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Abstract

In this paper, we study the vehicle routing problem with dynamic customers, where a

portion of the customer requests are known in advance and the rest arrive in real time. We

propose an optimization-based look-ahead dynamic routing framework that involves request

forecasting, partial planning, and dynamic real-time routing of the �eet. This framework

has the capabilities for adjustments in response to routing environments with di�erent levels

of uncertainties. Through extensive numeral simulations, we exam its performance in routing

environments with various levels of uncertainties. We demonstrate the e�ciency and robustness

of the proposed solution by benchmarking against two other routing strategies. This paper �lls

the gap in the literature on studying the relationship between the level of route planning in

the solution approach and the quality of the solution under various system conditions.

Key Words: Dynamic vehicle routing problem, Look-ahead dynamic routing, Re-optimization,

Partial routing, Waiting time adjustment

1 Introduction

Many industries deal with the task of transporting goods or delivering services in a timely, reliable,

and cost-e�ective manner, including manufacturing, food, e-commerce, public transit, etc. Logistics

has become the backbone that enables the productivity and mobility of these industries [16]. Indeed,

1



growth in the transportation sector recently has been on par with the growth in the Gross Domestic

Product (GDP) in the United States. According to statistics from the 2013 National Transportation

Statistics report [17], expenditure on transportation activities amounted to 1,426 billion dollars in

2012, representing nearly 9 percent of the total US GDP. The transportation industry, like many

others, has undergone signi�cant changes in the last decade through the introduction of information

technologies. Examples include vehicle tracking, such as global-positioning-systems (GPS), wireless

communication via satellite, cellular and paging networks, which enable 2-way communication with

mobile �eets, and real-time information services that allow for dynamic estimation of travel times.

Whereas in the past it was di�cult for a logistics company to control or route vehicles once they

left the depot, these technologies make accurate dynamic real-time routing a very real possibility.

However, most of the developed techniques and models for planning, routing and scheduling

assume �known� static data as their input, and have yet to take full advantage of the technological

advances mentioned above. For instance, in the Vehicle Routing Problem (VRP) the customer

demands, travel costs, and travel times are known in advance. In this case, the fundamental problem

is to determine the optimal route that minimizes a certain objective such as �eet size and total

travel distance. The built-in assumption of these approaches is that there will be small deviations

on the realization of the demand and travel times from the plan so that the pre-determined routes

form a basis for either the pickup or delivery schedule. In the real world, however, operations in

any transportation network contain a fairly high level of uncertainties including variable waiting

and travel times due to tra�c congestion, arrival of new service requests, cancellation of existing

requests, unknown demand sizes, etc. That is why human operators (dispatchers) still play a major

role in route planning and vehicle scheduling in the trucking industry.

The problem of routing a �eet of vehicles in real time to serve a set of customers under chang-

ing and gradually revealed information falls in the scope of the Dynamic Vehicle Routing Problem

(DVRP). The DVRP derives from the VRP when some element of the problem becomes non-

deterministic. The DVRP has emerged as an active and intense area of research, both due to

industry needs, but also due to technological advances, including map databases, location deter-

mination technology (e.g., GPS), wireless communication and mobile computing. In some highly

uncertain environments, information concerning the randomness in the problem may not be avail-

able and pre-planned optimal routes are no longer of practical use. A reactive approach must be

adopted to constantly re-route the �eet in light of newly revealed information. In other cases,
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some stochastic information on network conditions and customer requests may be obtained from

historical data. For these situations, it is widely expected that the use of information technology

in transportation systems narrows the gap between highly uncertain systems in reality and the

perfectly known static systems in theory.

As discussed above, for static systems, where the network parameters are known and �xed, the

well-established routing and scheduling algorithms lead to optimum solutions. On the other hand,

in a highly uncertain system where no stochastic information on the randomness of the problem

is available, the reactive routing approach is the only option. Therefore, there exists a gap in

the literature for situations that are in between these two extreme cases, where some stochastic

information concerning the random system is available. An ideal approach to solve these situations

should have the �exibility to adjust the level of route planning in the solution based on the level of

uncertainties in the system. To address this gap, there is a need to study the relationship between

the amount and quality of information available in the dynamic routing problem and the level of

route planning that should be implemented in order to generate an e�cient and reliable solution.

In this paper, we focus on studying a category of the dynamic vehicle routing problem with

dynamic customers. The objective of this research is to develop a routing technique that involves

partial routing and has the capabilities for adjustments in response to problems with di�erent

levels of uncertainties. We propose an optimization-based look-ahead dynamic routing framework

that employes time-e�cient heuristic algorithms. In order to tackle problems with various levels of

uncertainties, the behavior of the proposed model can be adjusted by changing multiple parameter

settings. We conduct extensive numerical simulations to �nd the desirable level of route planning

in the solution approach in response to di�erent levels of uncertainties in the problem for the best

performance. Our analysis sheds insights into how dynamic real-time routing would narrow the

gap between highly uncertain systems in reality and the perfectly known static system in theory.

This paper also �lls the gap in the literature on studying the relationship between the level of route

planning in the solution approach and the quality of the solution under various system conditions.

The rest of the paper is organized as follows. In Section 2, a literature review of the dynamic

vehicle routing problem is presented. Section 3 formally de�nes the problem and illustrates the

solution framework. Section 4 presents the experimental setup and results. We conclude in Section

5.
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2 Literature Review

The traditional vehicle routing problem (VRP) has always received signi�cant attention in the

literature ever since its �rst introduction by Dantzig and Ramser in 1959 [5]. A traditional VRP is

based on a graph, with a special node representing the depot, and the remaining nodes representing

customers. A cost matrix is de�ned on the arcs to represent the travel costs (usually proportional

to travel distance) between corresponding locations. A �eet of vehicles originally located at the

depot are routed to service the customers. The objective is to �nd a feasible routing schedule that

visits each customer exactly once with minimum total travel cost. Feasibility is often de�ned with

respect to side constraints, which may include vehicle capacity constraint, time window constraint,

service level constraint, etc.

The DVRP di�erentiates from the VRP in that some element of the problem is random, and

is not known with certainty at the time the vehicle routes must be planned. The problem arises

naturally from a broad spectrum of real-world applications, including courier routing [8, 13], service

scheduling [4, 3], Dial-a-Ride systems [7, 2, 23, 22], etc. Depending on which element or elements

of the problem become dynamic, numerous variations of the DVRP exist. For example, the set of

customers that needs to be serviced may not be known in advance. Instead, new customers may

arrive in real time throughout the planning horizon [13, 9, 23]. In some cases, the demand of a

customer may not be known when the service request is made and when routing decisions have to

be made. Instead, the actual size of the demand may only be revealed when the vehicle reaches

the customer [25, 27, 14]. The cost matrix can also be random, re�ecting random travel times

between customer locations due to varying tra�c conditions or uncertainties in operations [29, 30].

