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a b s t r a c t

Emerging mechanical topological insulators based on Quantum Valley Hall Effect (QVHE) offer a myriad
of unconventional and robust properties in controlling wave motion. Designing mechanical topological
insulators requires a careful assignment of the system’s mechanical properties in a specific manner.
Consequently, modulating the topological property of a fabricated system is typically challenging. Here,
we introduce an externally adding-on mechanism that enables high tunability of QVHE without the
need to alter the main fabricated structure. Specifically, we exploit a periodic elastic foundation to
control the topological property of a hexagonal lattice. Non-equal stiffnesses of the elastic foundation
break the inversion symmetry of the hexagonal lattice, thus introducing the QVHE to the system.
A mathematical framework is established to understand the fundamental mechanism and design
the topologically protected waveguides by tuning the elastic foundation. The achieved topological
insulators exhibit high tolerance over defects. The paradigm in this work opens promising avenues
for mechanical metamaterials with tunable topological properties.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Periodic lattices have facilitated the design of a variety of
mechanical and acoustic systems, offering a plethora of exotic
physical phenomena not available in nature [1–3]. One of the
hallmark features of periodic lattices is their unique interac-
tion with wave propagation, whether in elastic [4] or acous-
tic [5] media. Having a spatially periodic unit cell constituting
lattice structures gives rise to a range of interesting behaviors,
such as wave attenuation [6], beaming [7], negative refractive
index [8], and cloaking [9]. Engineered lattice materials have
imprinted a profound impact on various vibration control and
wave propagation aspects, such as wave directivity [10] and
steering [11], wave focusing via elastic lenses [12,13], and one-
way wave transmission [14,15]. A new frontier in studying wave
propagation in periodic lattices is the notion of topological insula-
tors, which has recently witnessed a spurt of research activity in
the domain of mechanical systems [16–18]. The growing interest
in mechanical topological insulators, initially inspired by their
electronic counterpart, stems largely from their robustness and
promised immunity against defects and imperfections, among
other unusual properties [19]. Of specific interest in this effort
is the concept of the Quantum Valley Hall effect (QVHE), which
manifests itself in hexagonal lattices [20–25]. Topological protec-
tion accompanying QVHE emerges when the inversion symmetry
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of the unit cell is broken while maintaining a third order ro-
tational symmetry C3. Known for exhibiting degenerate Dirac
cones at the Brillouin zone’s high-symmetry points, hexagonal
lattices with violated inversion symmetry lose the degeneracy
at the Dirac cones, and a frequency bandgap opens as a re-
sult [18]. Typically, the quantification of topological protection in
dynamical systems is accomplished by a metric, referred to as
a topological invariant, and, in the context of QVHE, the Valley
Chern Number (computed at the vicinity of the Dirac cones) is
customarily exploited [24,25]. Besides hexagonal lattices, vari-
ous topologically protected systems with different mechanical
and geometrical configurations have been theoretically and ex-
perimentally demonstrated. This includes, but is not limited to,
coupled pendula [26], bilayered rotational Lieb lattices [27], spa-
tiotemporally modulated lattices [28], quasi-periodic systems [29,
30], and gyroscopic systems [31–33].

The design of topological elastic systems requires a careful
assignment of the system’s mechanical properties in a specific
manner. As a result, fabricated structures, often designed to meet
a specific requirement, may not allow for modification and ad-
justments to their topological properties in a later stage, and,
thus, impose some practical challenges. This challenge naturally
yields to the following question: Is it possible to conceive an
externally adding-on mechanism capable of tuning topological
properties without alterations to the original system? Motivated
by this question, we exploit the idea of periodic elastic foundation
as a means to tune, induce, or even nullify QVHE in hexagonal
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structures with existing periodic modulation. The concept of elas-
tic foundation is known to control wave dispersion characteristics
in phononic materials [34]; hence, the rationale is utilized here
to enable tunability and manifestation of QVHE in hexagonal
lattices, a design scheme that remains unexplored in such elastic
systems. We focus on a diatomic hexagonal lattice with unequal
elastic supports to found a deeper fundamental understanding
and, in the process, derive generalized analytical formulations,
specifically the unit-cell’s Hamiltonian. The latter is of utmost
importance to elucidate the physical mechanism of QVHE in elas-
tically supported hexagonal lattices. Unequal masses of the unit
cell are considered to demonstrate the tunability of hexagonal
structure with existing modulation. We validate the feasibility of
using a combination of periodic mass and/or an elastic foundation
to tune/induce topologically protected interface modes via the
analysis of a supercell with an interface defining the limit of
two topologically distinct lattices. The analyses based on the
unit cell Hamiltonian and supercell dynamics are further verified
by full-scale numerical simulations using a honeycomb finite
structure with various configurations of waveguides. We finally
show that two entirely different modulation types can co-exist in
the same structure while maintaining an operational topological
waveguide.

2. Wave dispersion in hexagonal lattices on elastic foundation

2.1. Structural design

We consider a hexagonal lattice constructed from a network
of masses, m1 and m2, periodically coupled via taut strings with
a linear density of ρ, a constant tension T , and an equivalent
spring constant of k = T/a, where a is the length of the string
segment (Fig. 1AC). The coupling strings are rendered massless
as large lumped masses m1,2 ≫ ρa are assumed. The masses,
m1 and m2, are supported by a periodic elastic foundation, rep-
resented by two types of springs k1 and k2, respectively. The
elastic foundation is also assumed to be massless, allowing for
approximating the system into a lumped parameter model. By
virtue of the periodicity, a self-repeating unit cell definition can
be conceived as two masses with its elastic connections repeating
in two directions, represented by the indices i and j (Fig. 1B).

