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Abstract

With more and more interchange stations in a large-scale metro network, passengers tend to transfer between

different metro lines from origination to destination, sometimes even more than once. Passenger waiting

time is one of the critical standards for measuring the quality of urban public transport services. To support

high service quality, this paper proposes a mixed integer nonlinear programming (MINLP) model for the

train timetable generation problem of a metro network that minimizes the transfer waiting times and access

passenger waiting times. In the mathematical formulation of the model, the transfer walking times at the

interchange stations between two connected lines are treated as uncertain parameters. The robust train

timetable generation model is formulated to optimize timetables by adjusting arrival and departure times of

each train in the metro network to reduce access and transfer passenger waiting times. A robust counterpart

is further derived that transforms the formulated robust model into a deterministic one. Moreover, a gener-

alized Benders decomposition technique based approach is developed to decompose the robust counterpart

into a subproblem and a master problem. The subproblem is a convex quadratic programming problem that

can be solved efficiently. Finally, two sets of numerical examples, consisting of a small case and a large-scale

case based on a real-world portion of the Beijing metro network, are performed to demonstrate the validity

and practicability of the proposed model and solution approach.

Keywords: Urban metro network, Timetabling generation, Uncertain transfer time, Robust optimization,

Benders decomposition

1. Introduction

With increased urbanization and motorization, problems such as traffic congestion, traffic accidents,

and pollution have significantly increased. To alleviate urban traffic congestion and promote environmental

protection, prioritizing the development of urban public transportation has become an important measure

widely adopted by different countries worldwide. As a critical component of public transportation, urban rail

transit is favored by major cities for its large capacity, fast speed, and energy savings. With the increasing

expansion of residents’ trips and the diversity of travel demands, transfers have significantly influenced

urban public transportation. In an urban rail transit network, passengers sometimes need to complete at
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least one transfer trip from origin to destination during their travel (Wu et al., 2015a; Li et al., 2018). The

transfer time directly affects the passenger travel times and the passenger satisfaction with the service level

of the transportation system. Thus, improving transfer efficiency and reducing transfer waiting times are

of great importance to metro networks. However, it is difficult to change the infrastructure, such as route

and station construction, in practice to improve the transfer efficiency. Correspondingly, it is more desirable

and practical to synchronize each train’s arrival and departure times at interchange stations based on the

existing infrastructure to reduce the total waiting times for transfer and access passengers.

Timetable synchronization and optimization is an essential topic in public transport network planning.

By reducing operational costs and allowing more flexible planning, transfers in public transport are used

to create a more efficient network (Ceder et al., 2013), especially in an urban rail transit network system.

Its aim is such that two trains on two different lines can arrive at the transfer station synchronously, and

passengers can catch the connecting train by walking through the transfer platform. With a synchronized

and coordinated schedule, passengers can experience seamless transfer connections and good service of the

metro system. Transfer coordination of different metro lines in the metro network has a significant influence

on the service quality (Wong et al., 2008; Wu et al., 2015a; Kang et al., 2016). On account of the high

train service frequency during peak hours, the maximum transfer synchronization time for saturated lines is

close to the relatively short headway. While passengers who transfer among different lines may spend excess

waiting time for available trains during off-peak hours with low train service frequency. Furthermore, the

metro operators usually adjust train timetables with different scales of headways based on the various travel

demands and different periods of the day. Inappropriate coordination among train services on different lines

can bring about unreasonable passenger waiting times during the transitional period (from peak to off-peak

hours or vice versa) (Guo et al., 2017). Hence, it is important to enhance transfer synchronization and

timetable coordination among different metro lines. Specifically, a new timetable needs to be generated in

urban transit railway operations due to different passenger flow characteristics of workdays and holidays,

or large-scale activities. It however tends to take relatively long solving times to determine new timetables,

which is a computational burden for the operating company. To overcome this challenge, it is essential

to develop a computationally efficient optimization algorithm for the timetable generation problem of a

large-scale metro network.

In this paper, a mixed integer nonlinear programming (MINLP) optimization model is presented to

obtain a synchronized and coordinated schedule by adjusting the arrival and departure times of the feeder

and connecting trains within reasonable ranges. Moreover, the objective is to adjust the train connections on

two connected lines to minimize the waiting times for passengers outside the stations and those transferring

at interchange stations. Due to the difficulty of obtaining accurate transfer walking times of each passenger,

the transfer walking times here are considered uncertain parameters, and a robust optimization model is

proposed. Furthermore, the complexity of large-scale network problems makes it computationally difficult

to solve realistic-sized problems. Therefore, we develop a generalized Benders decomposition technique to

divide the network problem into a subproblem (SP) and a master problem (MP) to solve the optimization

model efficiently.

The rest of this paper is structured as follows. A brief literature review and the main contributions

of this paper are presented in Section 2. Next, we describe the timetable coordination and optimization

problem in detail and propose a robust optimization model by treating the transfer walking times as uncertain

parameters. In Section 4, we design a generalized Benders decomposition based approach to solve the MINLP

model. Based on actual operation data of the Beijing metro network, an illustrative small numerical example
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and a large-scale example are presented in Section 5. Finally, conclusions and discussions for the future are

given in Section 6.

2. Literature Review

Timetables of public transport play a vital role in a company’s operation efficiency and traveling expe-

rience for passengers. Thus, many researchers have focused on timetable synchronization and optimization

from various point of views, including level of service, energy consumption, etc (Corman et al., 2012; Cac-

chiani et al., 2014; Corman et al., 2014; Tian and Niu, 2017; Hu and Hu, 2020; Shen et al., 2020; Li et al.,

2021; Wang et al., 2022).

Unreasonable transfers can reduce the attractiveness and competitiveness of public transportation (Muller

and Furth, 2009). The timetable optimization problem with transfer connections has attracted many re-

searchers’ attention. Tian and Niu (2017) focused on synchronizing the fixed and flexible trains at a rail

transfer station to obtain an optimal timetable and adopted an exponential utility function to estimate the

train connection quality with the aim of maximizing the seamless train connections and minimizing pas-

senger transfer waiting time. Cao et al. (2019) applied a genetic algorithm with a local search strategy to

solve the timetable scheduling synchronization and coordination problem for larger-sized railway networks

to maximize the synchronized connections considering smooth transfers at interchange stations.

There is a wealth of literature addressing the timetabling problem aiming to minimize the waiting

time for transfer passengers. As a significant topic on bus network planning, timetable synchronization is

investigated by many researchers (Chu et al., 2019; Abdolmaleki et al., 2020), especially for considerable bus

network planning during off-peak periods. Ibarra-Rojas and Rios-Solis (2012) formulated the network-based

timetabling problem to maximize the number of synchronizations. Wu et al. (2016) proposed a multi-

objective re-synchronizing of the bus timetable model to balance the number of passengers benefited by

smooth transfers and the maximal deviation from the departure times of the existing timetable. Furthermore,

Xiong et al. (2016) investigated the problem of optimizing synchronized timetables for community shuttles

linked with metro service. Takamatsu and Taguchi (2020) focused on the timetable design problem in areas

with low-frequency public transportation services to design a timetable that ensures smooth transfers among

buses and trains. Concerning the train timetabling problem, Wong et al. (2008) developed a MIP model for

non-periodic timetables, which minimizes the total waiting time for all transfer passengers. They introduced

binary variables to represent the waiting time for the “next available” train at the transfer stations and

solved it with an optimization-based heuristic algorithm. Wu et al. (2015a) presented a timetable scheduling

coordination model to decrease the weighted sum of the probability and propagation of delay as well as the

transfer waiting time, considering the headway of the different lines as the decision variables. Wu and Tang

(2012) presented a MINLP model and a genetic algorithm solution method for the public transport schedule

synchronization problem to minimize transfer waiting times. Shi et al. (2016) focused on the timetable

optimization problem for a loop line and adjusted the headway and dwell time with the aim of minimizing

the average waiting time for access and transfer passengers. They solved the model by applying a genetic

algorithm.

Furthermore, some papers have focused on the first and last train timetabling problem considering

transfer coordination. Guo et al. (2016) put forward a timetable synchronization optimization model to

minimize the connection time according to the importance of transfer stations by adjusting the departure

times of the first train on each line to avoid the just-missed situation. They demonstrated their approach
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using data from the Beijing railway network. Similarly, Kang et al. (2016) proposed an optimization model to

minimize the amount of missed trains and train arrival time differences. Li and Shi (2013) presented a method

of compiling the last train timetables of all the lines at the network level considering transfer coordination

and put forward a pick-and-filter algorithm for choosing connection principles based on passenger transfer

demands. Chen et al. (2019) proposed a MIP model and a modified genetic algorithm to decide the arrival

and departure times of the last trains and maximize the linear weighted sum of accessible origin-destination

(OD) pairs for last trains to enhance the metro network accessibility. The results of the case based on

the Shenzhen metro network showed that a larger quantity of successful transfer train connections do not

necessarily result in better accessibility.

Urban rail transit organization is a systematic program comprised of several stages, including network

design, route planning, train timetabling, rolling stock, and staffing (Kang et al., 2016). Therefore, some

researchers studied the integration and collaborative optimization of some of these problems in recent years.