There are many other potential sources of randomness that could make a problem dynamic. The

variation of DVRP that is particularly of interest is the vehicle routing problem with dynamic

customers, where new customers arrive in real time throughout the planning horizon. In the

dynamic environment, critical problem information is revealed over time, meaning that the complete

realization of randomness is only known at the end of the planning horizon. As a consequence, the

initial solution can only be constructed based on partial information at the beginning of the planning

horizon. The set of routes must be updated (if possible) in real time as new information becomes

available. This cannot be done without the help of real-time vehicle positioning and communication

technologies. Due to recent advances in these technologies, they can now be implemented at lower

costs and at a larger scale [19]. One can refer to [12, 6, 19] for complete reviews on the recent
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DVRP literature.

Solution approaches for the DVRP can be classi�ed into three categories, namely static routing,

local dynamic routing, and look-ahead dynamic routing [4]. In the static routing approach, a priori

vehicle routes or routing policies are constructed with limited information at the beginning of the

planning horizon, before vehicles begin to travel. As new information becomes available, existing

routes adapt automatically according to pre-de�ned rules. In the local dynamic approach, route

planners react to new information by explicitly incorporating them into decision making. Thus

vehicles often need to be diverted and re-routed during the planning horizon. In the look-ahead

dynamic approach, route planners not only react to new information, but also forecast future

events and the �eet status, and explicitly use predictions to help design vehicle routes. Forecasts

are usually made based on historical information. The latter two approaches rely on real-time

vehicle positioning technologies and real-time communication systems between each vehicle and

route planners. In this paper, we propose to develop a look-ahead dynamic routing approach.

One dynamic routing technique that has received signi�cant attention in the literature is re-

optimization. The intuition behind re-optimization is to repeatedly and sequentially formulate static

vehicle routing problems based on newly revealed information throughout the planning horizon.

And solve these problems using well-studied static VRP algorithms. Depending on when static

problems are formulated and solved, this approach involves into either the periodic re-optimization

approach or the continuous re-optimization approach. In periodic re-optimization, an optimization

procedure runs at the beginning of the planning horizon to construct an initial set of vehicle routes.

Then, an optimization procedure is invoked periodically to solve the current state static problem,

whenever new problem information becomes available, or at �xed intervals of time. Such �xed

intervals are referred to as decision epochs or time slices in the literature [11, 4, 19].

The �rst periodic re-optimization technique was introduced by Psaraftis in 1980 [20]. The author

utilized a local-dynamic approach to solve the vehicle routing problem with dynamic customers. In

particular, a static VRP is formulated whenever a new customer requests service, and is solved to

optimality by a dynamic programming algorithm. This approach inevitably su�ers from the curse of

dimensionality of dynamic programming, which prevents its application to large instances. Several

streams of research follow the lead in developing periodic re-optimization frameworks embedded

with exact algorithms. Chen and Xu considered a dynamic vehicle routing problem with hard

time windows [4]. The authors assumed that the dispatcher does not have any deterministic or
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probabilistic information on the location and the size of a customer order until it arrives. A

periodic re-optimization framework embedded with a dynamic column-generation-based algorithm

was developed. The approach showed its merits when compared with insertion-based heuristics on

most problems.

Other researchers have focused on developing heuristic algorithms. Several Metaheuristics were

proposed to be combined with the periodic re-optimization framework. Montemanni et al. devel-

oped an Ant Colony System (ACS) to solve the vehicle routing problem with dynamic customers

[15]. One feature of the solution is to hold dynamic customers that arrive within a time period until

the end of that period. This limitation is certainly not desirable in situations where an immediate or

at least a timely response to customer requests is crucial. Secomandi and Margot studied a vehicle

routing problem with stochastic demands [24]. The actual demand is only known when the vehicle

arrives at the customer. The authors developed a �nite-horizon Markov Decision Process (MDP)

formulation for the single vehicle case. A partial re-optimization heuristic is proposed to solve the

MDP. The authors compared multiple heuristics to embed in the re-optimization framework. They

argued that their best approach outperforms existing heuristics.

One major limitation of the re-optimization approach lies in the fact that all optimization needs

to be performed before the decision maker can update each vehicle with its new route, potentially

causing delays in routing operations. One possible solution is to employ computationally fast

heuristic algorithms instead of exact algorithms in the re-optimization framework.

3 Problem De�nition and Solution Framework

In this section, we formulate and solve the vehicle routing problem with dynamic customer requests.

In particular, we develop a look-ahead dynamic partial routing framework that involves demand

forecasting, partial planning, dynamic real-time routing, and periodic re-optimization of the current

schedule. In this section, we �rst formally de�ne the problem and introduce the notations. We then

illustrate components of the proposed framework together with details about how vehicles are routed

dynamically based on partial routing schedules. This section concludes with a detailed explanation

of all the heuristic algorithms used in the framework.
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3.1 Problem De�nition

Suppose that the operation consists of routing a �eet of capacitated vehicles to collect shipments

from a set of customers and transport them to a central depot. The length of the planning horizon

is Tmax and can be discretized into time steps of unit length. There are N potential customers.

Each customer has a �xed location, a known demand size, a known service time window and a

service time of �xed length. The service time window speci�es the earliest and latest times when

service can be started at the corresponding customer and cannot be violated. Each customer

requests service at most once during the planning horizon. The uncertainty lies in the fact that

not all customers would request service. Some customers request service in advance (prior to the

beginning of the planning horizon), and are called advance customers. These customers must be

served. The rest of the customers are called dynamic customers, who may or may not request

service during the planning horizon. We assume that the probability a dynamic customer requests

service can be estimated from historical information. The time when a dynamic customer requests

service is called its request time. It is also the time when it becomes certain that the customer

needs to be served. Dynamic customer requests are not guaranteed to be accommodated due to

potentially insu�cient �eet capacity. The objective is two-fold: minimizing the total travel distance

of all vehicles and minimizing the number of rejected dynamic customer requests.

The following notations are used for model parameters and decision variables. Generally, i and

j are used to index customers, k to index vehicles/routes, and t to index time.

N total number of customers

AC set of advance customers

DC set of dynamic customers

di demand of customer i

si service time of customer i

ui request time of customer i

ei the earliest time that service can begin at customer i

li the latest time that service can begin at customer i

ti,j distance (minimum travel time) between location i and j

K total number of vehicles

C capacity of each vehicle

rk,t partial routing schedule for vehicle k at time t
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ni,k,t the i-th customer scheduled on vehicle k at time t

ai time of arrival at customer i

bi time of departure from customer i

n0,k,t the location from where vehicle k would start its new route if diverted at time t

a0,k,t the time when vehicle k would become available to start its new route if diverted at time t

It is assumed that all vehicles travel at unit speed. Thus, the travel time is equatable with travel

distance between corresponding locations. It is also assumed that no preemption in vehicle routes is

allowed, meaning that a vehicle cannot be diverted while en route to its current scheduled customer.

The vehicle can only be diverted after it reaches and �nishes service at its current customer. The

request time ui of dynamic customer i represents the time when it becomes certain that customer

i needs to be serviced. ui is modeled as a random variable taking values on the interval [0, ei].

It means that the customer must make the decision on whether it needs to be serviced or not

before the beginning of the its service time window. In addition, we assume that real-time two-

way communication capability is established between the central decision making unit and each

vehicle. At any point in time, the decision maker is aware of the complete �eet status including

current locations, directions, and remaining capacities. This enables dynamic real-time routing of

the vehicles.

