3} \cdot P} .
\end{aligned}
$$

Properties of Matrix M (FYI Only)

- Can any arbitrary 3×4 matrix be a perspective projection matrix (corresponding to some internal and external parameters)?

Theorem 1. Let $\mathcal{M}=\left(\begin{array}{ll}\mathcal{A} & b\end{array}\right)$ be a 3×4 matrix, and let $\boldsymbol{a}_{i}^{T}(i=1,2,3)$ denote the rows of the matrix \mathcal{A} formed by the three leftmost columns of \mathcal{M}.

- A necessary and sufficient condition for \mathcal{M} to be a perspective projection matrix is that $\operatorname{Det}(\mathcal{A}) \neq 0$.
- A necessary and sufficient condition for \mathcal{M} to be a zero-skew perspective projection matrix is that $\operatorname{Det}(\mathcal{A}) \neq 0$ and

$$
\left(a_{1} \times a_{3}\right) \cdot\left(a_{2} \times a_{3}\right)=0 .
$$

- A necessary and sufficient condition for \mathcal{M} to be a perspective projection matrix with zero skew and unit aspect-ratio is that $\operatorname{Det}(\mathcal{A}) \neq 0$ and

$$
\left\{\begin{array}{l}
\left(a_{1} \times a_{3}\right) \cdot\left(a_{2} \times a_{3}\right)=0, \\
\left(a_{1} \times a_{3}\right) \cdot\left(a_{1} \times a_{3}\right)=\left(a_{2} \times a_{3}\right) \cdot\left(a_{2} \times a_{3}\right) .
\end{array}\right.
$$

Next Class

- FP: Sections 1.3, 2.1, 2.3.4, 2.4, 3.1, 3.2,3.3