2.2. Unit cell analysis

2.2.1. Mathematical formulation
Consider the discrete model of the unit cell in Fig. 1C, where

the motion of the unit-cell’s first and second masses, ui,j and vi,j
respectively, is only in the out-of-plane direction (z-direction).
The resisting forces from each individual string is a function of
its equivalent stiffness and the relative displacement of the two
masses on its edges. For instance, the string segment connecting
ui,j and vi,j exerts an out-of-plane force of fz = T sinα ≈ T tanα,
which is valid for infinitesimal displacements (See the inset in
Fig. 1C). From the geometrical properties, it immediately follows
that tanα = ∆/a = (vi,j − ui,j)/a, resulting in fz = k(vi,j − ui,j).
Following a similar procedure for the remaining coupling strings,
one can show that the complete equations of motion of the unit
cell are given by:

m1üi,j + (k1 + 3k) ui,j − k
(
vi−1,j + vi,j−1 + vi,j

)
= 0 (1)

m2v̈i,j + (k2 + 3k) vi,j − k
(
ui+1,j + ui,j+1 + ui,j

)
= 0 (2)

Owing to the structural periodicity, the Bloch theorem can be
applied to express Eqs. (1) and (2) solely in terms of the degrees of
freedom of the (i, j) unit, i.e. ui,j and vi,j (See [21,35,36] for differ-
ent examples and detailed discussions). To this end, we define a

displacement vector zi,j =
{
ui,j vi,j

}T for the cell (i, j), and write
zi±1,j±1 = ei(±q1±q2)zi,j for its neighboring cells, where i =

√
−1 is

the imaginary unit and the nondimensional wavenumbers q1 and
q2 are defined as functions of the nondimensional wavenumbers
in the x- and y-directions, qx and qy respectively,

q1 =
1
2

(√
3qx + qy

)
(3)

q2 =
1
2

(√
3qx − qy

)
(4)

Thus, the governing equations (1) and (2) are condensed in
matrix notation:

Mcz̈i,j + Kc (q) zi,j = 0 (5)

where [̈ ] denotes the second derivative in time and:

Mc =

[
m1 0
0 m2

]
, Kc(q) =

[
k1 + 3k −kε∗

−kε k2 + 3k

]
(6)

are unit-cell’s mass and stiffness matrices, respectively. Condens-
ing the degrees of freedoms as in Eq. (5) renders the unit-cell’s
stiffness matrix Kc (q) a function of the dimensionless wavevector
q = {q1, q2}T with ε = (1+eiq1 +eiq2 ) and ε∗ denotes its complex
conjugate. To reduce the number of studied variables, we first
introduce mass and stiffness contrasts, µ and γ respectively,
for the masses and elastic supports, which are mathematically
expressed as:

µ =
m1 − m2

m1 + m2
(7)

γ =
k1 − k2
k1 + k2

(8)

These two parameters are of key importance in the analysis and
span the range γ , µ ∈ [−1, 1]. To account for the stiffness ratio
of the elastic foundation and main structure, we define a mean
value κ of normalized elastic foundation stiffnesses (with respect
to the stiffness k):

κ =
k1 + k2

2k
(9)

In analogy, the masses are parameterized as:

m =
m1 + m2

2
(10)

Making use of Eqs. (7) through (10), we can express the masses
as m1 = m (1 + µ) and m2 = m (1 − µ), while the stiffnesses
are k1 = κk (1 + γ ) and k2 = κk (1 − γ ), thus covering the
theoretically infinite possible ratios of k2/k1 (or m2/m1). Note
that γ = 0 (µ = 0) refers to a situation where both k1 and
k2 (m1 and m2) are equal, while the extreme values of γ =

±1(µ = ±1) mandates that either of the two parameters is set to
zero. Additionally, a negative value of γ (µ) implies that k2 > k1
(m2 > m1) and vice versa. Finally, plugging in the introduced
parametrization in the equation of motion (5) produces:

mMz̈i,j + kK (q) zi,j = 0 (11)

where

M =

[
1 + µ 0

0 1 − µ

]
,

K (q) =

[
3 + κ(1 + γ ) −ε∗

−ε 3 + κ(1 − γ )

] (12)

2.2.2. System’s Hamiltonian
To demonstrate the QVHE in the considered hexagonal lat-

tice, we aim to find a mathematical expression of the system’s
Hamiltonian, typically derived from the eigenvalue problem of
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Fig. 1. (A) Schematic of a honeycomb structure constituted from a network of hexagonal unit cells (shown in dashed lines). (B) A close-up of the definition of the unit
cell and the respective indexing of the neighboring cells. (C) Three-dimensional schematics of the unit cell and its corresponding inertial and elastic properties. The
inset shows an illustrative schematics of the relative displacement of two neighboring cells and the corresponding geometrical parameters. The Irreducible Brillouin
Zone (IBZ) is provided for reference.

the mechanical system [27]. Applying a harmonic solution z̈i,j =

−ω2zi,j as the first step, with ω being the angular excitation
frequency, Eq. (11) can be written as:

k
m

[
3 + κ(1 + γ ) −ε∗

−ε 3 + κ(1 − γ )

]{
ui,j
vi,j

}
= ω2

[
1 + µ 0

0 1 − µ

]{
ui,j
vi,j

}
(13)

Following the scheme in Ref. [21], we introduce a new basis
xi,j = Pzi,j, where

P =

[√
1 + µ 0
0

√
1 − µ

]
(14)

to reduce Eq. (13) to
k
m

Hxi,j = ω2xi,j (15)

Such that H = P−1KP−1 is the Hamiltonian and its explicit form
reads:

H =

⎡⎢⎢⎣
3 + κ (1 + γ )

(1 + µ)
−

ε∗√
1 − µ2

−
ε√

1 − µ2

3 + κ (1 − γ )

(1 − µ)

⎤⎥⎥⎦ (16)

If the denominator of H diagonal elements is unified to be
(1−µ2), a few mathematical manipulations lead to a simpler form
of the Hamiltonian:

H =
1√

1 − µ2
H (17)

where

H =

[
Ω2

s + ϑ −ε∗

−ε Ω2
s − ϑ

]
(18)

and

ϑ =
κγ − (3 + κ) µ√

1 − µ2
(19)

Ωs =

√
3 + κ(1 − γµ)√

1 − µ2
(20)

are denoted here as the tuning parameter and central bandgap
frequency, respectively. Introducing a normalized frequency Ω =
ω
ω0

, with

ω0 =

√
k

m
√
1 − µ2

(21)

completes the derivation of the eigenvalue problem:

Hxi,j = Ω2xi,j (22)