There are two issues that are uncertain about dynamic customer requests. First, whether the

customer requests service at all during the planning horizon. Second, when will the customer

request service given that it will do so. From a historical perspective, the probability that a

customer requests service on any day can be estimated by the proportion of days that the customer

has requested service among all the days of operation. We use qi to denote this probability. For

the second issue, a distribution on request time can be estimated by the actual request times of

the customer on the days when it actually requested service. By de�nition, this distribution is

conditional on the fact that the customer requests service. Let fi(t) be the conditional probability

density function of request time ui. Recall that ui is de�ned on [0, ei], thus we have
´ ei
0
fi(t)dt =

1,∀i. Given this setup, the probability that a dynamic customer i requests service during the time

interval [t1, t2], 0 ≤ t1 ≤ t2 ≤ Tmax on any day can be calculated as

P (i requests during [t1, t2]) = P (i requests, i requests during [t1, t2]) (1)

= P (i requests during [t1, t2] | i requests) ∗ P (i requests) (2)
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=

ˆ t2

t1

fi(t)dt ∗ qi (3)

In a dynamic vehicle routing context, problem information are revealed gradually over time. In

other words, the full set of customers cannot be know until the end of the planning horizon. At any

time t in the planning horizon, only the set of advance customers and a subset of dynamic customers

who have already requested service are known. A problem consisting of only partial information

is called a partial vehicle routing problem Pt. The solution to a partial problem at time t is

called a partial solution St, which consists of a collection of partial routing schedules, St = {rk,t}

where k = 1, . . . ,K. In the dynamic context, the sequence of customers alone does not uniquely

determine an operational schedule. In addition, we need to specify the exact arrival and departure

times at each location along the route. Let ai and bi denote the arrival and departure times at

customer i respectively. A partial routing schedule for vehicle k speci�es the sequence of customers

scheduled for the vehicle, together with the arrival and departure times at each customer. rk,t =

{n1,k,t, . . . , n|rk,t|,k,t, n|rk,t|+1,k,t} where |rk,t| denotes the total number of customers scheduled on

route k at time t. n|rk,t|+1,k,t = 0,∀k, t is a dummy place holder variable representing the constraint

that all vehicles must return to the depot by the end of the planning horizon.

n0,k,t denotes the location from where vehicle k would start its new route if it was diverted at

time t. It can be loosely interpreted as the �available position� of vehicle k. At any time t, vehicle

k must be in exactly one of the following two states. State I: serving or idling at some customer i.

State II: en route to some customer i. In either case, if a new routing schedule were to be constructed

at the moment and the vehicle is diverted, the new route must start at location i (no preemption

assumption). Hence in either case, we have n0,k,t = i. In fact, during the implementation of vehicle

routes, the n0,k,t variable should be updated once the vehicle starts to travel to its next customer

based on the no preemption rule.

Similarly, a0,k,t denotes the time when vehicle k would become available to start its new route

if it were to be diverted at time t. It can be loosely interpreted as the �available time� of vehicle k.

At any time t, if vehicle k is currently servicing customer i, then a0,k,t = ai + si; if the vehicle is

idle, then a0,k,t = t; if the vehicle is traveling to service customer i, then a0,k,t = ai + si.
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3.2 Look-ahead Partial Vehicle Routing Framework

3.2.1 Customer States

At any time during the planning horizon, each customer belongs to exactly one of the following 5

customer states.

Uncon�rmed customer U(t). Customers who have yet to request service, and are not antic-

ipated to request in the near future. This is the initial state for all dynamic customers.

Con�rmed customer C(t). Customers who have requested service and are accepted, but not

yet serviced. This is the initial state for all advance customers and the state for a dynamic customer

once it requests service and is accepted.

Serviced customer S(t). Customers who have been serviced.

Rejected customer R(t). Customers who have requested service, but have been rejected due

to infeasibility in the routing schedule.

Anticipated customer A(t). Customers who have yet to request service, but are anticipated

to do so soon. The set of anticipated customers is updated at each decision epoch (Section 3.2.2).

The state of each customer changes over time. State changes are triggered by certain events in

the dynamic partial routing environment and will be introduced in the following sections.

3.2.2 Decision Epoch

Decision epochs are the key component of the re-optimization scheme. Figure 3.1 illustrates the

time dynamic of events in the system. The entire planning horizon is divided equally into a number

of time periods. The beginning of each time period is called a decision epoch. By construction, the

�rst decision epoch occurs at time 0. At each decision epoch, four solution procedures are called

sequentially to construct and solve a partial vehicle routing problem. The resulting partial routing

schedule is implemented based on pre-de�ned rules until the next decision epoch (when the partial

schedule is updated), or when the end of the planning horizon is reached.

Figure 3.2 illustrates how partial solutions are constructed at each decision epoch. In the �rst

step, a partial vehicle routing problem consisting of both con�rmed and anticipated customers is

formulated. The set of anticipated customers is constructed by a request forecast procedure. Let

forecastHorizon be an adjustable parameter representing how far we forecast into the planning

horizon. Suppose the current time is t∗ and dynamic customer i has yet to request service. We

want to calculate how likely it is for the customer to request service within the forecastHorizon.
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tTime Period

Decision Epoch

Dynamic Customer Request

Figure 3.1: Time dynamic of events

Let pi,t∗ denote this probability. Then we have

pi,t∗ = P (i requests during [t∗, t∗ + forecastHorizon] | i hasn't requested till t∗) (4)

=
P (i requests during [t∗, t∗ + forecastHorizon] , i hasn't requested till t∗)

P (i hasn't requested till t∗)
(5)

=
P (i requests during [t∗, t∗ + forecastHorizon] , i hasn't requested till t∗)

1− P (i requests during [0, t∗])
(6)

The numerator represents the joint probability of events �i requests during [t∗, t∗ + forecastHorizon]�

and �i hasn't requested till t∗�. In fact, the �rst event completely contains the second event. Given

the assumption that each dynamic customer requests service at most once during the planning

horizon, the fact that customer i requests in time interval [t∗, t∗ + forecastHorizon] implies that

the customer must have not requested prior to time t∗. Thus equation 6 can be written as

pi,t∗ =
P (i requests during [t∗, t∗ + forecastHorizon])

1− P (i requests during [0, t∗])
(7)

=

´ t∗+forecastHorizon

t∗
fi(t)dt

1−
´ t∗
0
fi(t)dt

∗ qi (8)

where the last step follows from equation 3. Given pi,t∗ for each dynamic customer i who has yet to

request service, we use a simply threshold rule to select the set of anticipated customers. Namely,

customer i is placed in the anticipated set if and only if pi,t∗ ≥ threshold, where threshold is a

tunable model parameter.

A parallel construction heuristic is implemented to construct an initial feasible solution to the

partial vehicle routing problem. Both con�rmed and anticipated customers are routed. The local

search heuristic follows to iteratively improve the initial solution. Last but not least, the hybrid

waiting time adjustment heuristic re-distributes slack time along each vehicle route to maximize

the chance of accommodating dynamic customers when they actually request service. In essence,
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a combination of push backward and push forward procedures is used to position the maximum

amount of slack time possible immediately prior to the time when the vehicle must leave for the

�rst anticipated customer on the route (if there is any). The hybrid heuristic ensures that (after

�nishing service at the previous customer) each vehicle waits for an anticipated customer to actually

request service for the maximum amount of time possible while maintaining time window feasibility

at all subsequent customers. Details of all heuristic algorithms are presented in Section 3.3.