Cheng et al. (2018) investigated the timetabling and network design problem simultaneously for an urban

public transport system and solved the MIP model using a parallel branch-and-price-and-cut (BPC) algorith-

m. Blanco et al. (2020) presented a MILP model to find solutions to line planning and timetabling problems

considering important factors, including time-dependent demands and interchange stations. Fonseca et al.

(2018) integrated the timetabling and vehicle scheduling problem by modifying the scheduled timetables to

minimize transfer and operational costs. Liu and Ceder (2018) proposed a bi-objective and bi-level integer

programming model and considered the operators to solve timetable synchronization and optimization inte-

grated with vehicle scheduling. In addition, Yang et al. (2016a) developed a coordination and optimization

model to integrate the train scheduling and stops planning problem on a single-track high-speed railway

corridor and formulated a multi-objective MILP model by means of linear weighted methods.

The real world has to deal with uncertainty, such as train running times, dwell times, headways, transfer

walking times, the number of passengers boarding and alighting, and weather conditions. Wu et al. (2015b)

presented a stochastic integer programming model with random travel times for the timetabling problem

in order to minimize the waiting time costs of three kinds of passengers consisting of passengers boarding,

through, and transferring at stations, and designed a genetic algorithm with a local search strategy. Liu and

Dessouky (2019) considered the uncertainty on departure times of the freight trains with the passenger train

timetabling problem and proposed a two-stage stochastic optimization model to minimize the operation

costs and solved the model using a branch and bound framework with hybrid heuristics. Yang et al. (2016b)

presented a two-phase stochastic programming model and designed a genetic algorithm based on simulation

for the integrated speed profile and timetable optimization problem to minimize the total tractive energy

consumption allowing for uncertain train mass. Zhang et al. (2020) investigated the design of timetables

to determine a series of time intervals adopted to the dynamic passenger flow by introducing two fuzzy

variables (i.e., passenger satisfaction and vehicle capacity usage). Cheng et al. (2018) investigated a three-

echelon logistics network and solved three two-stage robust models using a column-and-constraint-generation

algorithm.

Due to the explosion in size and complexity of modern datasets, researchers applied decomposition

methods for a number of transportation problems, such as network-level traffic signal control (Mohebifard

and Hajbabaie, 2019), and location problem (Arslan and Karaşan, 2016; Tapia-Ubeda et al., 2018; Mahéo

et al., 2019) to reduce the computation complexity. Liu and Ceder (2016) studied the synchronization

timetabling problem of public transport routes by integrating several factors, including headways and vehicle

trip offset times. They proposed a two-objective function and a decomposition method to minimize the
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observed difference on passenger load and the expected passenger waiting time. Kang et al. (2019) presented

a last train and bus bridging coordination MILP model and an effective decomposition approach for handling

large-scale problems, which decomposed the original MILP into two smaller MILP models. Liu et al.

(2020) investigated a collaborative optimization problem considering train scheduling, train connections,

and passenger flow control strategy as a MINLP model and designed a Lagrangian relaxation-based solution

method.

Based on the above literature, Table 1 summarizes some publications closely related to the timetable

coordination problem and this paper, including the type of model, the objective, and solution approaches.

To enhance the service level and attractiveness of the metro system, this paper presents a MINLP model

aimed at minimizing the transfer waiting time and waiting time for access passengers entering the station

from outside the station. Specifically, the main contributions of this paper are as follows:

(1) Compared to the model proposed by (Wong et al., 2008; Wu et al., 2015a) whose objective is only

to minimize passenger transfer waiting time, the timetable coordination optimization model constructed in

this paper minimizes the transfer waiting time and access passenger waiting time to improve the operational

efficiency. By altering the weights of these two terms in the objective function, the metro operating company

can balance these two kinds of waiting times. In addition, our formulation introduces binary variables to

model constraints subject to transfers, arrival times and departure times, and headways explicitly.

(2) Compared to most of the above papers, this paper considers the uncertainty of the transfer walking

times between two connected lines at the interchange stations. The formulated robust model is transformed

into a deterministic model to obtain robust solutions, where the conservatism level of the solutions can be

adjusted by changing the robustness parameters.

(3) It is challenging to derive reasonable solutions within an acceptable computation time due to the

complexity of large-scale mixed integer programming models. To achieve computationally efficient train

timetable generation of a large-scale metro network, this paper applies a generalized Benders decomposition

technique to split the metro network problems into a subproblem with a convex quadratic programming

problem and a master problem to significantly improve the solution efficiency.
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Table 1: Comparison of recent publications on the timetable coordination problem and this paper

Publication Type of Model Objective Solution Approach

Wong et al. (2008) 0-1 MILP Minimize the total transfer waiting

time

Optimization-based heuristic method

Wu and Tang

(2012)

0-1 MINLP Minimize the total transfer waiting

time

Genetic algorithm

Wu et al. (2015b) Stochastic integer

programming model

Minimize the total waiting time cost Genetic algorithm with local search

Wu et al. (2015a) 0-1 MILP Minimize the maximal passenger

waiting time

Genetic algorithm

Shi et al. (2016) 0-1 MINLP Minimize the average waiting time of

the total boarding passengers

Genetic algorithm

Guo et al. (2016) 0-1 MINLP Maximize the transfer synchroniza-

tion events

Hybrid algorithm based on the Par-

ticle Swarm Optimization and Simu-

lated Annealing (PSO-SA)

Cao et al. (2019) 0-1 MILP Maximize synchronized meetings Genetic algorithm with a local search

strategy

Liu et al. (2020) 0-1 MILP Train connection, passenger control

strategy and number of stranded pas-

sengers

Lagrangian relaxation based algo-

rithm

This paper 0-1 MILP Minimize waiting time of trans-

fers and passengers at the non-

interchange stations

Benders decomposition technique

3. The timetable generation problem

In this section, the timetable generation problem for metro networks is defined by considering safety,

operation, and service quality concerning passenger waiting time. The passenger waiting time includes

transfer waiting time at the interchange stations and waiting time for access passengers outside the metro

network. The constraints on timetables and passenger transfer waiting times are constructed by introducing

binary variables.

3.1. Model assumptions

The assumptions of the timetable generation problem are as follows.

Assumption 1. The transfer choices of passengers are assumed to be known and fixed. For the frequent

and uniform metro services, passengers are more concerned with the waiting time, and they value their

waiting time significantly more than the on-board running time (Goodman and Murata, 2001; Hollander

and Liu, 2008). Based on this, we assume that passengers prefer not to transfer so that they would choose

a path with as few interchanges as possible (Wong et al., 2008), in the sense of less transfer waiting time.

The passengers are assumed to choose their paths by two criteria: the number of interchanges and the

number of stops during the trip. Passengers choose a path with as few interchanges as possible. When

the alternative paths take the same number of interchanges, passengers would choose the one with fewer

stops. This assumption allows us to compute the number of transfer passengers at each interchange station

based on origin-destination counts more easily. However, it cannot guarantee the minimum travel time.

Moreover, other more accurate methods can be used to calculate the number of transfer passengers, such as
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the minimum travel time. It does not affect the structure of our mathematical model but only changes the

coefficients in the objective function.

Assumption 2. To easily calculate the transfer waiting time and access passenger waiting time, we

assume that the train’s capacity can accommodate all passengers who want to get on the train. The

oversaturated condition tends to occur during the peak period (e.g., 08:00-09:00 in the Beijing metro).

However, the train capacity is sufficient in other periods, such as the transitional and off-peak periods. This

assumption applies to most periods when the train capacity is sufficient. To incorporate the oversaturated

condition during peak hours and relax this assumption in the proposed model, one may choose the proper

weighting coefficients in the objective function for the number of transfer passengers and average access

passenger arrival rates to calculate the passenger waiting time more realistically. For example, during the

peak hours of the oversaturated station, the weighting coefficient of the number of transfer passengers

includes not only the transfer passengers for the current train but also the transfer passengers for the ahead

train who failed to board it due to the capacity limitation.

Assumption 3. Each train is assumed to depart from its initial station and finish its service without

turning around. All trains run in a first-in-first-out manner without overtaking and crossing operations.

3.2. Mathematical formulations

The variables and parameters are listed in Table 2 for formulating the timetable optimization model.
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Table 2: Variables and parameters used in the paper

M the set of operation lines.

m,m′ index of different lines.

s, s′ index of stations on different lines.

Sm the set of stations of line m.

i, i′ index of trains on the different lines.

Nm the set of trains to be scheduled on line m.

T the set of transfer stations between two different lines, (m,m′, s) ∈ T .

System Parameters

em
′

m,s nominal walking time for passengers transfering from line m′ to m at transfer station

s.

êm
′

m,s maximum deviation of walking time for passengers transfering from line m′ to m at

transfer station s.

ẽm
′

m,s uncertain walking time for passengers transfering from line m′ to m at transfer station

s.

cm
′,i′

m,s the number of transfer passengers from train i′ on line m′ to line m at transfer station

s.

bmi,s average passenger arrival rate that passengers enter station s and wait for train i on

line m.