In pursuit of comprehending the lattice’s topological proper-
ties, we further manipulate the Hamiltonian H in Eq. (18) in an
effort to express it as a summation of Pauli matrices σ l:

σ l =

[
δl,0 + δl,3 δl,1 − iδl,2
δl,1 + iδl,2 δl,0 − δl,3

]
(23)

where l = 0, 1, 2, 3 and δ[.] is the Kronecker delta. Note here that
the zeroth Pauli matrix σ0 is the unit matrix and it is combined
with the definition in Eq. (23) for mathematical convenience. The
normalized Hamiltonian H now reads

H =

∑
l=0,1,2,3

hlσ l (24)

and

h0 = Ω2
s (25)

h1 = (1 + cos (q1) + cos (q2)) (26)

h2 = (sin (q1) + sin (q2)) (27)

h3 = ϑ (28)

Each of the terms in Eqs. (25) through (28) symbolizes a con-
tribution to the band structure of the hexagonal lattice and its
topological properties. While the first term h0 = Ω2

s only shifts
the eigenvalues of the Hamiltonian and does not change the
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topology of the band structure, the second and third terms are
key for forming Dirac cones. The fourth and last term, i.e. Eq. (28),
mathematically signifies the breakage of inversion symmetry for
non-zero values of ϑ , as evident from its association with σ3. The
latter is, in addition, essential for opening a frequency bandgap
around the central frequency Ωs and, as a result, lifts the de-
generacy at Dirac cones as will be elaborated in the upcoming
section.

2.2.3. Dispersion relation and bandgap width
The dispersion relation can be derived from the eigenvalue

problem in Eq. (22) via direct computation of |H − Ω2I| = 0:

(
Ω2

− Ω2
s

)2
− ϑ2

− |ε|2 = 0 (29)

Each of Eq. (29) solutions dictate the dispersion surfaces, namely
the acoustical Ω− and optical Ω+, surfaces, and their explicit
forms (after expanding the term |ε|2) are expressed as:

Ω± =

√Ω2
s ±

√ϑ2 + 1 + 4 cos
(qy
2

)[
cos

(√
3
2

qx

)
+ cos

(qy
2

)]

(30)

Setting ϑ to zero and shifting the frequencies by Ωs recovers
the typical dispersion surfaces of conventional graphene with six
Dirac cones at the corners of the Brillouin zone, given that the
inversion symmetry of the lattice is preserved. It is important
to emphasize that the dispersion relation is not influenced by
the change in the basis introduced in Eq. (14) and an identical
result can be obtained by simply deriving the determinant of the
dynamic stiffness matrix Dc = Kc − ω2Mc and setting it to zero.

For the considered hexagonal lattice, the coordinates of IBZ
vertices (shown in the inset of Fig. 1C) are written as: Γ = (0, 0),
M =

(
2π
√
3
, 0
)
and K =

(
2π
√
3
, 2π

3

)
, where the centers of the Dirac

cones are located at the K (K′) points. For ϑ ̸= 0, Dirac cone
degeneracies at the K (K′) points are lifted, and a bandgap opens
with lower and upper limits, Ωl and Ωu:

Ωu,l =

√
Ω2

s ± |ϑ | (31)

which yields a bandgap width

∆Ω = Ωu − Ωl =

√
2
(

Ω2
s −

√
Ω4

s − ϑ2

)
(32)

The grounded springs, in addition, induce a zero-frequency
bandgap starting at Ω = 0, as its name implies, and ending at

Ωz =

√
Ω2

s −
√

ϑ2 + 9, as derived from Ω− in Eq. (30) at the
Γ point. The second solution Ω+ at the Γ point, on the other

hand, defines the cutoff frequency Ωc =

√
Ω2

s +
√

ϑ2 + 9 of
the discrete lattice and represents the opening frequency of an
unbounded stop-band.

All in all, changing the sign of ϑ neither influences the bandgap
width ∆Ω nor the overall shape of dispersion surfaces, as evident
from Eqs. (30) through (32). In addition, one type of modulation
in a hexagonal lattice, either a mass-only or a stiffness-only
modulation, suffices for opening a frequency bandgap (regard-
less of the stiffness ratio κ) and guarantees a finite width of
the bandgap splitting the dispersion surfaces, i.e. ∆Ω = 0. In
contrast, having two types of modulation simultaneously does not
always guarantee bandgap emergence. The latter follows from ϑ

expression in Eq. (19) which implies that specific combinations
of the parameters µ, γ and κ can yield ϑ = 0, interestingly with
the presence of elastic and inertial modulations (i.e. µ ̸= 0 and

γ ̸= 0). For a given value of κ , it is straightforward to establish
that the linear equation

γ =
3 + κ

κ
µ (33)

forces the bandgap to close and, consequently, defines the critical
condition for the topological transition.

2.2.4. Berry curvature and Valley Chern number
Dispersion relation analyses presented in Section 2.2.3 rep-

resent the eigenvalues describing the dynamics of the unit cell.
Next, we turn our attention to the associated eigenvectors of the
system dynamics, which dictates the Berry curvature and Valley
Chern number [24]. Upon plugging in the analytical eigenvalues
of the Hamiltonian, and with a few symbolic manipulations, the
eigenvectors are:

x± =
1

√
2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
ε∗

|ε|

(
1 ±

ϑ

|λ|

)
∓

√
ε

|ε|

(
1 ∓

ϑ

|λ|

)
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (34)

such that xT
±
x± = 1 and |λ| =

⏐⏐Ω2
±

− Ω2
s

⏐⏐ =

√
|ε|2 + ϑ2 is a

shifted eigenvalue. The derived eigenvectors in Eq. (34) further
evince the independence of the band structure topology on the
term Ω2

s as subsequent derivations of the Berry curvature is
primarily based on such eigenvectors. For a discrete lattice with
two degrees of freedom, the Berry curvature F (q) is reduced to
a single term for each of the dispersion bands, such that [21]

F± (q) =
i(

ω2
+ − ω2

−

)2 [[uT
∓

∂Kc

∂qx
u±uT

±

∂Kc

∂qy
u∓

]
− c.c.