Partial Problem Formulation

Parallel Route Construction Heuristic

Local Search Heuristic

Hybrid Waiting Time Adjustment Heuristic

Figure 3.2: Partial solution construction at decision epochs

3.2.3 Dynamic Routing

In our model, vehicles are routed dynamically in real time based on partial routing schedules and

newly revealed problem information. The schedules generated at a decision epoch are used until

the next decision epoch, when the schedules are updated. A partial routing schedule speci�es the

sequence of customers scheduled on a particular vehicle together with the arrival and departure

times at each customer. For example, the schedule may specify that vehicle k begins to travel to

customer i at some future time t∗. When time t∗ is reached, one of the following two cases must

be true. Case I: customer i is a con�rmed customer at t∗. In this case, the vehicle begins to travel

to the customer and the customer's state is updated to �serviced� and n0,k,t = i. Both updates are

consequential to the no preemption rule. Case II: customer i is an anticipated customer at t∗. Since

the customer has not requested service and the vehicle has waited for the maximum amount of time

for it to do so (Sections 3.3.3), the anticipated customer is dropped from the route and the hybrid

waiting time adjustment heuristic adjusts the waiting time for all remaining customers on the same

route. Based on the new schedule, the vehicle either remains idle at its current location (n0,k,t is

not updated) or immediately begins to travel to its next customer (n0,k,t and the customer's state

are updated similarly as in Case I).

When a dynamic customer requests service, it may or may not have a reserved time slot in the
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current schedule. The dynamic customer may have a reserved time slot because it was anticipated

and routed at the previous decision epoch. In this case, the reserved slot is con�rmed immediately

and the customer becomes a con�rmed customer. Otherwise, the customer does not have a reserved

time slot in the schedule either because the customer was not anticipated and routed or because its

time slot has expired (corresponding to case II discussed above). In this case, a cheapest insertion

heuristic is used to route the customer. If no feasible schedule can be found, the customer is rejected.

3.3 Heuristics

3.3.1 Construction Heuristic

At each decision epoch, the construction heuristic generates an initial feasible solution to the partial

vehicle routing problem consisting of both con�rmed and anticipated customers. An iterative

insertion-based heuristic that constructs all vehicle routes in parallel is implemented. This heuristic

aims to minimize both total travel distance and the number of vehicles used. At each iteration,

an impact measure is calculated to estimate the inconvenience of routing each customer at each

feasible position in the partial solution. Then the customer with the lowest impact measure is

placed at the corresponding position with minimum impact. The heuristic initiates with the set of

con�rmed customers. After all con�rmed customers are routed, the procedure continues with the

set of anticipated customers.

We have adopted the de�nition of the impact measure by Solomon and Ioannou [10, 28] as the

insertion criteria. Let impact (i, rk, nj,k) denote the impact measure of placing customer i on route

k at the position immediately prior to customer nj,k. i belongs to the set of un-routed customers

in the current iteration, 1 ≤ k ≤ K, 1 ≤ j ≤ |rk|. Note that we have omitted the time subscript

of variables rk and nj,k in this section for simplicity. impact (i, rk, nj,k) is calculated as a weighted

average of marginal travel distance and other surrogate cost measures. In particular, we have

impact (i, rk, nj,k) = αSISI (i, rk, nj,k) + αEIEI(i) + αIIII (i, rk, nj,k) (9)

where SI, EI, and II represent self-impact, external-impact, and internal-impact respectively.

αSI , αEI , and αII are external parameters representing the weight of each impact component.

αSI + αEI + αII = 1. De�nition of each impact component is presented below.

• SI (i, rk, nj,k) measures the coverage of the service time window of customer i. Let αi (nj,k)
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denote the arrival time at customer i if the customer is scheduled immediately prior to cus-

tomer nj,k on route k. The self-impact is calculated as the di�erence between the vehicle

arrival time at customer i and the beginning of the time window of customer i.

SI(i, rk, nj,k) =


max

(
ei, anj−1,k

+ snj−1,k
+ tnj−1,k,i

)
− ei ∀j > 1

max
(
ei, a0,k,t + tn0,k,t,i

)
− ei j = 1

(10)

• EI(i) measures the inconvenience caused for the remaining un-routed customers as a result

of routing customer i. Whenever we schedule a customer in the partial solution, it becomes

more di�cult to schedule other customers due to potential infeasibility in the time window

and/or vehicle capacity. The external-impact quanti�es this di�culty. Let UC denote the set

of un-routed customers in the current iteration.

EI(i) =
1

|UC| − 1

∑
j∈UC\{i}

max (lj − ei − ti,j , li − ej , ti,j) (11)

• II (i, rk, nj,k) denotes internal-impact, which is calculated as a weighted average of 3 sub-

components. The �rst sub-component c1 (i, rk, nj,k) measures the marginal travel distance

of inserting customer i. The second sub-component c2 (i, rk, nj,k) measures the maximum

amount of delay in arrival time at subsequent customers. The third measure c3 (i, rk, nj,k) is

calculated as the time gap between the earliest possible arrival time at customer i and the

beginning of the time window at customer i. This measure expresses the compatibility of

customer i with the insertion position. β1, β2 and β3 are external parameters representing the

weight of each sub-component. β1 + β2 + β3 = 1.

c1 (i, rk, nj,k) = tnj−1,k,i + ti,nj,k
− tnj−1,k,nj,k

(12)

c2 (i, rk, nj,k) = max
(
enj,k

, ai + si + ti,nj,k

)
+max

(
enj,k

, anj−1,k
+ snj−1,k

+ tnj−1,k,nj,k

)
(13)

c3 (i, rk, nj,k) = li −
(
anj−1,k

+ snj−1,k
+ tnj−1,k,i

)
(14)

II (i, rk, nj,k) = β1c1 (i, rk, nj,k) + β2c2 (i, rk, nj,k) + β3c3 (i, rk, nj,k) (15)
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3.3.2 Local Search

A Simulated Annealing (SA) algorithm embedded with well-known local search operators is devel-

oped to improve the initial partial solution at each decision epoch. These operators are widely used

to solve a variety of vehicle routing problems [18, 1, 21, 26]. In particular, one of the following 7

local search operators is randomly selected at each iteration of the Simulated Annealing algorithm.

The �rst group of methods operates on inter-route neighborhoods, meaning that two vehicle routes

are changed simultaneously. The second set of methods operates on intra-route neighborhoods,

meaning that only one vehicle route is changed.

Inter-route operators:

Crossover. One customer is randomly selected from each of the two routes. The sequence

of customers following and including the chosen customers are switched between the two original

routes to form two new routes.

Relocate. One customer is randomly selected and removed from the �rst route, and then

inserted to a random position in the second route.

Relocate2. Similar to Relocate, except that a pair of two consecutive customers is relocated

from one route to another.

Intra-route operators:

Reinsert. One customer is randomly selected and removed from one route. The customer is

then inserted to a random position on the same route that it is removed from.