Hm,s
min , H

m,s
max the minimum and maximum headway at station s of line m.

Dm,s
min , D

m,s
max the minimum and maximum dwell time at station s of line m.

Rm,s
min, R

m,s
max the minimum and maximum running time between station s and s+ 1 on line m.

Tm
min, T

m
max the minimum and maximum total trip time of line m.

G the planning horizon.

Decision Variables

Am
i,s the arrival time of train i at station s on line m.

Lm
i,s the departure time of train i at station s on line m.

Rm
i,s the running time of train i from station s to s+ 1 on line m.

Dm
i,s the dwell time of train i at stations s on line m.

αm′,i′

m,i,s 0-1 binary variable, if train i′ on line m′ arrives at transfer station s early enough so

that passengers can transfer to train i on line m, αm′,i′

m,i,s = 1; otherwise, αm′,i′

m,i,s = 0.

βm′,i′

m,i,s 0-1 binary variable, if train i′ on line m′ can successfully connect with train i on line

m at transfer station s, βm′,i′

m,i,s = 1; otherwise, βm′,i′

m,i,s = 0.

3.2.1. Constraints for timetable

To ensure the continuity of train operation, the arrival time Am
i,s of train i on line m at station s is the

sum of the departure time Lm
i,s−1 of train i at station s− 1 on line m and the running time Rm

i,s−1 of train i

between station s−1 and s on line m, as shown in constraint (1). Constraint (2) demonstrates the departure

time of train i at station s on line m, and Dm
i,s represents the dwell time of train i at station s on line m.

For each route m ∈M , station s ∈ Sm and train i ∈ Nm,

Am
i,s = Lm

i,s−1 +Rm
i,s−1, ∀m ∈M, s− 1, s ∈ Sm, i ∈ Nm. (1)

Lm
i,s = Am

i,s +Dm
i,s, ∀m ∈M, s ∈ Sm, i ∈ Nm. (2)

Different from a single metro line where the running time between two adjacent stations is usually the
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same, the speed of trains running in the same segment could be different for better transfer coordination

in the case of a large-scale urban transit network problem. For instance, feeder train i′ on line m′ may run

faster than the previous train to catch the connecting train i on line m at transfer station s in the metro

network. By making the running time for each train between stations as variables, the proposed model can

be more generalized to cope with different situations. Specifically, the running time for trains in the same

segment can be set equivalent if necessary.

Constraint (3) ensures the headway at station s on line m is between the upper and lower bounds.

Lm
i,s − Lm

i−1,s is defined as the headway, which means the difference between the departure time of adjacent

trains i and i − 1 at the same station s on line m. For the sake of meeting operation safety and service

requirements, we define Hm,s
min and Hm,s

max as the minimum and maximum headway at station s on line m

respectively. For each route m ∈M , station s ∈ Sm and train i ∈ Nm,

Hm,s
min ≤ Lm

i,s − Lm
i−1,s ≤ Hm,s

max, ∀m ∈M, s ∈ Sm, i− 1, i ∈ Nm. (3)

Constraint (4) sets the upper and lower bounds of the total travel time on line m (i.e., Tm
min and Tm

max)

and it ensures the time for train i from its arrival at the last station Am
i,last to its departure from the first

station Lm
i,1 on line m is within a reasonable total trip time. For each route m ∈M , s ∈ Sm and i ∈ Nm,

Tm
min ≤ Am

i,last − Lm
i,1 ≤ Tm

max, ∀m ∈M, i ∈ Nm. (4)

In addition, the dwell times and running times have to satisfy safety and operation needs, constraints (5)

and (6) enforce the given upper and lower limits. The minimum and maximum dwell time and running time

are introduced as Dm,s
min, D

m,s
max and Rm,s

min, R
m,s
max respectively. For each route m ∈M , s ∈ Sm and i ∈ Nm,

Dm,s
min ≤ Dm

i,s ≤ Dm,s
max, ∀m ∈M, s ∈ Sm, i ∈ Nm. (5)

Rm,s
min ≤ Rm

i,s ≤ Rm,s
max, ∀m ∈M, s ∈ Sm, i ∈ Nm. (6)

For each route m ∈M , constraint (7) ensures all trains complete their trips within the planned horizon

G, and Am
last,last means the arrival time of the last train at the terminal station on line m.

0 ≤ Am
last,last ≤ G, ∀m ∈M. (7)

3.2.2. Constraints for transfer waiting time

The transfer waiting time here is defined as the minimum possible transfer time based on the given

assumptions. The time em
′

m,s that passengers alighting from the feeder train on line m′ to the boarding area

of connecting trains on line m at the transfer station s is related to the walking transfer distance and train

dwelling time (Du et al., 2009). Especially in crowded conditions, the passenger walking times are different

because they are affected by pushing or squeezing and their physical characteristics. Therefore, the transfer

walking times are taken as uncertain parameters here.

In the case of line m and line m′ intersecting at station s, if the transfer behaviors of passengers are

feasible from line m′ to m, it is necessary that when passengers get off train i′ on line m′ and walk to the

platform on line m, train i has not left the platform of transfer station s. To represent the train connections

at the interchange stations, binary variable αm′,i′

m,i,s is defined as the following constraint (8).

M(αm′,i′

m,i,s − 1) ≤ Lm
i,s −Am′

i′,s − ẽm
′

m,s ≤Mαm′,i′

m,i,s ∀(m,m′, s) ∈ T , i ∈ Nm, i′ ∈ Nm′ . (8)
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where M is a large positive number and ẽm
′

m,s refers to the uncertain transfer walking times. Am′

i′,s + ẽm
′

m,s is

the earliest time that passengers arriving at interchange station s from feeder train i′ on line m′ can transfer

successfully and Lm
i,s is the departure time of the connecting train i on line m. Note that if αm′,i′

m,i,s = 1,

then Lm
i,s − Am′

i′,s − ẽm
′

m,s ≥ 0; it means feeder train i′ on line m′ arrives early enough while the connecting

train i on line m departs late enough at transfer station s and passengers can catch the connecting train. If

αm′,i′

m,i,s = 0, then Lm
i,s −Am′

i′,s − ẽm
′

m,s < 0, and the case is opposite to the previous.

Based on the above definition of αm′,i′

m,i,s, β
m′,i′

m,i,s is formulated as constraint (9).

βm′,i′

m,i,s = αm′,i′

m,i,s − αm′,i′

m,i−1,s ∀(m,m′, s) ∈ T , i− 1, i ∈ Nm, i′ ∈ Nm′ . (9)

where βm′,i′

m,i,s represents the actual connections between two lines according to Assumption 2 that there are

no passenger capacity limitations and all the passengers get on the first available train. If train i on line m,

rather than train i − 1, is the first available train to connect with train i′ on line m′, we obtain βm′,i′

m,i,s = 1

and βm′,i′

m,i+1,s = 0 based on constraint (9). According to the meaning of αm′,i′

m,i,s, it holds that if αm′,i′

m,i,s = 0,

one has αm′,i′

m,i−1,s = 0, i.e., βm′,i′

m,i,s = 0. Similarly, if αm′,i′

m,i,s = 1, one has αm′,i′

m,i−1,s = 1 or αm′,i′

m,i−1,s = 0, i.e.,

βm′,i′

m,i,s takes a value of 0 or 1. Thus, βm′,i′

m,i,s only takes a value of 0 or 1.

On account of constraints (8) and (9), if train i on line m is the first connection with train i′ on line m′,

it is equivalent to the following equations. For each transfer pair (m,m′, s) ∈ T , βm′,i′

m,i,s and αm′,i′

m,i,s satisfy

the following equation,

βm′,i′

m,i,s =


1,

∑
(m,m′,s)∈T

∑
i′∈Nm′

∑
i∈Nm

αm′,i′

m,i,s > 0,

0,
∑

(m,m′,s)∈T

∑
i′∈Nm′

∑
i∈Nm

αm′,i′

m,i,s = 0.
(10)

3.2.3. Objective functions

The objective of our model is to minimize the passenger waiting time, including the transfer waiting

time and the waiting time for access passengers outside the metro network. Thus, the objective function is

indicated as follows:

Q =
∑

(m,m′,s)∈T

∑
i′∈Nm′

∑
i∈Nm

ρ1c
m′,i′

m,s

(
Lm
i,s −Am′

i′,s − ẽm
′

m,s

)
βm′,i′

m,i,s +
∑
m∈M

∑
i∈Nm

∑
s∈Sm

ρ2
bmi,s
2

(Lm
i,s − Lm

i−1,s)
2, (11)

where cm
′,i′

m,s is the transfer passenger demands in trains i′ on line m′ aiming for line m at transfer station

s, and bmi,s is the average passenger arrival rate for passengers entering station s and waiting for train i

on line m. The first term represents the waiting time for all the transfer passengers. If feeder train i′

on line m′ can connect with train i on line m successfully, the transfer waiting time can be calculated as

Lm
i,s − Am′

i′,s − ẽm
′

m,s ≥ 0, while the transfer waiting time from train i′ on line m′ to the other trains equals

0. The second term of the objective represents the waiting time for access passengers outside the metro

network. The number of passengers arriving at the stations is assumed to satisfy a uniform distribution (Niu

et al., 2015) during the time interval Lm
i,s − Lm

i−1,s, where bmi,s is the average passenger arrival rate, which

can be estimated from historical statistical data. In particular, for variant headway, we use the average

passenger arrival rate to represent the number of passengers arriving at stations during the time interval to

calculate the passenger waiting time easily. The term bmi,s(L
m
i,s − Lm

i−1,s) represents the average number of

access passengers. Thus, the total waiting time of access passengers during the time interval Lm
i,s − Lm

i−1,s

equals the average number of access passengers bmi,s(L
m
i,s−Lm

i−1,s) multiplied by the average waiting time for

10



each passenger 1
2 (L

m
i,s − Lm

i−1,s), i.e.,
bmi,s
2 (Lm

i,s − Lm
i−1,s)

2. In addition, there exists globally optimal solution

to the convex quadratic program, which can be solved quickly using existing optimization tools. Minimizing

the transfer waiting time could increase the connections of trains and lengthen the dwell time and headway

at the expense of the travel experience of the passengers who do not need to transfer. The pre-specified

weights ρ1 and ρ2 can balance the transfer waiting time and the access passenger waiting time for the metro

network.

