
Large-Scale Linear Programming and Applications

Stephen J. Stoyan, Maged M. Dessouky*, and Xiaoqing Wang

Daniel J. Epstein Department of Industrial and Systems Engineering,

University of Southern California, Los Angeles, CA, 90089-0193

*Corresponding author (e-mail: maged@usc.edu)

1 Introduction

Linear Programming has been used as an effective tool to solve a number of applications in

manufacturing, transportation, military, healthcare, and finance. In a number of applica-

tions, the size of the formulation in terms of the number of variables and constraints can be

quite large in order to accurately model practical systems. For example, Leachman (1993)

formulates a linear programming model of over 150,000 variables and 100,000 constraints to

solve a production planning problem for semiconductors at the Harris Corporation. With

such large size problems, specialized procedures such as column generation, cutting planes,

and the Dantzig-Wolfe decomposition may need to be employed to solve them. The purpose

of this chapter is to provide an overview of these specialized procedures, and we conclude

with an example of a large-scale formulation for solving a route balancing problem.

1



2 Linear Programming Problem

Consider the following standard Linear Programming (LP) problem:

min c>x (1)

s.t. Ax = b (2)

x ≥ 0, (3)

where x ∈ Rn, A is a n×m matrix, and c and b are vectors of length n and m; respectively.

Now suppose the problem is so large, i.e. the A matrix cannot be stored in memory, that it

cannot be solved. Using the simplex method, large-scale problems can be solved by adding

a few extra steps to the algorithm. Depending on the structure of the A matrix it may be

possible to decompose the problem such that solving smaller subproblems provide sufficient

optimality conditions. Recall from the simplex method, the problem is partitioned into Basic

(B) and Nonbasic (N) variables. Partitioning (1)–(3) into basic and nonbasic elements and

making the substitution into (1) gives

min c>BB−1b + (c>N − c>BB−1N)xN , (4)

where B =
∑

i Ai ∀ i ∈ B, N =
∑

j Aj ∀ j ∈ N , and An refers to column n in the A matrix.

The algorithm then pivots through columns which allow nonbasic elements to enter the basis

in each iteration until the optimality condition is satisfied; namely

c>j − c>BB−1Aj ≥ 0 ∀ j ∈ N. (5)

Therefore, given n > m, N consists of n − m elements and the simplex algorithm will

iteratively pivot through nonbasic variables that have a minimum reduced cost, defined as

min
j∈N

{c>j − c>BB−1Aj} < 0. (6)

2



Equation (6) determines whether or not the simplex algorithm will continue to the next

iteration, notice that if it is nonnegative then equation (5) is satisfied and the algorithm

terminates. This observation is a critical step in many large-scale algorithms. Given the

current basis, only search for new variables to pivot into the basis if the minimum of {c>j −
c>BB−1Aj} is not nonnegative ∀ j ∈ N ; otherwise, the current iterate is optimal. In the next

sections we investigate such applications.

3 Column Generation

Many practical problems involve large-scale models where there are more variables than

constraints; hence, n > m. For such instances, column generation is an effective solution

method. The method begins by initiating the simplex algorithm as usual. Hence, a collection

of m basic columns Ai ∀ i ∈ B is formed and we search for variable j ∈ N that has the

minimum reduced cost, where we define the set Ω = {i ∈ B, j}. In order to find variable

xj with the minimum reduced cost, solving for j in equation (6) would be most favorable;

however, this may be very costly or not possible depending on the problems size. Instead,

taking the

min
j∈N

cj (7)

may accomplish the same result. There are other variants of reduced cost searches, however,

for lack of space we refer the reader to [1, 2, 4]. In any case, a search is completed and an

entering variable j is selected. We define the subproblem

min
∑
ω∈Ω

c>ω xω (8)

s.t.
∑
ω∈Ω

Aωxω = b (9)

x ≥ 0, (10)

3



which contains all of the basic columns and the entering column Aj. Therefore, Ω has a size of

m+1 and if the original A matrix is very large then we only need enough storage to hold m+1

columns. Furthermore, using the current basic feasible solution and the entering element,

one may perform as many simplex iterations as needed to solve the problem; allowing one

nonbasic variable to enter the basis at each iteration. In the absence of degeneracy, solving

(8)–(10) by adding columns in an iterative manner is guaranteed to terminate since it is

simply a special implementation of the simplex algorithm. If degeneracy is present in the

problem, one can use a method to prevent cycling such as the lexicographic rule. Finally,

there are different techniques used to store the number of variables in Ω. In the method

described above, the size of Ω is kept to a minimum of m+1 variables. Other methods never

remove any variables that have entered the basis, and some allow Ω to grow to a certain size

before removing variables.