Or-opt2. Similar to Reinsert, except that a pair of two consecutive customers is reinserted to

a random position on the same route that it is removed from.

Or-opt3. Similar to Reinsert, except that a sequence of three consecutive customers is rein-

serted to a random position on the same route that it is removed from.

2opt-exchange. Two customers are randomly selected from one route. The sequence of cus-

tomers between and including the two chosen customers is reversed.

In each iteration, let St and S′t denote the original and updated partial solution respectively.

Let cost (St) and cost (S
′
t) denote the corresponding total travel distance. If cost (S′t) < cost (St),

S′t is accepted as the current partial solution. Otherwise, S′t is only accepted up to a probability

determined by the acceptance rule of the simulated annealing algorithm. An exponential acceptance
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probability function is implemented in our model, which speci�es

P (St, S
′
t, T ) = p∗ ∗ exp

(
−cost (S

′
t)− cost (St)

T

)
(16)

where P (St, S
′
t, T ) represents the probability of accepting the updated partial solution S′t given the

current solution St and temperature T . T is an external variable which monotonically decreases as

the number of iterations increase. p∗ is an external parameter representing the maximum probability

of acceptance. P (St, S
′
t, T ) = p∗ if and only if cost (S′t) = cost (St).

3.3.3 Waiting Time Adjustment

In a dynamic vehicle routing environment, the design of arrival and departure times directly a�ects

the �nal total cost of a solution. Studies in the recent literature have shown that waiting can be a

useful strategy in handling dynamic customer arrivals, especially those with time windows [19]. In

this section, we �rst review two common waiting time adjustment strategies for the vehicle routing

problem with time windows, namely the Push Backward and Push Forward heuristics. We then

illustrate the hybrid waiting time adjustment heuristic we develop for the look-ahead partial routing

framework.

Push Backward. All arrival and departure times are set based on the wait-�rst strategy. That

is, when a vehicle �nishes service at its current customer and becomes idle, it should �rst wait at

its current location, and then travel to the next customer at the earliest time to ensure no waiting

time at the next customer before it could start service. Let i− and i+ denote the predecessor and

successor of customer i respectively. The Push Backward heuristic can be represented as follows.

ai = max
(
ei, ai− + si− + ti−,i

)
bi = ai+ − ti,i+

Figure 3.3 illustrates an example of the Push Backward heuristic. Let gi represent the time

when service is �nished at customer i. There are three customers. The beginning and ending of

their service time windows are labeled by a set of single and double bars respectively. Solid arcs

represent travel times, dashed arcs represent service times, and double-headed arrows show waiting

times. Suppose that the vehicle arrives at customer 1 exactly at time e1 and begins service right

away. Service is �nished at time g1. The vehicle waits at customer 1 until time b1 before traveling
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to customer 2, so that it does not arrive earlier than the service time window at customer 2. The

subsequent arrival and departure times are calculated accordingly.

... ...

te1 l1 e2 l2 e3 l3

a1
s1

g1

t12

b1 a2
s2

g2

t23

b2 a3
s3

Figure 3.3: Example I: Push backward

Push Forward. In a process quite like the reverse of the Push Backward heuristic, all arrival

and departure times are pushed towards the end of the planning horizon as much as possible.

Equivalently speaking, when a vehicle �nishes service at its current customer and becomes idle, it

should �rst wait at its current location, and then travel to the next customer at the latest time

possible, while maintaining time window feasibility at all subsequent customers. The heuristic can

be represented as follows.

ai = min
(
li, ai+ − ti,i+ − si

)
bi = ai+ − ti,i+

Figure 3.4 illustrates an example of the Push Forward heuristic. The set of customers and their

service time windows are the same as in Example I.

... ...

te1 l1 e2 l2 e3 l3

a1
s1

g1

t12

b1 a2
s2 t23

g2/b2 a3
s3

Figure 3.4: Example II: Push forward

Hybrid Waiting Time Adjustment. When solving the dynamic vehicle routing problem,

we aim to minimize the total travel distance of all vehicles. Waiting is assumed to be cost-free.

Thus it is more e�cient to let an idle vehicle wait at its current location for more information on

future customer requests to become available before letting it to travel to the next customer. This

can be achieved by applying the Push Backward heuristic to all of the customers scheduled on each

vehicle.
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Additionally, we want to maximize the chance of accommodating dynamic (and possibly an-

ticipated) customers when they request service. Recall that at each decision epoch, a new set

of anticipated customers is selected and routed in the partial schedule. An anticipated customer

remains in the solution until one of the following 3 cases happen. Case I: the customer requests

service, at which time it becomes con�rmed. Case II: it is time for the assigned vehicle to travel

to the customer, at which time it has to be dropped form the schedule and becomes uncon�rmed.

If the same customer requests service after its reserved time slot has expired, it is routed using

the cheapest insertion heuristic discussed. Case III: the next decision epoch is reached, at which

time the customer becomes uncon�rmed and a new set of anticipated customers is selected. Since

time slots reserved for anticipated customers in the partial schedule have been optimized by the

local search heuristic, case I is clearly a more desirable outcome than case II. Thus, when a vehicle

has �nished serviced at its current customer and the next customer scheduled on the route is an

anticipated customer who has yet to request service, it is bene�cial to let the vehicle wait for the

customer to realize at its current location, for as long as possible before having to drop the customer

out of the schedule. Equivalently, we want to place the maximum amount of slack time possible

just prior to the anticipated customer on each route. This can be achieved by applying the Push

Forward heuristic to all customers scheduled between (and including) the �rst anticipated customer

on the route and the end of the route.

Figure 3.5 illustrates an example of the hybrid heuristic. The set of customers and their service

time windows are the same as in Examples I and II. Suppose that customer 2 is an anticipated

customer who has yet to request service, while customers 1 and 3 are con�rmed customers. The

hybrid heuristic locates the largest possible amount of waiting time between customer 1 and 2 as

shown by the gap between g1 and b1.

... ...

te1 l1 e2 l2 e3 l3

a1
s1

g1

t12

b1 a2
s2 t23

g2/b2 a3
s3

Figure 3.5: Example III: Hybrid waiting time adjustment
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4 Experimental Results

4.1 Experiment Setup

Simulations are performed on a modi�ed Solomon RC201 instance for the vehicle routing problem

with time windows (VRPTW) [28]. The instance speci�es all of the deterministic information on

customer locations, demands, service time windows, and �eet capacity. There are 100 customers

and the length of the planning horizon is 960 time steps. A dynamic vehicle routing problem

can be constructed by specifying two parameters, namely the percentage of advance customers -

ACPercent, and the probability that a dynamic customer requests service - RequestProb. These

two parameters jointly determine the mixture between the number of advance customers and the

expected number of realized dynamic customers in the problem. We assume that all dynamic cus-

tomers have the same probability of requesting service. qi = RequestProb, ∀i. We use a triangular

distribution function to model fi(t), the conditional probability density function of request time ui.

A dynamic vehicle routing instance constructed as above contains all deterministic and stochas-

tic information of the problem. A realization of the problem speci�es the actual set of advance

customers, a group of dynamic customers who are to make requests, and the precise request times

of these customers. A realization re�ects the operation environment faced by decision makers. For

each dynamic instance, we simulate 50 realizations and report the average results.