In light of frequent and uniform metro services with a large number of commuters, passengers are

more concerned with the waiting time (including the transfer waiting time and the waiting time for access

passengers outside the metro network) instead of in-vehicle time. The waiting time has become an important

evaluation criterion for the passenger service quality of metro networks. Therefore, for the high-frequent

metro networks with abundant commuters, it is reasonable to assume that passengers are not especially

conscious of the timetable, and passengers’ transfer choice behaviors are not sensitive to minor changes in the

timetable. Based on this, the numbers of transfer passengers among different lines cm
′,i′

m,s are predetermined

constants based on the original timetable (Wong et al., 2008; Fonseca et al., 2018; Abdolmaleki et al.,

2020), which are regarded as weighting coefficients in the objective function. Because the formulated train

timetable scheduling model is a planning model, the model and method presented in this paper are effective

and easy to implement with this assumption. To incorporate the case that passengers cannot transfer

successfully for the first time, which usually occurs during peak hours, an appropriate weighting coefficient

in the objective function for the number of transfer passengers should be chosen to calculate the passenger

waiting time more realistically. For example, for the oversaturated interchange stations during peak hours,

the weighting coefficient of the number of transfer passengers includes not only the transfer passengers

for the current train but also the transfer passenger who failed to board the previous train due to the

capacity limitation, which can be estimated by historical statistics. Then, along with the Assumption 2

that all the passengers who want to transfer can get on the first connecting train, and under constraints

(8) and (9), we can obtain that
∑

i∈Nm

βm′,i′

m,i,s = 1 for any given cm
′,i′

m,s only if there exists a successfully

connected train i on line m at transfer station s, i ∈ Nm (i.e., Lm
i,s−Am′

i′,s− em
′

m,s > 0). Correspondingly, the

transfer waiting time for all the transfer passengers cm
′,i′

m,s to the successfully connected train i are counted

in the objective function, which is cm
′,i′

m,s

(
Lm
i,s −Am′

i′,s − em
′

m,s

)
. Therefore, the minimization of objective∑

(m,m′,s)∈T

∑
i′∈Nm′

∑
i∈Nm

βm′,i′

m,i,sc
m′,i′

m,s

(
Lm
i,s −Am′

i′,s − em
′

m,s

)
implies to choose a better connected train i on line

m with less transfer waiting time for the given number of transfer passengers cm
′,i′

m,s . For example, for a larger

number of transfer passengers cm
′,i′

m,s , we should reduce the term Lm
i,s − Am′

i′,s − em
′

m,s under βm′,i′

m,i,s = 1, i.e.,

adopt a shorter time interval between the departure time of successfully connected train i on line m and the

arrival time of feeding train i′ on line m′ at transfer station s for the given parameter em
′

m,s, so as to achieve

the minimization of total transfer waiting time, which is in accordance with the practice. The first term

of the objective function is to minimize the waiting time of all the successfully transferring passengers. In

addition, the objective to maximize the number of successful transfer connections between different lines has

been taken into account for the last train timetabling optimization problem (Kang et al., 2015a,b), which is

out of the scope of this paper.

3.3. Timetable coordination optimization model

With objective function (11) and the constraints of arrival and departure times (1)-(2), transfer waiting

time constraints (8) - (9) and bound constraints (3)-(7), the complete timetable coordination optimization

11



model is constructed as follows.

Min Q =
∑

(m,m′,s)∈T

∑
i′∈Nm′

∑
i∈Nm

ρ1c
m′,i′

m,s

(
Lm
i,s −Am′

i′,s − ẽm
′

m,s

)
βm′,i′

m,i,s +
∑

m∈M

∑
i∈Nm

∑
s∈Sm

ρ2
bmi,s
2 (Lm

i,s − Lm
i−1,s)

2

s.t.



Am
i,s = Lm

i,s−1 +Rm
i,s−1, ∀m ∈M, s− 1, s ∈ Sm, i ∈ Nm,

Lm
i,s = Am

i,s +Dm
i,s, ∀m ∈M, s ∈ Sm, i ∈ Nm,

Hm,s
min ≤ Lm

i,s − Lm
i−1,s ≤ Hm,s

max, ∀m ∈M, s ∈ Sm, i− 1, i ∈ Nm,

Dm,s
min ≤ Dm

i,s ≤ Dm,s
max, ∀m ∈M, s ∈ Sm, i ∈ Nm,

Rm,s
min ≤ Rm

i,s ≤ Rm,s
max, ∀m ∈M, s ∈ Sm, i ∈ Nm,

Tm,s
min ≤ Lm

i,last −Am
i,1 ≤ Tm,s

max, ∀m ∈M, i ∈ Nm,

0 ≤ Am
last,last ≤ G, ∀m ∈M,

M(αm′,i′

m,i,s − 1) ≤ Lm
i,s −Am′

i′,s − ẽm
′

m,s ≤Mαm′,i′

m,i,s, ∀(m,m′, s) ∈ T , i ∈ Nm, i′ ∈ Nm′ ,

βm′,i′

m,i,s = αm′,i′

m,i,s − αm′,i′

m,i−1,s, ∀(m,m′, s) ∈ T , i− 1, i ∈ Nm, i′ ∈ Nm′ .

(12)

The above robust optimization model is an uncertain mixed integer nonlinear programming problem

whose objective function is nonlinear, where ẽm
′

m,s is an uncertain parameter. Since the constraints with

uncertain parameters have to be satisfied for any feasible values, this optimization problem includes an

infinite number of constraints, which leads to an intractable problem in general. To handle this issue, the

robust counterpart of the model is further derived in the next section based on a robust optimization method.

3.4. Robust counterpart of the optimization model

Since the transfer walking time ẽm
′

m,s is uncertain in the proposed timetable coordination optimization

model, the robust counterpart of the model (12) is developed in this section. We describe the robust timetable

optimization model as a maximum and minimum optimization model and convert it into a deterministic

model using the duality theory proposed by Bertsimas and Sim (2004).

The uncertainty of the transfer passenger walking time between two lines at the transfer stations can be

defined as ẽm
′

m,s ∈
[
em

′

m,s − êm
′

m,s, e
m′

m,s + êm
′

m,s

]
, where em

′

m,s is the nominal value of the transfer walking time

and êm
′

m,s represents the maximum fluctuation. Let Jm′

m,s be the set of the coefficients ẽm
′

m,s which are subject

to parameter uncertainty. The parameter Γm′

m,s taking a value in the interval
[
0, |Jm′

m,s|
]
is introduced to

regulate the degree of disturbance of the transfer walking time of each interchange station and control the

level of conservatism of the robust model. Γm′

m,s for all the interchange stations in the metro network satisfy

the following constraint, ∑
(m,m′,s)∈T

Γm′

m,s = Γ. (13)

Generally speaking, it means the transfer walking times of up to Γ interchange nodes (there are two

interchange nodes between two connecting lines) on the metro network can be at their worst simultaneously.

The decision makers predetermine the value of Γ, reflecting their risk preferences. If the decision maker is

more conservative, Γ is set as a relatively large value. The part of the model (12) with uncertain parameters

is shown as follows.

Min Qr =
∑

(m,m′,s)∈T

∑
i′∈Nm′

∑
i∈Nm

ρ1c
m′,i′

m,s

(
−ẽm′

m,s

)
βm′,i′

m,i,s

s.t.

{
M(αm′,i′

m,i,s − 1)− Lm
i,s +Am′

i′,s + ẽm
′

m,s ≤ 0, ∀(m,m′, s) ∈ T , i ∈ Nm, i′ ∈ Nm′ ,

−Mαm′,i′

m,i,s + Lm
i,s −Am′

i′,s − ẽm
′

m,s ≤ 0, ∀(m,m′, s) ∈ T , i ∈ Nm, i′ ∈ Nm′ .
(14)
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The robust optimization method aims to optimize the objective function under the worst case of uncertain

parameters (which is the Min-Max problem here). It seeks a solution that is not necessarily optimal but

must be feasible for arbitrary values of uncertain parameters. It is challenging to solve the above model,

and we transform (14) into a robust counterpart that can be solved directly, presented as follows.