There are also various problems where instead of solving a large set of decisions, the

problem may be more efficiently approached if it is structured to generate candidate solutions

(columns) until a better solution cannot be found. Column generation can be used to solve

such problems, which exist in inventory, transportation, and scheduling. In Section 6 we

provide a route balancing example where road crews are assigned to clean various areas of

Los Angeles based on distance. As will be presented, the problem can be expressed as

min e>x (11)

s.t. Ax = b (12)

x ≥ 0, (13)

where e is a vector of all ones. As mentioned above, matrix A may not involve the set

of all possible combinations to solve the original problem and candidate solutions will be

generated to do so. In this case, candidate solutions are equivalent to adding columns Aj

to the problem. In the route balancing example, finding a candidate solution (column Aj)

4



simply requires finding an area that a crew may be allocated to. Thus, providing an initial

basis to (11)–(13) involves generating m different candidate solutions or columns Aj. Now

suppose that we have an initial basis B, then to solve for the reduced cost in (11)–(13) we

take

min
j∈N

{1− e>B−1Aj}. (14)

Letting µ = e>B−1, the problem is optimal if

min
j∈N

{1− µAj} ≥ 0. (15)

Notice that equation (15) is equivalent to the following inequality:

max
j∈N

{µAj} ≤ 1, (16)

Thus, the optimality of the original problem requires obtaining the largest candidate solution

that satisfies (16). Depending on the number of constraints, finding the largest column that

satisfies (12)–(13) may simply require solving the knapsack problem, provided decisions are

purely integer variables.

4 Cutting Planes

Using the models presented in Sections 2 and 3, but investigating the dual problem defines

the Cutting Plane method. Consider the dual of (1)–(3),

max b>y (17)

s.t. A>y ≤ c. (18)

5



Since we have taken the dual of the original problem, we are now faced with a problem that

has many rows or constraints. We then define a subset of (17)–(18) as follows:

max b>y (19)

s.t.
∑
ω∈Ω

A>
ω yω ≤ cω, (20)

where Ω contains the elements in the basis and grows with each j added to the set, as

described on page 4 of Section 3. Thus, (19)–(20) is simply a less-constrained version of

(17)–(18), referred to as the relaxed dual problem. Given z?
Ω is an optimal solution to (19)–

(20), there are two issues to consider with respect to the optimality of (17)–(18), namely

(i) If z?
Ω is a feasible solution to (17)–(18), then z?

D = z?
Ω; where z?

D refers to the optimal

solution of (17)–(18);

(ii) If z?
Ω is infeasible with respect to (17)–(18), then we find the violated constraint and

add it to subproblem (19)–(20). Thus, given row A>
j provides the violation, then set

Ω is updated to include j and the problem is re-solved.

Figure 1 is a graphical illustration of cases (i) and (ii) above. Given the feasible region of

the original problem is A1, if constraint L4 is not included in subproblem (19)–(20), then the

feasible region is larger and contains regions A1

⋃
A2. In this case, solving the subproblem

produces a feasible optimal solution to (17)–(18) and thus, z?
Ω = z?

D, as depicted in the figure.

However, what if constraint L2 is not included in subproblem (19)–(20), then the feasible

region contains A1

⋃
A3. Depending on the slope of the objective function, the optimal

solution may be at vertex z?
Ω, as depicted in the figure. In any case, z?

Ω 6= z?
D as the vertex

z?
D does not exist for such an instance, and hence, the simplex method will not generate the

optimal solution z?
D.

Therefore, based on the observations above, in order to implement a cutting plane algo-

rithm one needs to solve the current subproblem and check that the solution is feasible with

6



A1

A3

A2zD
*

*z

L1

L2 L3

L4

Figure 1: Illustrative example of issues related to Cutting Planes.

respect to the original problem. If the solution is not feasible, an efficient method to identify

the violated constraint(s) is necessary. This requires finding

min
`

c` − A>
` y` (21)

for ` ∈/ Ω. If (21) is nonnegative for all elements ` then we have a feasible and therefore,

optimal solution. Otherwise, we add constraint A>
` y` > c` to subproblem (19)–(20) and

continue. Depending on the problem, solving equation (21) may be challenging. There are

techniques that can be employed for such instances; the reader may refer to [1, 2, 6] for more

information on this topic.