4.2 Routing Strategies and Parameters

For each realization of the dynamic vehicle routing problem, we simulate the following three routing

strategies and record relevant performance measures for each strategy.

Static routing. A static vehicle routing problem with time windows is built and solved. The

set of customers is the union of advance customers and dynamics customers who request service.

It is assumed that all of these customers are known at the beginning of the planning horizon

and must be served. We assume that the number of available vehicles is unlimited and solve this

deterministic VRP by using the construction and the local search heuristics. We record the total

distance static−Dist and number of vehicles used static−NumV . This strategy assumes perfect

problem information and thus provides a lower bound on the total travel distance if solved optimally.

Dynamic partial routing. The proposed look-ahead dynamic partial routing framework is

used to solve the dynamic vehicle routing problem. The number of vehicles is set to be the same as
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in the static solution. In the case that dynamic customers have to be rejected due to insu�cient �eet

capacity, extra vehicles are added. Thus the �nal solution accommodates all advance customers

together with the dynamic customers who request service. This solution is called the dynamic

partial routing solution. The corresponding total travel distance is denoted as dynamic−Dist.

Multiple model parameters can be changed to adjust the level of planning and partial routing

in the proposed framework, including the number of decision epochs - numEpoch, the length of

the forecast horizon - forecastHorizon, and the threshold value used to select the anticipated

customers - threshold. In addition, each heuristic algorithm has its own adjustable parameters.

Through preliminary experiments, we have identi�ed and �xed the values of some parameters for

better performance. In particular, we set αSI = 0.33, αEI = 0.33, αII = 0.34, β1 = 0.8, β2 = 0.1

and β3 = 0.1.

Reactive routing. A reactive heuristic is used to solve the dynamic vehicle routing problem.

This heuristic makes no forecast and no planning on dynamic customers. At the beginning of the

planning horizon, the construction and local search heuristics are used to construct vehicle routes

using only the known demand. No re-optimization is performed. Dynamic customer requests are

handled in a reactive fashion by the cheapest insertion heuristic. Similarly as above, the number of

vehicles is set to be the same as in the static case and additional vehicles are added when necessary.

The �nal solution is called the reactive routing solution. The corresponding total travel distance is

denoted as reactive−Dist.

4.3 Dynamic Partial Routing in Base Case

As discussed in the introduction, reactive heuristics for solving the dynamic vehicle routing problem

work reasonably well in fairly dynamic environments. The reactive routing strategy de�ned above

falls into this category. In contrast, the dynamic partial routing framework proactively plans for

dynamic customers and conducts partial routing of the vehicles. In this section, we study the

performance of the partial routing strategy under various model parameter settings and benchmark

its performance against the reactive routing strategy. We use the total travel distance as the measure

of comparison and calculate the percentage savings in total travel distance of the dynamic partial

routing as compared to the reactive routing. Distance Saving = reactive−Dist−dynamic−Dist
reactive−Dist .

In the base case, we use ACPercent = 0.25 and RequestProb = 0.75 to construct a fairly

dynamic operating environment. The number of advance customers is 100 ∗ 0.25 = 25 and the
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expected number of dynamic customers is 100 ∗ (1 − 0.25) ∗ 0.75 ≈ 57. The values of the model

parameters we test are numEpochs = 1, 2, 5, 10 and 20, forecastHorizon = 24, 48, 96, 192, 480

and 960, and threshold
RequestProb = 0.2, 0.5 and 0.8. With Tmax = 960, each one of the forecastHorizon

values selected (except 24) corresponds to the time between two consecutive decision epochs with

respect to one of the numEpochs values. For example, when Tmax = 960, numEpochs = 10, and

forecastHorizon = 48, the time between decision epochs is 96 and at each decision epoch, the

request forecasting procedure forecasts for 48 time units. The values of threshold are relative to

the requestProb value of the instance. For example, the actual threshold values used in the base

case simulations are 0.75 ∗ 0.2 = 0.15, 0.75 ∗ 0.5 = 0.375, and 0.75 ∗ 0.8 = 0.6, representing low,

medium, and high levels of acceptance respectively.

Table 4.1 shows the distance savings of the dynamic partial routing in the base case. The

numEpochs is �xed at 5 and the table shows the sensitivity of the model with respect to di�erent

settings of the parameters forecastHorizon and threshold.

numEpochs = 5

threshold
forecastHorizon

24 48 96 192 480 960

0.15 18.61% 24.50% 28.26% 28.42% 28.09% 28.51%

0.375 16.25% 18.75% 25.21% 28.07% 28.23% 28.41%

0.6 14.37% 16.50% 21.50% 27.95% 28.19% 28.56%

Table 4.1: Distance savings of dynamic partial routing in base case

1. When holding the threshold �xed, the distance savings increase as the length of the forecast

horizon increases. The longer the forecast horizon, the higher the probability that a dynamic

customer requests service within this time frame. Given the same threshold value, more

dynamic customers are anticipated and routed at each decision epoch. This in turn increases

the chance that when a dynamic customer requests service, it would receive a reserved time

slot from the current solution. Such time slots have been optimized by the local search and

waiting time adjustment heuristics and hence tend to be more e�cient than the ones generated

by the myopic cheapest insertion procedure.

2. The increasing trend reaches its peak (or plateaus in some cases) at forecastHorizon = 96

with threshold = 0.15 and at forecastHorizon = 192 with threshold = 0.375 and 0.6. Given

that Tmax = 960 and numEpochs = 5, the time between two consecutive decision epochs
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equals to 960/5 = 192 time steps. We call 192 the breakpoint corresponding to numEpochs =

5. With forecastHorizon = 192, it is guaranteed that the entire planning horizon will be

covered by the request forecast procedure. With forecastHorizon = 96 and threshold = 0.15,

even though the planning horizon is not entirely covered, the low threshold value makes it

more likely for dynamic customers to be anticipated. As a result, the distance saving of

this setting is nearly as high as with forecastHorizon = 192. In general, when setting the

forecastHorizon value to be equal to the breakpoints, all of the stochastic information on

possible future customer requests can be exploited. Further increases in the length of the

forecast horizon would result in overlapping and not provide additional information about

future requests, thus not leading to extra distance savings.

3. When holding the forecastHorizon �xed, the distance savings decrease as the threshold value

increases. When the threshold is higher, fewer dynamic customers would be anticipated and

routed at each decision epoch. Consequently, less of the dynamic customers, when they request

service, would be provided with pre-planned time slots. More of the dynamic customers would

have to rely on the cheapest insertion procedure which is myopic and generally more costly.

We have established that for numEpochs = 5 and �xed forecastHorizon value, the smallest

threshold value at threshold = 0.15 will generate the highest distance savings. The same trend

holds for all other numEpochs values we have tested. Our next task is to analyze the sensitivity of

the dynamic partial routing strategy with respect to the parameter numEpochs.