]
(35)

for an eigenvalue problem of the form ω2
±
Mcu± = Kcu±, with

a mass-normalized eigenvector u±, i.e. uT
±
Mcu± = 1. Note here

that c.c. denotes the complex conjugate. Based on the derivations
in Section 2.2.2, it is straightforward to establish that Eq. (35) is
equivalent to evaluating:

F± (q) =
i

4|λ|
2

[[
xT

∓

∂H

∂qx
x±xT±

∂H

∂qy
x∓

]
− c.c.

]
(36)

in accordance with the eigenvalue problem in Eq. (22). Perform-
ing lengthy, albeit straightforward, symbolic manipulations, the
Berry curvature boils down to a concise expression (Details are
in Supplementary Material Note 1):

F±(q) =
∓

√
3ϑ sin

(
qy
)

4
√(

ϑ2 + |ε|2
)3 (37)

To obtain the Valley Chern number Cv , we linearize our Hamil-
tonian in the vicinity of the K (K′) point based on perturbed values
of the wavenumbers ∆qx and ∆qy. Following a multivariable
Taylor expansion of the Hamiltonian around Dirac cones [37], the
first-order correction linear term is:

∆H = ϑσ3 + ν(τ∆qyσ1 − ∆qxσ2) (38)

where ν =

√
3
2 and the variable τ = ±1 is to distinguish between

K and K′ points, respectively. This linearized Hamiltonian ∆H has
been shown to have an approximated Berry curvature near K and
K′ points of the form [38]:

F̂±(∆qx, ∆qy) = ∓
τϑν2

2
√(

ϑ2 + ν2∆q2
)3 (39)
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where ∆q =

√
∆q2x + ∆q2y . Finally, the Valley Chern number Cv

is evaluated via the following integral definition

Cv =
1
2π

∫∫
F̂±(∆qx, ∆qy)d∆qxd∆qy (40)

which, for small values of ϑ , converges to [38]:

C±

v = ∓
1
2
τsgn[ϑ] (41)

However, as ϑ increases, Cv is expected to move away from
its theoretical value and start losing its quantization as ∓

1
2 ,

which is a direct consequence of the Berry curvature being not
strongly localized [39,40]. Moreover, numerically obtained Cv

from complex structural models may also lack such a quanti-
zation, understandably due to numerical approximations [24].
Nonetheless, theoretical values of Cv can be regarded as reference
values for obtaining the number of localized in-gap modes at an
interface merging two topologically distinct configurations. For
instance, an interface between two lattices with ϑ > 0 and ϑ < 0
should exhibit a single in-gap mode, which can be calculated via
|Cv (ϑ > 0) − Cv (ϑ < 0)| = 1 [39,40].

2.2.5. Numerical example
Fig. 2 shows a comprehensive numerical example of the unit

cell analyses with the mass and stiffness contrast parameters
being µ = γ = ±0.5 and κ = 1. These combinations of
values provide tuning parameters of ϑ = ∓

√
3. In Fig. 2A(i),

the Berry curvature and dispersion diagram, corresponding to
the first scenario ϑ = −

√
3, are depicted, where the Berry

curvature for the second mode at point K′ and K, respectively,
have negative and positive signs. Meanwhile, the theoretical Val-
ley Chern numbers Cv at the K point for the lower and upper
limits of the frequency bandgaps are −

1
2 and +

1
2 , respectively.

As we transition from ϑ = −
√
3 to its positive counterpart

following the line of µ = γ (shown in Fig. 2B), the topological
transition occurs at µ = γ = 0 where the tuning parameter ϑ

is zeroed out and the frequency bandgap closes as a consequence
(Fig. 2A(ii)). Passing the threshold at the transition line invokes
the Berry curvature to switching signs, simultaneously with Cv ,
as illustrated in Fig. 2A(iii). The dispersion relations for ϑ = ±

√
3

have no apparent difference, although their band topologies are
distinct as evident from the sign change in their topological in-
variant, the Valley Chern number. This is also emphasized by the
band inversion phenomenon that occurs alongside the topological
transition as seen in Fig. 2C, which cannot be perturbed as long
as the bandgap remains open.

Revisiting Fig. 2B, it is clearly observed that an appropriate
adjustment to the stiffness contrast γ , while keeping a constant
µ, is capable of closing the bandgap when the condition γ = 4µ
(for the case of κ = 1) is met. As a case in point, if we start from
µ = γ = 0.2 (ϑ < 0), increasing γ until 0.8 closes the bandgap
and the tuning parameter ϑ is zeroed out, while it changes ϑ

sign when γ > 0.8 and the bandgap subsequently opens. Such
an interesting behavior might be accomplished on demand by
incorporating tunable active stiffness elements (e.g. piezoelectric
materials [10,41]) in lattice’s elastic foundations.

2.3. Dynamics of honeycomb structures with waveguides

2.3.1. Interface analysis
To design a topologically protected waveguide, we first carry

out eigenfrequency analysis for an interface created by merg-
ing two systems with opposite signs of ϑ (and Cv), to attain
a localized mode at such an interface. Hence, we construct a
one-dimensional finite chain of coupled masses in a periodic
manner, with the periodicity order intentionally flipped at the

middle interface. The second spatial direction is emulated by
imposing a Bloch wave solution on the orthogonal direction of
the chain (Related mathematical formulation is presented in Sup-
plementary Material Note 2). The results of the simulations, with
identical parameters used in Fig. 2A, are shown in Fig. 3. Here,
two interface types are presented: the first interface type starts
with ϑ > 0 whilst the second type starts with ϑ < 0; both
of which switch the sign of ϑ midway of the chain. The central
observation in Fig. 3 is the emergence of a single interface in-
gap mode for both types of interfaces (presented via the orange
solid lines), which is vital for designing topological waveguides.
Changing ϑ sign, however, shifts the frequency range of such
interface modes within the bandgap, which will be further em-
phasized in the finite system simulations. It is noteworthy that
an additional mode (shown in blue line) exists within the stop-
band frequencies, i.e. Ω > Ωc , only for the first interface type,
where the second interface type lacks such a mode.