7



5 Dantzig-Wolfe Decomposition

Given the LP in (1)–(3) of Section 2, what if constraint (2) has the following structure:




A01 A02 · · · A0`

A11

A22

. . .

A``




x =




b0

b1

...

b`




, (22)

where A0` and A`` represent a set of partitioned parameters in the form of block matrices that

contain all of the elements in the initial problem. The constraint structure presented in (22)

is quite common for many practical problems. For example, problems in production, finance,

and transportation often involve models where some subset of constraints only pertain to

particular elements/areas of the problem and others span the whole domain. For instances

where various constraints only pertain to one or a small set of variables (i.e. rows 1, ..., `),

and only one constraint or set of constraints involves all variables (i.e. row 0), the Dantzig-

Wolfe decomposition is an efficient solution approach. For the prescribed problem structure,

the algorithm proceeds by decomposing the A matrix as follows:

[
A01 A02 · · · A0`

]
x =

[
b0

]
(23)




A11

A22

. . .

A``




x =




b1

...

b`




. (24)

8



Thus, the problem in (1)–(3) can be represented as:

min
∑̀
i=1

cixi (25)

s.t.
∑̀
i=1

Dixi = b0 (26)

Fixi = bi, ∀ i = 1, ..., `, (27)

xi ≥ 0, ∀ i = 1, ..., `, (28)

where 1, ..., ` contains all partitioned elements from the initial problem, and we let Di = A0i

and Fi = Aii for simplicity. Next we define

χi = {xi ≥ 0, Fixi = bi} ∀ i = 1, ..., `, (29)

where given χi 6= ∅, (25)–(28) becomes:

min
∑̀
i=1

cixi (30)

s.t.
∑̀
i=1

Dixi = b0 (31)

xi ∈ χi, ∀ i = 1, ..., `. (32)

From Resolution Theorem, we have that any element xi ∈ χi can be expressed as

xi =
∑
q∈Qi

λq
i v

q
i +

∑

k∈Ki

µk
i d

k
i , (33)

where vq
i ∀ q ∈ Qi consists of the set of extreme points in χi and dk

i ∀ k ∈ Ki is the set

of extreme rays in χi. Also, note that λq
i ≥ 0, µk

i ≥ 0, and
∑

q∈Qi
λq

i = 1 ∀ i = 1, ..., `.

9



Therefore, using the form presented in (33) the problem in (30)–(32) is equivalent to

min
∑̀
i=1

(∑
q∈Qi

ciλ
q
i v

q
i +

∑

k∈Ki

ciµ
k
i d

k
i

)
(34)

s.t.
∑̀
i=1

(∑
q∈Qi

Diλ
q
i v

q
i +

∑

k∈Ki

Diµ
k
i d

k
i

)
= b0 (35)

∑
q∈Qi

λq
i = 1 ∀ i = 1, ..., `, (36)

λq
i ≥ 0 ∀ i = 1, ..., `, q ∈ Qi, (37)

µk
i ≥ 0 ∀ i = 1, ..., `, k ∈ Ki. (38)

In (34)–(38) above, the right-hand-side vector is now [b0, 1, · · · , 1]>. The solution method

involves satisfying (35) in a similar method to what was used for the reduced cost vector in

Sections 3 and 4. One difference is that the algorithm involves extreme points vq
i ; however,

Phase I of the Two-Phase method can be used to find an initial solution to (34)–(38), if

necessary. For more information on the functionality of the Dantzig-Wolfe algorithm the

reader may refer to [1, 2, 5].

6 Route Balancing

In this section, we present an example of a liner programming formulation to balance the

routes for road crews used by street sweepers. Several counties across California have begun

to switch from diesel-powered street sweepers to CNG (Compressed Natural Gas) street

sweepers in order to comply with Federal and State air quality regulations. However, due

to a number reasons, which include slow refueling time at CNG fueling stations and some

design characteristics of the CNG sweepers, the productivity of the sweeping operations have

decreased with these new sweepers.

The goal of the study is to identify new operating policies to improve the productivity of

their previous level when the diesel-powered street sweepers were being used. From a recent

10



analysis of the assigned road miles, it was evident that the workload varied significantly

from crew to crew. Hence, a better balance of the assigned miles-to-crews could significantly

improve the productivity of the crews. In this section, we present a mathematical model

that optimizes the assignment of road miles to crews.