Min Qr = Max −Qr =
∑

(m,m′,s)∈T

∑
i′∈Nm′

∑
i∈Nm

ρ1c
m′,i′

m,s em
′

m,sβ
m′,i′

m,i,s

+min
S

∑
i′∈Nm′

∑
i∈Nm

{ ∑
s∈K

(
ρ1c

m′,i′

m,s êm
′

m,sβ
m′,i′

m,i,s + (Γm′

m,s − ⌊Γm′

m,s⌋)ρ1c
m′,i′

m,ts ê
m′

m,tsβ
m′,i′

m,i,ts

)}
=

∑
(m,m′,s)∈T

∑
i′∈Nm′

∑
i∈Nm

ρ1c
m′,i′

m,s em
′

m,sβ
m′,i′

m,i,s

−max
S

∑
i′∈Nm′

∑
i∈Nm

{ ∑
s∈K

(
ρ1c

m′,i′

m,s êm
′

m,sβ
m′,i′

m,i,s + (Γm′

m,s − ⌊Γm′

m,s⌋)ρ1c
m′,i′

m,ts ê
m′

m,tsβ
m′,i′

m,i,ts

)}

s.t.


M(αm′,i′

m,i,s − 1)− Lm
i,s +Am′

i′,s + em
′

m,s +max
S

{
êm

′

m,s + (Γm′

m,s − ⌊Γm′

m,s⌋)êm
′

m,ts

}
≤ 0,

∀(m,m′, s) ∈ T , i ∈ Nm, i′ ∈ Nm′ ,

−Mαm′,i′

m,i,s + Lm
i,s −Am′

i′,s − em
′

m,s +max
S

{
êm

′

m,s + (Γm′

m,s − ⌊Γm′

m,s⌋)êm
′

m,ts

}
≤ 0,

∀(m,m′, s) ∈ T , i ∈ Nm, i′ ∈ Nm′ .

(15)

where the subset S =
{
Km′

m,s ∪ {tm
′

m,s}|Km′

m,s ⊆ Jm′

m,s, |Km′

m,s| = ⌊Γm′

m,s⌋, tm
′

m,s ∈ Jm′

m,s \Km′

m,s

}
. Jm′

m,s is the set

of the coefficients ẽm
′

m,s which are subject to parameter uncertainty and Km′

m,s is the set of the uncertain

parameters ẽm
′

m,s which are changed. ⌊·⌋ means the largest integer less than this number. Then, up to ⌊Γm′

m,s⌋
of these coefficients are allowed to change, and one coefficient em

′

m,ts changes by (Γm′

m,s − ⌊Γm′

m,s⌋)êm
′

m,ts .

The following propositions are presented to further reformulate the model (15) into a linear programming

model.

Proposition 1. Given the optimal vector β∗, the protection function

π1(β
∗,Γm′

m,s) = max
S

∑
i′∈Nm′

∑
i∈Nm

{∑
s∈K

(
ρ1c

m′,i′

m,s êm
′

m,sβ
m′,i′∗
m,i,s + (Γm′

m,s − ⌊Γm′

m,s⌋)ρ1c
m′,i′

m,ts ê
m′

m,tsβ
m′,i′∗
m,i,s

)}
, (16)

in (15) is equivalent to the following linear programming problem by introducing auxiliary variables pm
′

m,s

and Xm′

m,s, where βm′,i′∗
m,i,s is the optimal solution to the timetable optimization model (12).

min
∑

(m,m′,s)∈T

pm
′

m,s + Γm′

m,sX
m′

m,s

s.t.


Xm′

m,s + pm
′

m,s ≥
∑

i′∈Nm′

∑
i∈Nm

(ρ1c
m′,i′

m,s βm′,i′

m,i,s)ê
m′

m,s, ∀(m,m′, s) ∈ T ,

pm
′

m,s ≥ 0, ∀(m,m′, s) ∈ T ,

Xm′

m,s ≥ 0, ∀(m,m′, s) ∈ T .

(17)

Proof. In order to transform the nonlinear term (16) into a linear program for ease of solving, the follow-

ing linear programming problem is constructed by introducing variables zm
′

m,s according to the proposition

by Bertsimas and Sim (2004).

π1(β
∗,Γm′

m,s) = max
∑

(m,m′,s)∈T

( ∑
i′∈Nm′

∑
i∈Nm

ρ1c
m′,i′

m,s βm′,i′∗
m,i,s

)
êm

′

m,sz
m′

m,s

s.t.

{
zm

′

m,s ≤ Γm′

m,s, ∀(m,m′, s) ∈ T ,

0 ≤ zm
′

m,s ≤ 1, ∀(m,m′, s) ∈ T .
(18)
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The optimal solution for variables zm
′

m,s to the above problem (18) contains ⌊Γm′

m,s⌋ variables equal to 1

and only one variable equal to (Γm′

m,s−⌊Γm′

m,s⌋) (Bertsimas and Sim, 2004). The solution is equivalent to the

selection of the subset S =
{
Km′

m,s ∪ {tm
′

m,s}|Km′

m,s ⊆ Jm′

m,s, |Km′

m,s| = ⌊Γm′

m,s⌋, tm
′

m,s ∈ Jm′

m,s \Km′

m,s

}
, correspond-

ing to the objective function
∑
s∈K

∑
i′∈Nm′

∑
i∈Nm

ρ1c
m′,i′

m,s βm′,i′

m,i,sê
m′

m,s + (Γm′

m,s−⌊Γm′

m,s⌋)ρ1c
m′,i′

m,ts β
m′,i′

m,i,ts
êm

′

m,ts . Hence,

function (16) equals the objective of the linear programming problem (18) with variables zm
′

m,s.

If Γ = 0, which means Γm′

m,s = 0, ∀(m,m′, s) ∈ T , then ẽm
′

m,s = em
′

m,s and π1(β
∗,Γm′

m,s) = 0, the mod-

el (14) is equivalent to the deterministic model when the transfer walking time is at the nominal value

em
′

m,s. Let P be the sum of the transfer nodes in the entire metro network. If Γ = P , which means

Γm′

m,s = |Jm′

m,s|,∀(m,m′, s) ∈ T , then ẽm
′

m,s ∈
[
em

′

m,s − êm
′

m,s, e
m′

m,s + êm
′

m,s

]
and all the transfer walking times

are uncertain parameters. Note that if Γ ∈ [0, P ], the level of conservatism of the robust solution can be

adjusted through varying the value Γ to balance the robustness and quality of the solution.

Moreover, for obtaining a deterministic equation system, the strong duality theory of linear programming

is used to transform (18) into (17) by introducing dual variables pm
′

m,s and Xm′

m,s. Problem (18) is feasible

and bounded for all Γm′

m,s ∈
[
0, |Jm′

m,s|
]
, then the dual problem (17) is also feasible and bounded and their

objective values coincide. Thus, we conclude that the function π1(β
∗,Γm′

m,s) is equal to the objective function

value of problem (17). �
Similarly, another set of constraints with uncertain parameters can be given as the following proposition.

Proposition 2. The protection function

π2(Γ
m′

m,s) = max
S

{
êm

′

m,s + (Γm′

m,s − ⌊Γm′

m,s⌋)êm
′

m,t

}
, (19)

in (15) is equivalent to the objective function of the following linear programming problem by introducing

decision variables zm
′

m,s,

π2(Γ
m′

m,s) = max êm
′

m,sz
m′

m,s

s.t.

{
zm

′

m,s ≤ Γm′

m,s, ∀(m,m′, s) ∈ T ,

0 ≤ zm
′

m,s ≤ 1, ∀(m,m′, s) ∈ T ,
(20)

and the dual problem of (20) is formulated as (21) by introducing dual variables qm
′

m,s and V m′

m,s.

min qm
′

m,s + Γm′

m,sV
m′

m,s

s.t.


V m′

m,s + qm
′

m,s ≥ êm
′

m,s, ∀(m,m′, s) ∈ T ,

qm
′

m,s ≥ 0, ∀(m,m′, s) ∈ T ,

V m′

m,s ≥ 0, ∀(m,m′, s) ∈ T .

(21)

According to Propositions 1 and 2, the complete robust counterpart of (12) can be equivalently converted
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to the following linear formulation after some simplifications.

Min
∑

(m,m′,s)∈T

∑
i′∈Nm′

∑
i∈Nm

ρ1c
m′,i′

m,s

(
Lm
i,s −Am′

i′,s − em
′

m,s

)
βm′,i′

m,i,s

+
∑

m∈M

∑
i∈Nm

∑
s∈Sm

ρ2
bmi,s
2 (Lm

i,s − Lm
i−1,s)

2 +
∑

(m,m′,s)∈T

(pm
′

m,s + Γm′

m,sX
m′

m,s)

s.t.