2.3.2. Examples of robust waveguide
The performed interface analysis in the previous section gives

an insight into the design of waveguides, especially their op-
erational frequency ranges. Here, we investigate four types of
waveguides in a honeycomb structure with a prescribed finite
number of masses, which are graphically depicted in Fig. 4A. For
ease of reference, we assign the letters I, V, L, and Z, respectively
to these four waveguides, which are inspired from their geomet-
rical shape. All honeycomb structures consist of five masses on
each of its sides (ns = 5) and a total number of degrees of
freedom of nt = 6n2

s = 150 (See Supplementary Material Note
3). Starting with the first interface type, i.e. ϑ < 0 and ϑ > 0, as
in Fig. 4B, all waveguides with their diverse geometrical shapes
greatly confine the wave propagation along its trajectory with
minimal wave penetration around it if excited within a bandgap
frequency (shown here for a frequency of Ω = 2). Identical
waveguide shapes formed from the second interface type (i.e. re-
versed signs of ϑ) qualitatively resemble that of the first, albeit
with a slightly different operational range of frequencies (For
instance, an excitation frequency of Ω = 1.8 as in Fig. 4C).

What dictates the operational frequency range, besides the
requirement of being within the bandgap, is the natural frequen-
cies distribution of the dynamical structure under consideration.
Systematic eigenfrequency analysis for all honeycomb structures
in Fig. 4 is presented in Fig. 5, where the mode number is
plotted against the value of its normalized natural frequency. As
anticipated, the excitation frequencies in all simulations in Fig. 4B
and C lie within the location of natural frequencies pertaining to
interface modes, which are shown as orange dots in Fig. 5A and B,
respectively. In addition, the bulk modes depicted as black circles
in Fig. 5 are in an excellent agreement with the frequency ranges
of both dispersion branches and interface analysis (Figs. 2 and
3, respectively). As predicted in the interface analysis in Fig. 3A
for the first interface type, the modes emerging in the stop-band
region Ω > Ωc are also found in the finite honeycomb structural
dynamics, as clearly seen in all cases in Fig. 5A. However, such
modes are not always guaranteed and vary based on the system
parameters (See Supplementary Material Note 4).

Next, we shall demonstrate the robustness of the designed
waveguides in Fig. 4. As an example, we simulate the interface
Z depicted in Fig. 4A after intentional alteration in the waveg-
uide’s elastic foundation. The provoked defects along the path are
created by removing the elastic supports in designated places,
shown as red dots in Fig. 6A. Performing the simulation at an
identical excitation frequency to that in Fig. 4B, very negligible
changes in the waveguide dynamics relative to that in Fig. 4B are
observed (whether the defects are small or large in number as
seen in Fig. 6B). Additionally, the localization of the mode at the
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Fig. 2. (A) Representative dispersion diagrams of the unit cell in Fig. 1C with (i) negative, (ii) zero and (iii) positive tuning parameter ϑ . The sign of the valley
Chern number Cv changes in association with the Berry curvature, which is also shown in the left panels of subfigures (i) and (iii). (B) The condition of topological
transition and the sign of the tuning parameter ϑ over a swept range of mass and stiffness contrasts. (C) The evolution of frequency bandgap limits with varying
the tuning parameter ϑ along the line γ = µ shown in subfigure B.

Fig. 3. Eigenfrequency analysis of a supercell comprised of a finite number of masses with the lattice starting with negative (A) and positive (B) ϑ , with an absolute
value of |ϑ | =

√
3. The interface splits the periodic chain in half, where the sign of the tuning parameter flips. The structure is assumed infinite in the orthogonal

direction of the extended chain by applying the Bloch wave solution with a non-dimensional wavenumber q. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

interface is maintained as originally designed, which is clearly
seen from the simulation contours in Fig. 6B. This robustness
remains intact as long as the defects are not severe enough to
close the bandgap and result in topological transition.

2.3.3. Waveguide design with in-homogenous modulations
The generality of the presented analysis extends beyond the

design of waveguide via merging two identical diatomic lattice
structures with flipped periodicity order, as demonstrated in the

numerical simulations in Section 2.3.2. Based on Eq. (19), the
parameter ϑ can be non-zero with negative or positive signs
without the need for modulating both masses and stiffnesses
(i.e. with either of the mass or stiffness contrasts being zero). The
question remains, however, whether two systems with different
types of modulations can still allow topological properties to
manifest themselves.

Here, we first plot the dispersion diagram for a mass and stiff-
ness modulations with comparable bandgap width and frequency
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Fig. 4. (A) Schematics of four waveguide designs: I, V, L, and Z, which are highlighted by the orange-colored masses. The sign of the tuning parameter ϑ switches
upon passing through the interface. (B, C) Numerical analysis of the honeycomb structure for excitation at one end of the interface as shown in (A). The first set of
cases in (B) has ϑ < 0 at the left portion of the structure, while the second set in (C) has ϑ > 0, with excitation frequencies of Ω = 2 and Ω = 1.8, respectively. A
black background is added in all schematics for better visualization of the results. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

range, and the result is shown in Fig. 7A. The parameters used in
these two examples are (i) γ = 0 and µ = 0.25 for the first case,
and (ii) µ = 0 and γ = 1 for the second case, while the stiffness
ratio κ = 1 remains unchanged as in previous simulations. These
choices of parameter combinations result in ϑ being negative
and positive, respectively. As expected, the occurrence of band
inversion is evident as seen from the eigenmodes in the insets.
Performing the interface analysis reveals that in-gap interface
mode only appears for the cases of µ and γ having identical signs,
corresponding to a change in the sign of the tuning parameter ϑ ,
while vanishes otherwise (Fig. 7B). Furthermore, we re-simulate
the Z-interface presented in Fig. 4 but with the interface now
separating two modulation types rather than only re-ordering the
masses and springs pattern with exact dispersion diagrams. The
results are shown in Fig. 7C and, as expected, are in an excellent
agreement with the simulations in Fig. 4 for the case of γ and
µ being positive. The topological interface becomes ineffective
and does not allow waves to propagate within the bandgap if,
for instance, the spring contrast γ changes its sign (i.e. the order

of the springs is flipped), as it ultimately results in an identi-
cal sign of ϑ throughout the honeycomb structure; this further
emphasizes the role of springs foundation in controlling QVHE.
Additional analyses pertaining to in-homogenous waveguiding
are presented in Supplementary Material Note 5.