Input Parameters:

Let,

n: be the total number of road crews;

Φ = {1, 2, ..., n}: be the set of possible road crews;

Rij: be the maximum possible road miles that crew i could shift

to crew j, ∀ (i, j) ∈ Φ and Rii = 0;

Ai: be the original assigned miles of crew i ∈ Φ;

U : be the average miles of the region.

Decision Variables:

Let,

xij: be the road miles that crew i shifts to crew j, ∀ (i, j) ∈ Φ and xii = 0;

zi: be the deviation between the workload of crew i ∈ Φ and the average U .

Using the variable and parameter definitions above, the road crew LP is as follows:

min
n∑

i=1

zi (39)

s.t.
n∑

j=1

xji + Ai −
n∑

j=1

xij − U ≤ zi ∀ i ∈ Φ, (40)

n∑
j=1

xji − Ai −
n∑

j=1

xij + U ≤ zi ∀ i ∈ Φ, (41)

xij ≤ Rij ∀ i, j ∈ Φ, (42)

xij ≥ 0 ∀ i, j ∈ Φ. (43)

11



The objective in (39)–(43) is to minimize the deviation between the assigned miles of each

crew and the average miles of the region, which is

|
n∑

j=1

xji − Ai −
n∑

j=1

xij + U | ∀ i ∈ Φ. (44)

Here, variable zi is used to represent the deviation and linear transformations represented

by constraints (40) and (41). The objective function is simply the sum of the deviation

of all crews. The smaller the objective value, the more balanced the routes are and an

objective value of zero means that each route in the region has exactly the same number of

miles. The third constraint (42) limits the miles that crew i can shift to another crew. The

data establishment of Rij is based on the physical connection between two adjacent crews,

since we only allow the reassignment of miles if the two crews are next to each other on the

freeway. The last constraint (43) is simply a sign restriction on the non-negativity property

of variable xij. The non-negativity property of variable zi has already been ensured by the

first and second constraints.

Based on the LP in (39)–(43), we constructed an example that consisted of 37 crews

(n = 37) and had 31.25 miles average for the region (U = 31.25 miles). The resulting linear

programming model contained 1406 variables and 2812 constraints. Thus, (39)–(43) may be

solved using the column generation method or cutting planes method described in Sections 3

and 4. Table 1 lists the assigned miles to each crew for the current and optimized solutions,

which was solved using CPLEX 9.1. The optimal solution is 273 miles, which is a 29.39%

improvement over the current actual practice of 386.64 miles.

12



Current Optimized

Crew Solution (miles) Solution (miles)

1 20.90 31.25

2 30.65 29.01

3 39.76 31.25

4 10.30 10.13

5 28.57 31.25

6 30.90 47.05

7 44.29 77.95

8 79.02 31.25

9 38.29 31.25

10 20.84 23.13

11 41.03 34.03

12 12.64 19.64

13 9.2 15.11

14 22.96 18.13

15 18.98 31.25

16 28.15 25.59

17 20.21 23.64

18 29.45 31.25

19 19.63 12.82

Current Optimized

Crew Solution (miles) Solution (miles)

20 19.36 21.40

21 39.48 33.05

22 30.16 31.25

23 40.32 31.25

24 21.77 11.71

25 28.79 31.25

26 20.49 31.25

27 20.23 28.13

28 25.84 31.25

29 35.99 31.25

30 47.22 38.65

31 27.36 33.55

32 31.67 31.25

33 44.11 38.34

34 54.2 77.04

35 57.39 31.25

36 38.04 38.04

37 27.95 31.25

Table 1: Crew road miles.

13



References

[1] Bazaraa, M.S., Jarvis, J.J. and Serali, H.D. (2005): Linear Programming and Network

Flows, John wiley and Sons, Hoboken, NJ.

[2] Bertsimas, D. and Tsitsiklis, J.N. (1997): Introduction to Linear Optimization, Athena

Scientific, Belmont, MA.

[3] Leachman, R.C. (1993): Modeling Techniques for Automated Production Planning in the

Semiconductor Industry, in Optimization in Industry, T.A. Ciriani and R.C. Leachman

(eds.), John Wiley and Sons, I-30, NY.

[4] Vanderbei, R.J. (2001): Linear Programming: Foundations and Extensions, Springer,

New York, NY.

[5] Winston, W.L. (2004): Operations Research: Applications and Algorithms, Thomson

Brooks/Cole, Toronto, ON.

[6] Wolsey, L.A. (1998): Integer Programming, John Wiley and Sons Inc., Toronto, ON.

14