Xm′

m,s + pm
′

m,s ≥
∑

i′∈Nm′

∑
i∈Nm

(ρ1c
m′,i′

m,s βm′,i′

m,i,s)ê
m′

m,s ∀(m,m′, s) ∈ T

pm
′

m,s ≥ 0 ∀(m,m′, s) ∈ T

Xm′

m,s ≥ 0 ∀(m,m′, s) ∈ T

M(αm′,i′

m,i,s − 1)− Lm
i,s +Am′

i′,s + em
′

m,s + qm
′

m,s + Γm′

m,sV
m′

m,s ≤ 0

∀(m,m′, s) ∈ T , i ∈ Nm, i′ ∈ Nm′

−Mαm′,i′

m,i,s + Lm
i,s −Am′

i′,s − em
′

m,s + qm
′

m,s + Γm′

m,sV
m′

m,s ≤ 0

∀(m,m′, s) ∈ T , i ∈ Nm, i′ ∈ Nm′

V m′

m,s + qm
′

m,s ≥ êm
′

m,s ∀(m,m′, s) ∈ T

qm
′

m,s ≥ 0 ∀(m,m′, s) ∈ T

V m′

m,s ≥ 0 ∀(m,m′, s) ∈ T

Constraints (1)− (7), (9), (13).

(22)

The above MINLP model (22) with binary variables is a computationally difficult problem to solve when

there are numerous routes and transfer stations for large-scale cases. In order to alleviate the computational

burden, a Benders decomposition based approach is proposed in the following section.

4. Generalized Benders decomposition based solution approach

The Benders decomposition algorithm was first proposed by Benders (1962), and it can be an efficient

method to solve mixed integer linear programming (MILP) problems. Geoffrion (1972) generalized the

decomposition technique to nonlinear problems. The generalized Benders decomposition (GBD) technique

divides the original problem into two parts, which are the subproblem (SP) and the master problem (MP).

With some variables, especially integer variables temporarily fixed to given values, the problem referred to

as the SP can be easily solved.

The MP is formulated to optimize the integer variables with the other decision variables solved in the

SP. The constraints in the MP include Benders cuts and original constraints that only involve the integer

variables. The Benders cuts are added to the MP iteratively as new constraints. They comprise feasibility

and optimality cuts constructed by the SP solutions. If the SP is infeasible, then a feasibility Benders cut is

generated using the extreme rays. If the SP is solved optimally, an optimality Benders cut is generated with

optimal multipliers. Thus, the solution of the integer variables to the MP is taken as new fixed values, and

the SP is solved again. By repeating the above process and adding new Benders cuts, the feasible region

of the MP becomes smaller and smaller. The algorithm is terminated when it converges to the optimal

solution, which means the solution to the MP for integer variables is the same as the former iteration, or

the difference between the MP and the SP reaches a precision requirement.

4.1. The subproblem (SP)

The discussed algorithm is applied to the robust counterpart model (22) for the timetable optimization

problem. According to the definition and application of GBD, the binary decision variables αm′,i′

m,i,s defining
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whether two trains can connect with each other or not are the variables fixed in the SP. The other decision

variables Am
i,s, L

m
i,s, R

m
i,s, and Dm

i,s (m ∈M, s ∈ Sm, i ∈ Nm) can be derived from the SP.

First, αm′,i′

m,i,s are assigned to arbitrary values ᾱm′,i′

m,i,s, which are set the original connections between two

trains according to the original timetable. While the fixed values may lead to the infeasibility of the SP,

artificial variables vm
′,i′

m,i,s and wm′,i′

m,i,s are introduced into the coupling constraints as well as the objective

function. The SP is formulated as follows:

Min
∑

(m,m′,s)∈T

∑
i′∈Nm′

∑
i∈Nm

ρ1c
m′,i′

m,s

(
Lm
i,s −Am′

i′,s − em
′

m,s

)
βm′,i′

m,i,s +M
(
vm

′,i′

m,i,s + wm′,i′

m,i,s

)
+
∑

m∈M

∑
i∈Nm

∑
s∈Sm

ρ2
bmi,s
2 (Lm

i,s − Lm
i−1,s)

2 +
∑

(m,m′,s)∈T

(pm
′

m,s + Γm′

m,sX
m′

m,s)

s.t.



Xm′

m,s + pm
′

m,s ≥
∑

i′∈Nm′

∑
i∈Nm

(ρ1c
m′,i′

m,s βm′,i′

m,i,s)ê
m′

m,s : γ
m′

m,sγm′

m,sγm′

m,s, ∀(m,m′, s) ∈ T ,

pm
′

m,s ≥ 0, ∀(m,m′, s) ∈ T ,

Xm′

m,s ≥ 0, ∀(m,m′, s) ∈ T ,

M(αm′,i′

m,i,s − 1)− Lm
i,s +Am′

i′,s + em
′

m,s + qm
′

m,s + Γm′

m,sV
m′

m,s − vm
′,i′

m,i,s ≤ 0 : δm
′,i′

m,i,sδm
′,i′

m,i,sδm
′,i′

m,i,s,

∀(m,m′, s) ∈ T , i ∈ Nm, i′ ∈ Nm′ ,

−Mαm′,i′

m,i,s + Lm
i,s −Am′

i′,s − em
′

m,s + qm
′

m,s + Γm′

m,sV
m′

m,s − wm′,i′

m,i,s ≤ 0 : ηm
′,i′

m,i,sηm
′,i′

m,i,sηm
′,i′

m,i,s,

∀(m,m′, s) ∈ T , i ∈ Nm, i′ ∈ Nm′ ,

V m′

m,s + qm
′

m,s ≥ êm
′

m,s, ∀(m,m′, s) ∈ T ,

qm
′

m,s ≥ 0, ∀(m,m′, s) ∈ T ,

V m′

m,s ≥ 0, ∀(m,m′, s) ∈ T ,

vm
′,i′

m,i,s ≥ 0, ∀(m,m′, s) ∈ T , i ∈ Nm, i′ ∈ Nm′ ,

wm′,i′

m,i,s ≥ 0, ∀(m,m′, s) ∈ T , i ∈ Nm, i′ ∈ Nm′ ,

βm′,i′

m,i,s = αm′,i′

m,i,s − αm′,i′

m,i−1,s : ζ
m′,i′

m,i,sζm
′,i′

m,i,sζm
′,i′

m,i,s, ∀(m,m′, s) ∈ T , i ∈ Nm, i′ ∈ Nm′ ,

αm′,i′

m,i,s = ᾱm′,i′

m,i,s : λ
m′,i′

m,i,sλm′,i′

m,i,sλm′,i′

m,i,s, ∀(m,m′, s) ∈ T , i ∈ Nm, i′ ∈ Nm′ ,

Constraints (1)− (7), (13).

(23)

In the above formulation, M is a large positive number and if ᾱm′,i′

m,i,s are feasible to the subproblem, it

can be obtained that vm
′,i′

m,i,s = 0 and wm′,i′

m,i,s = 0. With fixed values ᾱm′,i′

m,i,s, we can attain a mixed integer

nonlinear programming subproblem that is much easier to handle than the original mixed integer nonlinear

programming problem. The constraints of the SP are linear and the optimal values of the dual variables can

be obtained according to the application of the well-known KKT conditions. Let γm′

m,s, δ
m′,i′

m,i,s, η
m′,i′

m,i,s, ζ
m′,i′

m,i,s,

and λm′,i′

m,i,s be the dual variables assigned to the constraints in formulation (23) respectively, which are in

bold in (23). They are used to establish a Lagrangian dual problem as dual multipliers. The domain of each

dual variable depends on the property of the related constraint and for example λm′,i′

m,i,s ∈ R.

Applying the KKT conditions for the SP and considering the optimal values Ām
i,s and L̄m

i,s solved by the
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SP, the optimal dual variables above can be obtained by solving the following equations.

λm′,i′

m,i,s = M
(
ηm

′,i′

m,i,s − δm
′,i′

m,i,s

)
+ ζm

′,i′

m,i,s − ζm
′,i′

m,i+1,s, ∀(m,m′, s) ∈ T , i, i+ 1 ∈ Nm, i′ ∈ Nm′ ,

ζm
′,i′

m,i,s = ρ1c
m′,i′

m,s

(
Lm
i,s −Am′

i′,s − em
′

m,s

)
+ ρ1c

m′,i′

m,s êm
′

m,sγ
m′

m,s, ∀(m,m′, s) ∈ T , i ∈ Nm, i′ ∈ Nm′ ,[ ∑
i′∈Nm′

∑
i∈Nm

(ρ1c
m′,i′

m,s βm′,i′

m,i,s)ê
m′

m,s −Xm′

m,s − pm
′

m,s

]
γm′

m,s = 0, ∀(m,m′, s) ∈ T ,[
M(αm′,i′

m,i,s − 1)− Lm
i,s +Am′

i′,s + em
′

m,s + qm
′

m,s + Γm′

m,sV
m′

m,s − vm
′,i′

m,i,s

]
δm

′,i′

m,i,s = 0,

∀(m,m′, s) ∈ T , i ∈ Nm, i′ ∈ Nm′ ,(
−Mαm′,i′

m,i,s + Lm
i,s −Am′

i′,s − em
′

m,s + qm
′

m,s + Γm′

m,sV
m′

m,s − wm′,i′

m,i,s

)
ηm

′,i′

m,i,s = 0,

∀(m,m′, s) ∈ T , i ∈ Nm, i′ ∈ Nm′ ,

γm′

m,s, δm
′,i′

m,i,s, ηm
′,i′

m,i,s ≥ 0, ∀(m,m′, s) ∈ T , i ∈ Nm, i′ ∈ Nm′ ,

ζm
′,i′

m,i,s, λm′,i′

m,i,s ∈ R, ∀(m,m′, s) ∈ T , i ∈ Nm, i′ ∈ Nm′ .