3. Conclusions

In summary, we present a generalized theoretical framework
of the Quantum Valley Hall Effect (QVHE) in hexagonal lattices
supported by a periodic elastic foundation. It has been shown that
a periodic modulation of the elastic foundation suffices to break
the inversion symmetry of the lattice, which is a requirement for
inducing QVHE. Modulations in the lattice’s lumped masses, in
conjunction with the elastic foundation, has also been shown to
be capable of inducing QVHE, providing that an effective tuning
parameter ϑ combining both modulation effects has a non-zero
value. Interestingly, if the system is modulated by mass only, a
proper modulation of the elastic foundation can nullify the QVHE
and closes the frequency bandgap consequently. The latter could
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Fig. 5. (A, B) The natural frequencies of the honeycomb structure in Fig. 4B and C, where the subfigures i through iv represent the cases of I, V, L, and Z shaped
waveguides, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Robustness test of the Z shaped waveguide: (A) Defects in multiple places
are imposed in the structure and compared to the nominal waveguide design
without defects (Fig. 4). (B) The frequency response at Ω = 2 of the lattice
structure for all cases, showing a negligible difference in their displacement
profile. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

be of interest from a practical standpoint of view, owing to the
fact that actively modulating stiffness has been more successfully
and widely achieved in the domain of periodic structures (For in-
stance, piezoelectric materials [42], magnetoactive materials [5],
and thermo-responsive material [43]). Furthermore, the proposed
design method may be validated experimentally by incorporating
such smart materials with on-demand modulation of supporting
elastic foundation for potential tunable engineering applications.

Creating a waveguide via merging two topologically distinct
lattices guarantees an interface mode at their intersection, which
has been emphasized by numerical simulations of several shapes
of waveguide trajectories. The robustness of such topologically
protected waveguides has been further confirmed by deliberately
placing defects along their paths. Given the generality of the
proposed analysis, a topologically protected interface can also be
created by two different types of modulations (i.e. mass-only and
stiffness-only) as along as a different sign of the tuning parameter
ϑ is maintained.

The analysis presented in this effort epitomized an alternative
design mechanism for QVHE, which relies heavily on the modula-
tion of the supporting elastic foundation. That is, having an elastic
foundation mitigates the need for altering the design of the main
structure, as such structural modifications are no longer neces-
sary to tune interesting properties such as the QVHE. Despite
that the presented results are demonstrated for lumped masses
with massless string elements; the concept remains general and
can be further extended to more complex geometries incorpo-
rating continuous elastic structures. Finally, this new paradigm
may also be augmented with existing paradigms for initiating
QVHE, including placement of unequal masses/resonators on the
hexagonal lattice corners [20,21] and deliberate adjustments of
structural geometry [22,35].
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Fig. 7. (A) Dispersion diagrams for two cases of unit cells: (i) no stiffness contrast (γ = 0) and a positive mass contrast µ > 0 (i.e. ϑ < 0) and (ii) no mass contrast
(µ = 0) and a positive stiffness contrast γ > 0 (i.e. ϑ > 0). The insets highlight the mode shapes at the edges of the bandgap, where band inversion between
the two cases is observed. (B) Interface analysis of a supercell with different modulation types. Two cases for the signs of µ and γ are considered here: (i) both
positive and (ii) positive and negative, where the interface mode arises only in the case of matching signs. (C) Illustrative schematic of a honeycomb structure with
an in-homogenous modulation and the corresponding numerical analysis for an excitation frequency of ω = 2 at one end of a Z-type interface. A working interface
is observed only when both µ and γ being positive. A black background is added for better visualization of the displacement contour.
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Note 1 Analytical Derivation of Berry Curvature 

In this note, we provide a detailed derivation for the exact analytical form of Berry Curvature, 

which can be derived from the following expression: 

 
ℱ 𝒒

𝐢
4|𝜆|

𝐱∓
𝐓 𝜕𝓗

𝜕𝑞
𝐱 𝐱𝐓 𝜕𝓗

𝜕𝑞
𝐱∓ 𝒄. 𝒄.  (1) 

We first express the eigenvector of the unit-cell’s Hamiltonian as: 

 
𝐱

1

√2

𝑒 𝑥

∓𝑒 𝑥∓

 
(2) 

where 𝜙 arg 𝜀  and  

 
𝑥 1

𝜗
|𝜆|

 
(3) 

Next, we evaluate the derivatives of the Hamiltonian (Equation (18) in the main text) which have 

the following explicit forms: 

 𝜕𝓗
𝜕𝑞

i√3 cos
𝑞
2

0 𝑧∗

𝑧 0  
(4) 

 
𝜕𝓗
𝜕𝑞

⎣
⎢
⎢
⎢
⎡ 0

𝜕𝜀∗

𝜕𝑞
𝜕𝜀

𝜕𝑞
0

⎦
⎥
⎥
⎥
⎤

sin
𝑞
2

0 𝑧∗

𝑧 0  

(5) 

where 𝑧 𝑒
√

 is introduced for mathematical convenience. Substituting back into the term 

between brackets in Equation (1) yields the following equation: 

 
𝐱∓

𝐓  
𝜕𝓗
𝜕𝑞

 𝐱 𝐱𝐓  
𝜕𝓗
𝜕𝑞

 𝐱∓

i√3
4

cos
𝑞
2

sin
𝑞
2

𝑧 𝑒 𝑥∓ 𝑧∗𝑒 𝑥 𝑧 𝑒 𝑥

𝑧∗𝑒 𝑥∓  

(6) 

which, after few mathematical manipulations, reduces to: 
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𝐱∓

𝐓  
𝜕𝓗
𝜕𝑞

 𝐱 𝐱𝐓 𝜕𝓗
𝜕𝑞

 𝐱∓
i√3

8
sin 𝑞 𝑥∓𝑥 𝑧 𝑒 𝑧∗ 𝑒 𝑥∓ 𝑥  

(7) 