Table 4.2 shows the distance savings of the dynamic partial routing strategy with di�erent

parameter settings of numEpochs and forecastHorizon. The value of threshold is �xed to be 0.15

for all experiments. Again the savings are measured with respect to the reactive routing strategy.

threshold = 0.15

numEpochs
forecastHorizon

24 48 96 192 480 960
1 5.24% 8.44% 13.35% 20.65% 27.93% 27.90%
2 9.19% 13.05% 18.77% 26.28% 28.30% 27.98%
5 18.61% 24.50% 28.26% 28.42% 28.09% 28.51%
10 25.22% 28.56% 28.99% 29.07% 29.22% 28.90%
20 27.40% 28.66% 29.20% 28.74% 29.22% 29.01%

Table 4.2: Sensitivity analysis of parameters numEpochs and forecastHorizon

4. As an extension of observations 1 and 2, when holding numEpochs �xed, the distance sav-

ings increase as the length of the forecast horizon increases. The increasing trend reaches
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its peak (or plateaus in some cases) no later than when the value of forecastHorizon

reaches the breakpoints corresponding to the value of numEpochs. With Tmax = 960,

the breakpoints corresponding to numEpochs = 1, 2, 5, 10 and 20 are 960, 480, 192, 96 and

48 respectively. Indeed the tables shows that with numEpochs = 1 or 2, the increasing

trend peaks at forecastHorizon = 480. With numEpochs = 5, the cost saving plateaus

at forecastHorizon = 96. Last but not least, with numEpochs = 10 or 20, the cost sav-

ing plateaus at forecastHorizon = 48. This observation con�rms the claim that distance

savings are generated by dynamic customers who receive optimized time slots in the exist-

ing schedule (observation 1). It also supports the claim that there exist a minimum level of

forecastHorizon that is su�cient to generate the maximum distance savings. This minimum

level aligns with the breakpoint value corresponding to each numEpochs value.

5. When holding forecastHorizon �xed, distance savings increase as numEpochs increases.

Having more decision epochs corresponds to a higher level of partial routing since the de-

mand forecast and re-optimization procedures are performed more frequently. This allows

newly revealed information to be handled more promptly, leading to extra cost savings. This

phenomenon is much more signi�cant at lower settings of forecastHorizon than at higher

settings. When forecastHorizon is small, the entire planning horizon is hardly covered by

the forecast procedure even with the largest numEpochs value we test. (24∗20� 960). Con-

sequently, each increase in the number of epochs will signi�cantly increase the proportion of

the planning horizon that is covered, leading to a sizable increase in cost savings. In contrast,

when forecastHorizon is large, the majority of the planning horizon can be covered even

with the least number of epochs. For example, at forecastHorizon = 960, only one epoch is

needed at t = 0 to cover the entire planning horizon. In this case, increasing the number of

decision epochs has only limited e�ects on the total cost savings, as re�ected in the right-most

column of Table 4.2.

We have now studied how the model parameters numEpoch, forecastHorizon, and threshold

individually and jointly a�ect the performance of the look-ahead partial routing algorithm. We

have concluded that it is bene�cial to set the threshold value based on threshold
RequestProb = 0.2, and set

the number of decision epochs at numEpoch = 20. Besides, it is su�cient to set the length of the

forecast horizon to be equal to the breakpoint value corresponding to the number of epochs. In this

case, forecastHorizon = 48 is su�cient. These settings are used throughout the next section.
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4.4 Sensitivity to the Expected Proportion of Realized Dynamic Cus-

tomers

As discussed in the previous sections, the dynamic partial routing strategy lies in the middle of the

spectrum that re�ects the amount of problem information used in a solution approach. On one end

of the spectrum is the static routing strategy that assumes a deterministic system and uses perfect

problem information; on the other end lies the totally reactive routing strategy that does not make

use of any stochastic information. In this section, we seek to explore the behavior of dynamic

partial routing in problems with di�erent expected proportions of realized dynamic customers and

compare it to the benchmarking strategies lying at the ends of the spectrum. In our experiments,

we use the parameters ACPercent and RequestProb to adjust the mixture between advance and

realized dynamic customers. The expected proportion of realized dynamic customers among all

realized customers can be calculated as RequestProb∗(1−ACPercent)
RequestProb∗(1−ACPercent)+ACPercent , which lies between

0 and 1 by de�nition. Intuitively, the higher the values of ACPercent, the smaller the expected

proportion of realized dynamic customers and the less dynamic the problem is. Similarly, the higher

the values of RequestProb, the higher the expected proportion of realized dynamic customers is. In

our experiments, the expected proportion of realized dynamic customers ranges between 0.01 and

0.89.

Since the static routing strategy assumes a deterministic environment, it provides a lower bound

on total travel distance for the other two strategies that solve the dynamic routing problem. Thus

we report their distance penalties as compared to the static solution. For example, the distance

penalty of dynamic partial routing is calculated as Distance Penalty = dynamic−Dist−static−Dist
static−Dist .

The smaller the penalty, the better the solution. The results are summarized in Table 4.3.

RequestProb

0.1 0.25 0.5 0.75 0.9 0.1 0.25 0.5 0.75 0.9

ACPercent Reactive Routing Dynamic Partial Routing

0.1 24.4% 33.2% 56.5% 57.3% 62.4% 14.3% 11.3% 6.9% 5.4% 4.4%

0.25 12.6% 17.6% 35.7% 47.1% 53.1% 11.2% 10.6% 6.6% 4.6% 3.1%

0.5 5.5% 4.8% 18.7% 29.5% 33.2% 6.8% 6.0% 4.5% 2.6% 2.3%

0.75 0.6% 4.2% 9.2% 13.4% 17.9% 3.7% 3.8% 3.0% 1.7% 1.5%

0.9 0.5% 4.0% 6.0% 5.5% 5.9% 2.0% 1.4% 1.4% 1.5% 1.9%

Table 4.3: Sensitivity to di�erent expected proportions of realized dynamic customers

6. When holding the ACPercent �xed at low to moderate levels (0.1 through 0.5), the distance
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penalties increase for the reactive routing strategy as RequestProb increases. This strategy

does not make use of any stochastic information on dynamic customers, and thus it su�ers

more when there are more dynamic customers in the system. The trend becomes less signi�-

cant when the ACPercent is high. At ACPercent = 0.9, the reactive routing strategy shows

relatively �at performance except for the case where RequestProb = 0.1. In this case, the ex-

pected proportion of realized dynamic customers is only RequestProb∗(1−ACPercent)
RequestProb∗(1−ACPercent)+ACPercent =

0.1∗(1−0.9)
0.1∗(1−0.9)+0.9 ≈ 0.01 and the routing environment is practically static. The reactive and static

routing strategies are expected to behave similarly as re�ected by the 0.5% average distance

penalty.

7. On the contrary, distance penalties decrease for the dynamic partial routing strategy as the

RequestProb increases when holding the ACPercent �xed at 0.1 through 0.5. The partial

routing strategy uses a threshold rule to forecast customer requests. When the RequestProb

is low, many time slots reserved for anticipated customers will not get con�rmed and are

wasted. The quality of the forecast is poor. These time slots take up both physical and

temporal capacity of the �eet. As the RequestProb increases, more of the time slots re-

served for anticipated customers will get con�rmed. The quality of the forecast increases,

and the distance penalty becomes smaller. Similarly as for the reactive routing strategy, the

penalty measures become �at across di�erent values of RequestProb for problems with higher

ACPercent values. Especially at ACPercent = 0.9, the number of dynamic customers is only

10 and is too small as compared to the number of advance customers, such that the exact

number of realized dynamic customers barely a�ect the quality of the solution.