(24)

When the integer variables αm′,i′

m,i,s are set as fixed values ᾱm′,i′

m,i,s, new constraints αm′,i′

m,i,s = ᾱm′,i′

m,i,s are added

into the optimization model (23). ᾱm′,i′

m,i,s are known constants, while αm′,i′

m,i,s and βm′,i′

m,i,s are still variables.

Thus, only the dual variables λm′,i′

m,i,s associated with the constraints αm′,i′

m,i,s = ᾱm′,i′

m,i,s are used in the master

problem of the GBD algorithm. Alternatively, if we directly replace the integer variables αm′,i′

m,i,s as the given

constants ᾱm′,i′

m,i,s in the optimization model (23), all the dual variables involving the constraints with constants

ᾱm′,i′

m,i,s need to be used in the master problem of the GBD algorithm. These two ways for determining the

dual variables used in the master problem are equivalent.

The SP is a more restricted problem than the original problem, and the optimal value of its objective

function value provides an upper bound of the original problem. Let the objective function values of the SP

be written as Zk(k = 1, ...,K) for the kth iteration, K means the maximum iteration, and the upper bound

UBk is constructed as follows:

UBk = Zk, k = 1, . . . ,K. (25)

4.2. The master problem (MP)

In the GBD algorithm, when some decision variables are temporarily fixed, there are three following

conditions:

• The SP is feasible and has one bounded and optimal solution. Then an optimality cut should be added

into the MP.

• The SP is feasible but unbounded. Then the algorithm stops due to the original problem becomes also

unbounded (Geoffrion, 1972).

• The SP is infeasible. Then a feasibility cut should be added into the MP.

Due to the fixed values of some of the integer variables, the coupling constraint (8) may not be feasible.

Given the optimal objective Z̄k(k = 1, ...,K) of the SP and the corresponding optimal multipliers concerning
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the constraints in the SP, the feasibility and optimality cut functions are constructed as follows, respectively:

Jk
fea(α

m′,i′

m,i,s) = δ̄
m′,i′(k)
m,i,s

[
M(αm′,i′

m,i,s − 1)− L̄
m(k)
i,s + Ā

m′(k)
i′,s + em

′

m,s + q̄m
′(k)

m,s + Γm′

m,sV̄
m′(k)
m,s

]
+η̄

m′,i′(k)
m,i,s

(
−Mαm′,i′

m,i,s + L̄
m(k)
i,s − Ā

m′(k)
i′,s − em

′

m,s + q̄m
′(k)

m,s + Γm′

m,sV̄
m′(k)
m,s

)
, (26)

Jk
op(α

m′,i′

m,i,s) = Z̄k +
∑

(m,m′,s)∈T

∑
i′∈Nm′

∑
i∈Nm

λ̄
m′,i′(k)
m,i,s (αm′,i′

m,i,s − ᾱ
m′,i′(k)
m,i,s ). (27)

The Benders cuts along with the constraints of the original problem relating to αm′,i′

m,i,s construct the MP.

The objective function of the MP is to minimize µ with decision variables αm′,i′

m,i,s. At one iteration of the

algorithm, if the SP is infeasible (i.e., artificial variables vm
′,i′

m,i,s and wm′,i′

m,i,s in model (23) do not equal 0),

a new feasibility cut Jk
fea(α

m′,i′

m,i,s) ≤ 0 is added to the MP. If the SP can be solved to obtain an optimal

solution (i.e., artificial variables vm
′,i′

m,i,s and wm′,i′

m,i,s equal 0), a new optimality cut Jk
op(α

m′,i′

m,i,s) ≤ µ is added to

the MP. The number of feasibility cuts and optimality cuts increases with each iteration. Thus, the MP is

constructed with Kf feasibility cuts and Kp optimality cuts as follows,

Min µ

s.t.


Jj
fea(α

m′,i′

m,i,s) ≤ 0, ∀(m,m′, s) ∈ T , i ∈ Nm, i′ ∈ Nm′ ; j = 1, 2, ...,Kf ,

J t
op(α

m′,i′

m,i,s) ≤ µ, ∀(m,m′, s) ∈ T , i ∈ Nm, i′ ∈ Nm′ ; t = 1, 2, ...,Kp,

µ ≥ 0.

(28)

where Kf +Kp = K. µ is a scalar and its bound can be given from practical considerations here.

It should be noted that the MP is a slack version of the original problem, and it approximates below

from the objective function of the original problem. Thus, for the kth iteration, the optimal value of the

objective function of the problem (28) is a lower bound of the optimal objective function value of the original

problem, i.e.,

LBk = µk, k = 1, ...,K. (29)

4.3. Solution Algorithm

We summarize the steps of the generalized Benders decomposition technique based algorithm for the

train timetable coordination optimization problem as the following Algorithm 1.

For the train timetable coordination optimization problem of a large-scale metro network, the proposed

algorithm can quickly decompose the problem into the MP that determines the connection between trains

and the SP that generates timetables with arrival and departure times of each train. Note that the MP

with increasing Benders cuts here is NP-hard. The size of the formulated MP is relatively small, even for a

large-scale urban metro network. It can be efficiently solved using existing optimization tools, such as the

CPLEX solver. Once the integer variables are determined, it can finally converge to the optimal solution

within a finite number of iterations since the SP is a convex quadratic program, which can be solved fast

using commercial solvers. Therefore, the proposed algorithm provides important and practical decision

support for a computationally efficient train timetable generation of a large-scale metro network.

Based on the results proposed by Geoffrion (1972), we can straightforwardly obtain the following two

propositions.

Proposition 3. The objective function of subproblem (23) is finite and the corresponding optimal dual

multipliers can be found with fixed values ᾱm′,i′

m,i,s.
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Algorithm 1 Generalized Benders decomposition algorithm

Step 1: Initialization. Set the iteration counter k = 1 and a tolerance value ϵ, set the integer variables

αm′,i′

m,i,s as initial values ᾱ
m′,i′(k)
m,i,s .

Step 2: Solution to the Subproblem. If the SP is feasible with fixed ᾱ
m′,i′(k)
m,i,s according to (23), solve

the SP to obtain the objective function value Zk, decision variables A
m(k)
i,s and L

m(k)
i,s and dual variable

values λ
m′,i′(k)
m,i,s , δ

m′,i′(k)
m,i,s , η

m′,i′(k)
m,i,s . Otherwise, if the subproblem is infeasible with fixed ᾱ

m′,i′(k)
m,i,s , the solution

to the SP can be obtained by solving the relaxed subproblem. Update UBk.

Step 3: Generation of Benders cuts. With the solution to the SP, generate the feasibility cut

Jk
fea(α

m′,i′

m,i,s) ≤ 0 as Equation (26) or the optimality cut Jk
op(α

m′,i′

m,i,s) ≤ µ as Equation (27), then add the cut

into the MP in Step 4.

Step 4: Solution to the Master Problem. Solve the master problem (28) with all Benders cuts. Obtain

µk and the new values of the integer variables ᾱ
m′,i′(k+1)
m,i,s . Update LBk.

Step 5: Convergence check. If UBk − LBk ≤ ϵ, the algorithm terminates. Otherwise, the iteration

counter k ← k + 1, and the algorithm continues with Step 2-5.

Proposition 4. The solution technique converges to the optimal solution in a finite number of iterations

with an optimality gap ϵ.

5. Numerical simulations

In this section, we conduct two numerical experiments to illustrate the developed robust model and the

solution approach. Example 1 is a small metro network with 3 lines and 2 interchange stations used to

demonstrate the effectiveness of the Benders decomposition algorithm procedure and the robustness of the

proposed optimization model. Example 2 is used to validate the practicability of the developed robust model

and the solution method to a real-world metro network based on operation data (e.g., headway, running

time, dwell time restrictions, passenger demands) from the Beijing metro network. The proposed Benders

decomposition algorithm is implemented using MATLAB R2018b on a PC (1.6-GHz processor speed and

16-GB memory size) with the platform of Windows 10, and the formulated subproblems are solved using

YALMIP.