Making use of 𝜀 |𝜀|𝑒  and the following derived expressions: 𝑥∓ 𝑥 2, 𝑥 𝑥∓

2
| |

 and 𝑥∓𝑥
| |

| |
, the above expression boils down to: 

 
𝐱∓

𝐓  
𝜕𝓗
𝜕𝑞

 𝐱 𝐱𝐓  
𝜕𝓗
𝜕𝑞

 𝐱∓
i√3

8
sin 𝑞

1
|𝜆|

𝑧 𝜀∗ 𝑧∗ 𝜀 4
𝜗

|𝜆|
 

(8) 

Computing the complex conjugate of Equation (8) and taking the difference of the conjugate pair, 

we obtain 

 
𝐱∓

𝐓  
𝜕𝓗
𝜕𝑞

 𝐱 𝐱𝐓  
𝜕𝓗
𝜕𝑞

 𝐱∓ 𝐱∓
𝐓 𝜕𝓗

𝜕𝑞
𝐱 𝐱𝐓 𝜕𝓗

𝜕𝑞
𝐱∓

∗

i√3 sin 𝑞
𝜗

|𝜆|
 

(9) 

Which ultimately leads to the final form of the Berry curvature (i.e. Equation (37) in the main 

text): 

 
ℱ 𝒒

∓√3𝜗
4|𝜆|

sin 𝑞
∓√3𝜗 sin 𝑞

4 𝜗 |𝜀|
 (10) 

 

Note 2 Mathematical Formulation for a Single Strip of Hexagonal Lattice 

For the strip analysis, we start by considering a one-dimensional chain of the hexagonal lattice, 

where the order of periodicity is flipped midway. We shall next apply a Bloch wave solution on 

the orthogonal direction of the chain’s periodicity to emulate an interface extended in the second 

spatial direction. As such, the dynamics of a strip with a size of 2𝑛 is described by: 

 𝐌𝐈𝐳 𝑡 𝐊𝐈 𝑞 𝐳 𝑡 𝟎 (11) 

where 

 
𝐌𝐈 𝑚

𝐈 𝜇𝐕
𝐈 𝜇𝐕

 
(12) 

 

 𝐊𝐈 𝑞 𝑘𝜅
𝐈 𝛾𝐕 𝟎

𝟎 𝐈 𝛾𝐕 𝑘𝚿𝐈 𝑞  

 

(13) 
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 𝚿𝐈 𝑞

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

3 1 e 𝐢

1 e𝐢 3 1
1 3 1 e 𝐢

1 e𝐢 ⋱ ⋱
⋱ ⋱ ⋱

⋱ ⋱ 1
1 3 1 e 𝐢

1 e𝐢 3 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 
(14) 

 

The unit matrix 𝐈  and diagonal matrix 𝐕 are of size 𝑛 𝑛, where the latter has the following 

definition: 

 𝑉  
1, 𝐦𝐨𝐝 𝑖, 2 1
1, 𝐦𝐨𝐝 𝑖, 2 0

 
(15) 

Solving for the eigenvalues over a complete cycle of the wavenumber 𝑞 ∈ 𝜋, 𝜋  produces a set 

of eigenpairs, which can be categorized (based on relevant dispersion analysis) as bulk or interface 

modes depending on their frequency range.  

 

Note 3 Equations of Motion of Honeycomb Structures 

For the numerical simulation of waveguides, we construct a finite lattice with a honeycomb 

structural shape (Figure S1A) to validate the predictions obtained from the unit-cell’s dispersion 

diagrams and demonstrate the emergence of waveguides. The honeycomb structure consists of a 

total number of masses 𝑛  and the masses on the sides are fixed along the boundaries via springs 

𝑘. Due to the honeycomb structural shape, the total number of masses can be represented as a 

function of the number of masses on the sides, denoted here as 𝑛 . Starting from one of the sides 

and propagating towards its opposite peer, the total number of the masses is expressed via a simple 

formula: 

 𝑛 6𝑛  (16) 

Which is graphically illustrated via several values of  𝑛  in Figure S1B. Generally, the equations 

of motion of a honeycomb lattice can be presented in a compact matrix notation as follows: 

 𝐌𝐠𝐳 𝑡 𝐊𝐠𝐳 𝑡 𝐟 𝑡  (17) 
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Where  

 𝐳 𝑡 𝑧 𝑡 𝑧 𝑡 ⋯ 𝑧 𝑡  (18) 

is the displacement vector (the degrees of freedom ordering is shown in Figure S1A) and 𝐟 𝑡  is 

the forcing vector. The global stiffness matrix 𝐊𝐠 constitutes of two parts: the main structure and 

elastic foundation stiffness matrices, 𝐊  and 𝐊 , respectively, and the addition of which provides 

the global stiffness matrix, i.e. 𝐊𝐠 𝐊 𝐊 . The elastic foundation’s stiffness matrix is a 

diagonal matrix and can be expressed as: 

 𝐊 𝐝𝐢𝐚𝐠 𝑘 , 𝑘 , … , 𝑘  (19) 

where the spring constants 𝑘  through 𝑘  depend on the design of the elastic waveguide. The 

stiffness matrix of the main structure, on the other hand, is given by a block tridiagonal matrix: 

 

𝐊 𝑘

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝚿 𝐒
𝐒𝐓 𝚿 𝐒

𝐒𝐓 ⋱ ⋱
⋱ ⋱ 𝐒

𝐒𝐓 𝚿 𝐒

𝐒 𝚿 𝐒𝐓

𝐒 𝚿 𝐒𝐓

𝐒 ⋱ ⋱

⋱ ⋱ 𝐒𝐓

𝐒 𝚿 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

  (20) 

Where 𝚿  is an 𝑁 𝑁  tridiagonal matrix, where 𝑁 2 𝑛 𝑟 1, 𝑟 1,2, … , 𝑛  and its 

entries 𝛹  are defined as: 

 
𝛹  

3, 𝑖 𝑗
1, |𝑖 𝑗| 1
0, |𝑖 𝑗| 1,0

 
(21) 

The off-diagonal submatrix 𝐒  in Equation (20) is of size 𝑁 𝑁  and given by: 