8. When holding RequestProb �xed, both the reactive routing and dynamic partial routing

strategies perform better for problems with more advance customers and lower expected

proportions of realized dynamic customers. Even though the two strategies use di�erent

methods to handle randomness in the problem, they both su�er from the uncertainties in

dynamic requests and both have to make routing decisions based on partial information.

9. We now compare the reactive routing and the dynamic partial routing across problems with

di�erent expected proportions of realized dynamic customers. Generally speaking, dynamic

partial routing outperforms reactive routing for problems with low ACPercent and high

RequestProb values. Among all the problems we have tested, the highest expected proportion
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of realized dynamic customers is 0.89, corresponding to the instance with ACPercent = 0.1

and RequestProb = 0.9. The partial routing strategy shows only 4.4% in distance penalty and

outperforms reactive routing by the largest margin among all instances. On the contrary, for

problems with high ACPercent and low RequestProb values, reactive routing outperforms

dynamic partial routing. This suggests that excessive planning for future requests could

back�re in situations where the number of dynamic customers is small. Nevertheless, it is

evident that the contrast between 0.5% and 2.0% in distance penalties in the case with the

lowest expected proportion of realized dynamic customers is minimal as compared to the

sharp di�erence between 62.4% and 4.4% in the case with the highest expected proportion of

realized dynamic customers. It suggests that even though the quality of forecast is poor when

there are few dynamic customers, the re-optimization scheme in the partial routing framework

could promptly correct the errors in forecasting based on newly revealed information. This

implies that dynamic partial routing is more �exible and robust than reactive routing across

problems with di�erent expected proportions of realized dynamic customers.

4.5 Unit Cost Analysis of the Di�erent Routing Strategies

So far we have focused on benchmarking the total travel distance of serving all customers. Another

metric of interest is the average travel distance per customer, which can be calculated by dividing

the total travel distance by the total number of serviced customers (both advance and dynamic

customers). This unit cost measure allows us to study the e�ect of economies of scale of serving

additional customers for problems of di�erent sizes. In the context of the vehicle routing problem

with dynamic customers, the size of a problem can be interpreted in two dimensions. The �rst

dimension relates to the total number of realized customers, and the second dimension concerns

with the expected proportion of realized dynamic customers given the total number of customers.

To this end, we now analyze the average travel distance per customer on a set of instances that

re�ect both dimensions of the size of the problem.

Table 4.4 reports the average travel distance per customer. Each row of the table contains the

results corresponding to problems with the same expected number of customers, and the number is

listed in the �rst column of the table. The rest of the columns contain the results of the correspond-

ing routing strategy. In static routing, all of the customers are assumed to be advance customers.

The mixture between advance and dynamic customers is irrelevant. For the other two strategies,
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Expected Proportion of Realized Dynamic Customers

High Low High Low

Expected Number
of Customers

Static
Routing

Dynamic Partial
Routing

Reactive Routing

32.50 20.46 21.98 22.76 26.28 23.07

55.00 16.16 18.29 17.26 26.75 17.05

77.50 13.84 14.89 14.36 22.21 13.93

91.00 12.94 13.62 13.20 21.19 13.04

Table 4.4: Average travel distance per customer for di�erent problem sizes

we report the results on two DVRP instances, one with a high expected proportion of realized

dynamic customers (ranging between 0.69 and 0.89) and the other with a low expected proportion

of realized dynamic customers (ranging between 0.01 and 0.23). Note that both instances have the

same total expected number of customers.

10. For the static routing strategy, as the expected number of customers increases, more customers

can be accommodated on the same vehicle based on proximity in their locations. Thus the

proportion of dead heading miles is reduced and the average travel distance per customer

decreases due to economies of scale on vehicle usage.

11. For the dynamic partial routing strategy, the average travel distance per customer is roughly

the same in cases with high or low expected proportions of realized dynamic customers, given

the same total expected number of customers. This suggests that the partial routing strategy

is robust with respect to the mixture between advance versus dynamic customers. The re-

optimization algorithm shows its advantage in quickly adapting to new information and easing

out part of the inconvenience caused by uncertainties in dynamic requests. The average travel

distance per customer in both the high and low expected proportions of realized dynamic

customers cases are marginally higher than the corresponding measure of the static routing

solution, which is consistent with the previous analysis. As the expected number of customers

increases, the average travel distance per customer decreases similarly as in the static routing

case due to the e�ect of economies of scale. This suggests that under the dynamic partial

routing strategy, the system has the ability to accommodate additional dynamic customers

without the risk of increasing the average travel distance per customer.

12. For the reactive routing strategy, the average travel distance per customer is signi�cantly

larger in cases with high expected proportions of realized dynamic customers than in cases
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where the proportions are low, given the same total expected number of customers. This

suggests that reactive routing is very sensitive to the number of dynamic customers in the

problem because these customers are handled by the myopic cheapest insertion heuristic,

which is globally suboptimal. This observation is consistent with the previous analysis which

shows that the reactive routing strategy performs particularly poorly on instances where

the value of RequestProb is high. In the cases with high expected proportions of realized

dynamic customers, the average travel distance per customer are signi�cantly higher than the

corresponding measure of the static routing solution, suggesting that the bene�t of economies

of scale is out-weighted by the increase in total travel distance caused by the suboptimal

routing strategy. Additional dynamic customers tend to cause the average travel distance per

customer to increase dramatically.

5 Conclusion

In this article, we study the vehicle routing problem with dynamic customer requests. We model

the uncertainties related to dynamic customer requests by assuming an underlying probability of

request as well as a conditional likelihood function on the request time. We adopt a look-ahead

dynamic routing approach to design a solution framework that proactively forecasts future cus-

tomer requests. The hybrid waiting time adjustment heuristic strategically optimizes time slots

in the current schedule in anticipation for potential requests. Dynamic real-time routing rules are

developed to minimize the total travel distance of all vehicles as well as maximize the probability

of accepting dynamic customer requests. The level of forecasting and route planning in our solu-

tion can be adjusted by changing the values of three model parameters, namely the numEpochs,

forecastHorizon, and threshold. This partial routing capability positions our solution in the mid-

dle of the spectrum that re�ects the amount of problem information used in a solution approach.

Through extensive numerical simulations, we �rst study the behavior of the proposed partial

routing framework under di�erent parameter settings. Using the base case network, where 25

customers are known in advance and each dynamic customer has a 75% chance of requesting service,

we identify that the lowest threshold value generally leads to the best result. We also show that

there exists a minimum value of the forecastHorizon that is su�cient to exploit the bene�t of

forecasting dynamic requests. This value aligns with the time between two consecutive decision

epochs given the choice of the numEpochs. We then compare and contrast the above mentioned

28



routing strategies in networks with various levels of uncertainties. The dynamic partial routing

strategy is shown to be more reliable than reactive routing across problems with di�erent expected

proportions of realized dynamic customers. The analysis based on the average travel distance per

customer shows that the dynamic partial routing strategy could bene�t from the e�ect of economies

of scale on vehicle usage in situations with both high and low levels of expected proportions of

realized dynamic customers.
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