 𝐒 𝟎 𝐒 𝟎  (22) 

where 𝟎 is a single column of zeros and 𝐒 is a square diagonal matrix of size 𝑁 𝑁  with the 

following entries:  
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𝑆  

1, 𝐦𝐨𝐝 𝑖, 2 1
0, 𝐦𝐨𝐝 𝑖, 2 0

 
(23)

such that 𝐦𝐨𝐝 ⋅  is the modulo function. Finally, the global mass matrix 𝐌𝐠 is a diagonal matrix 

of the form: 

 𝐌𝐠 𝐝𝐢𝐚𝐠 𝑚 , 𝑚 , … , 𝑚  (24) 

and the mass values 𝑚  through 𝑚  depend on the structure’s waveguide design in analogy to the 

elastic foundation stiffness matrix in Equation (19). If the system is perfectly periodic (i.e. a regular 

honeycomb structure with no waveguide), then the mass matrix follows a periodic pattern: 

 𝐌𝐠 𝑚𝐈 𝑚

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜇𝐕

⋱
𝜇𝐕

𝜇𝐕
⋱

𝜇𝐕 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 (25) 

where 𝐈  is a unit matrix of size 𝑛 𝑛  and 𝐕  is an 𝑁 𝑁  diagonal matrix and its definition 

follows Equation (15). Similarly, the stiffness matrix for the elastic foundation can be expressed 

using the periodic form in Equations (25) and (15): 

 𝐊 𝑘𝜅𝐈 𝑘𝜅

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝛾𝐕

⋱
𝛾𝐕

𝛾𝐕
⋱

𝛾𝐕 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 (26) 

 

Note 4 Effect of Design Parameters on Dispersion and Topological Aspects 

Tuning parameter 𝜗 and central bandgap frequency Ω  (Given by Equations (19) and (20) in the 

main text) symbolize the main two variables for dictating the wave dispersion characteristics of 

the hexagonal lattice under consideration. These two variables are functions of the mass and 

stiffness contrast: 𝜇 and 𝛾, respectively, as well as the stiffness ratio 𝜅. Starting with the tuning 

parameter 𝜗, for a given stiffness ratio 𝜅, it can assume negative or positive values depending on 

the signs of  𝜇 and 𝛾, which can be summarized in Table 1. The central bandgap frequency is also 
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dependent on the signs of 𝜇 and 𝛾, specifically on their multiplication. Figure S2 A(B) depicts 

several combinations of the 𝜇 (𝛾) and their effect on the tuning parameter and central frequency 

for a swept range of 𝛾 (𝜇). It is observed that as the value of 𝜇 (𝛾) increases, the corresponding 

value of 𝜗 monotonically decreases (increases), until it changes its sign. The central bandgap 

frequency, on the other hand, has a symmetrical profile for a change in the sign of 𝜇 and 𝛾 about 

its zero value 𝜇 0 (𝛾 0) in both cases. 

Table 1. Combinations of the mass and stiffness contrasts and their influence on the tuning 

parameter ϑ. 

 
 

𝛾 𝜇 Comments 

1   𝜗 0 when 𝛾 𝜇 and vice versa

2   𝜗 0 for all values of 𝜇 and 𝛾 

3   𝜗 0 for all values of 𝜇 and 𝛾 

4   𝜗 0 when 𝛾 𝜇 and vice versa

 

The system parameters have a further impact on the distribution of the natural frequencies on a 

honeycomb structure, specifically the modes appear inside the bandgaps and stop-band. If we 

consider the interface I as a case in point, a binary search for natural frequencies, depicted in Figure 

S3A(i) and A(iii), in the zero-frequency bandgap (Ω Ω ), and the stop-band (Ω Ω ), 

surprisingly reveals that the emergence of natural frequencies within the aforementioned regions 

does not necessarily follow the topological transition line (𝛾 4𝜇 for this case), and heavily rely 

on the inertial and elastic parameters (𝜇 and 𝛾, respectively). Nonetheless, an interface mode 

within the main bandgap in the range Ω Ω Ω  is unequivocally certain for all non-zero values 

of 𝜗 (Figure S3A(ii)). 

 

Note 5 Additional Analysis of In-Homogenous Waveguide Design 

Figure S4 and Figure S5 represent additional analysis of the strip analysis of in-homogenous 
interface and different shapes of waveguiding. 
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Figure S1. Finite honeycomb structure illustrative schematics: (A) degrees of freedom numbering 

(rotated 30° clockwise for better visualization) and (B) total number of degrees of freedom 𝑛  

calculations based on the number of mass on the honeycomb sides 𝑛 .  
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Figure S2 (A,B) Effect of changing the mass (stiffness) contrast over a swept range of stiffness 

(mass) contrast on the tuning parameter and bandgap central frequency. 
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Figure S3. (A) Binary search of natural frequencies as a function of the mass and stiffness 

contrasts (i) inside the zero-frequency bandgap (i.e. 𝛺 𝛺 ), (ii) bulk bandgap (i.e.  𝛺 𝛺

𝛺 ), (iii) and above the cutoff frequency (i.e. 𝛺 𝛺 ). (B) A typical dispersion diagram for 

hexagonal lattice shown as a key to interpret subfigure A and illustrates the location of frequencies 

related to the natural frequencies search. 
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Figure S4. Eigenfrequency analysis of a supercell comprised of a finite number of masses with 

different modulation types, namely mass and stiffness modulations, about a defined interface. Four 

cases for the signs of 𝜇 and 𝛾 are considered here: (A) both positive, (B) both negative, (C) 

positive negative, and (D) negative positive. Edge modes within the bandgap range arise only with 

cases of matching signs. 
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Figure S5. (A) Illustrative schematics of in-homogenous modulation in a honeycomb structure. 

Numerical analysis of the structures in (A) for an excitation frequency of 𝜔 2 at one end of the 

different interfaces with (B) mass contrast and stiffness contrast being positive, resulting in a 

working interface. The mass and stiffness modulations in subfigure (C) possess different signs (i.e. 

𝜇𝛾 0), rendering the interface trivial. A black background is added in subfigures B and C for 

better visualization of the results.  
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