5.1. Example 1: a small metro network

To verify the effectiveness of the presented model and Benders decomposition algorithm for the timetable

coordination problem, we consider a metro network with 3 lines, 2 transfer stations, and 11 normal stations,

as shown in Figure 1. The interchange stations between lines 1, 2 and between lines 1, 3 are station s1

and s2 respectively. 10 trains are dispatched from the origin station of each line. According to the current

schedules and standards from a similar network structure in the Beijing metro network, the allowable range

of operational parameters and the nominal transfer walking times at two interchange stations are listed in

Table 3. The weight coefficients in the objective function (22) are set as ρ1 = 1 and ρ2 = 0.01 which ensures

the same magnitude order of the two terms. The arrival times of the first train at the origin station for

all the lines are set to the same value. The numbers of passengers transferring among the three lines at

interchange stations s1 and s2 are given in Table 4 during the transitional period. The average passenger

arrival rates bmi,s are time-dependent and different from lines and stations according to real-world data, and

they are not displayed here due to their large number. The model for the small network includes 800 binary
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Line 1

Line 2 Line 3

s1 s2

Regular station

Transfer station

Figure 1: Illustration of a simple metro network.

Table 3: Operational parameters in the small metro network

Parameters Range of standard values

Dwell time Dm
i,s [10, 60]s

Running time Rm
i,s [120, 300]s

Trip time Am
i,S − Lm

i,1 [600, 1500]s

nominal transfer walking time em
′

m,s e12,s1 = e21,s1 = 120s;e13,s2 = e31,s2 = 180s

variables regarding α and β and 613 continuous variables regarding L, A, R, D, p, q, V , W . 701 equality

constraints and 1667 inequality constraints are contained in the small case model.

Table 4: The number of passengers transferring at two interchange stations during transitional period (unit: person)

Station Transfer
Train

1 2 3 4 5 6 7 8 9 10

s1
1-2 25 28 14 28 20 13 9 17 25 15

2-1 2 15 15 8 13 8 7 14 12 9

s2
1-3 11 7 13 14 10 11 11 6 10 3

3-1 18 11 11 8 9 28 23 13 28 11

5.1.1. Comparison among peak, transitional, off-peak periods

Three periods (i.e., the peak hours, the transitional period, and the off-peak hours) are considered by

applying the deterministic model and proposed solution method. The time horizons and headway ranges for

the three periods are given in Table 5. The objective function values (Q), including transfer waiting time

(Q1) and access waiting time (Q2), are calculated with various numbers of transfer passengers cm
′,i′

m,s and

different average passenger arrival rates bmi,s corresponding to the three periods. The optimal solutions are

compared with the original timetables with the same headway and dwell time for trains at the same station.
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The total passenger waiting time is decreased by adjusting the arrival and departure time of each train

slightly without influencing the number of connections between the two trains under the proposed method.

The computational results in Table 5 show that the objective function value is improved by 10.68% during

peak hours, by 12.99% during the transitional period, and by 15.56% during off-peak hours. It is efficient

for our proposed deterministic model to coordinate the train timetables, reduce the transfer waiting time,

and access passenger waiting time. As expected, since the headway is the largest, the greatest improvement

on the objective function value is achieved during the off-peak period.

Table 5: Parameters and results of peak hours, transitional period and off-peak hours

Period Time horizon Headway range Q(s) Q1(s) Q2(s)

Peak 8:00-9:00

Line 1: [120,240] 4.62·104 3.72·103 4.25·106

Line 2: [240,390] Improvement Improvement Improvement

Line 3: [180,300] 10.66% 0.27% 11.49%

Transitional 9:00-11:00

Line 1: [210,450] 5.02·104 7.68·103 4.25·106

Line 2: [300,570] Improvement Improvement Improvement

Line 3: [240,450] 12.99% 2.15% 15.39%

Off-peak 11:00-13:00

Line 1: [420,600] 9.98·104 3.02·104 6.96·106

Line 2: [540,720] Improvement Improvement Improvement

Line 3: [420,660] 15.56% 16.07% 13.78%

Next, we conducted experiments for the three periods by considering deterministic model and robust

optimization model with Γ = 4 (i.e., Γ1
2,s1 = Γ2

1,s1 = Γ1
3,s2 = Γ3

1,s2 = 1 ) and 10% deviation of nominal

transfer walking time respectively. Table 6 shows the results of the deterministic model (the objective value

Qd, transfer waiting time Q1d and access passenger waiting time Q2d) and the robust model (Qr, Q1r, Q2r)

and the relative differences between the results of the two models for peak, transitional and off-peak periods.

It can be seen that the peak period is more sensitive than the other two periods to the disturbance of

transfer walking time. When the transfer walking time during peak hours fluctuates in a certain range, the

generated deterministic and robust timetables may be quite different from each other. It brings about a

dramatic increase in the transfer waiting time (Q1).

Table 6: Effect of uncertain transfer walking time on three different periods

Period Qd(s) Qr(s)
Qr−Qd

QR
Q1d(s) Q1r(s)

Q1r−Q1d
Q1r

Q2d(s) Q2r(s)
Q2r−Q2d

Q2r

Peak 4.62·104 7.64·104 39.47% 3.72·103 3.69·104 89.92% 4.25·106 3.94·106 -7.76%

Transitional 5.02·104 6.45·104 22.19% 7.68·103 2.13·104 64.00% 4.25·106 4.32·106 1.54%

Off-peak 9.98·104 10.05·104 0.74% 3.02·104 3.59·104 15.91% 6.96·106 6.98·106 0.25%

5.1.2. Computation performance of GBD algorithm

To test the performance of the generalized Benders decomposition algorithm, we compare the solution

by the proposed algorithm with a solution generated directly by the CPLEX solver. Using CPLEX 12.5, we

obtained the optimal solution with a computational time of 1073s while the Benders decomposition algorithm
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Figure 2: Evolution of the upper and lower bounds of the robust timetable coordination problem.

found the optimal solution in a relatively short computational time of 6.21s. The optimal objective value

solved by both methods is 5.02·104s, the total transfer waiting time is 7.68·103s and the total access passenger

waiting time is 4.25·106s. 4 optimality cuts and 19 feasibility cuts are added during the computational process

for the small network. It can be inferred that in the face of large-scale metro network cases, the Benders

decomposition technique has a more significant advantage than the CPLEX solver on the computation

time. The evolution of the upper and lower bounds UBk and LBk is shown in Figure 2 and the algorithm

is terminated when UB23 = LB23. Figure 2 shows the convergence procedure of the proposed Benders

decomposition algorithm, and the best bound is obtained at the 23rd iteration.

5.1.3. Influences of robust parameters and deviation range of uncertain transfer walking time

In order to further explore the advantage of the robust optimization method, we first calculated the

optimal train timetables under three models respectively: the deterministic model with maximum transfer

walking time (DMM), the deterministic model with average transfer walking time (DMA), and the robust

optimization model (ROM) with uncertain transfer walking time. Then, with the calculated results, we

compared the several indicators for these three models, including total objective value (Q), transfer waiting

time (Q1), access passenger waiting time (Q2), and improvement between the robust model and other

two deterministic models. 10 randomly generated cases with different realized transfer walking times are

performed by taking 10% of the nominal transfer walking time as the maximum deviation range.

The comparison of the results in Table 7 shows that the ROM performs much better than the DMA.

Under the DMA, an optimal timetable with more headway regularity is generated, which makes the access

passenger waiting time of the DMA somewhat better than that of the ROM, as shown in Table 7. However,

when the realized transfer walking time is larger than the average value among the 10 randomly generated

cases, the transfer waiting time under the DMA will increase rapidly. It is because passengers may miss the

train under the previous optimized timetable and have to wait for a longer time to board the next train.

On the contrary, by incorporating the appropriate budget set of uncertain transfer walking time, the ROM

can obtain a much better transfer waiting time than the DMA. In summary, as shown in Table 7, the mean

value of the total objective (Q′′) of the ROM is much fewer than that of the DMA (Q) by 51.66%. Hence,
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the ROM can achieve less passenger waiting time than the DMA under different realized transfer walking

times.

Additionally, the DMM can generate an optimal timetable with relatively irregular and larger headways.

It causes that the access transfer waiting time of the DMM is worse than that of the ROM, as shown in

Table 7. On the other hand, in most cases, the DMM may bring about unnecessary and extra transfer

waiting time due to the overestimation of the practical transfer walking time. In comparison, the ROM can

obtain the timetable with less conservativeness than the DMM and achieve less transfer waiting time. As

shown in Table 7, the mean value of the total objective (Q′′) of the ROM is better than that of the DMM

(Q′) by 4.10%. Therefore, the ROM can achieve less passenger waiting time than the DMM in most cases,

which shows that it is necessary to consider the uncertainty of the transfer walking time in our timetable

scheduling model under metro networks.

Table 7: Comparison of the results under the different scenarios in the small network(unit: ·104s)

Models Index 1 2 3 4 5 6 7 8 9 10 Mean

DMA

Q 9.97 7.54 9.95 7.50 12.47 10.30 12.36 12.34 12.54 12.86 10.783

Q1 5.72 3.29 5.70 3.25 8.22 6.05 8.11 8.09 8.29 8.61 6.533

Q2 4.25 4.25 4.25 4.25 4.25 4.25 4.25 4.25 4.25 4.25 4.25

DMM

Q′ 5.51 5.58 5.49 5.53 5.41 5.41 5.29 5.28 5.49 5.37 5.436

Q1′ 1.19 1.26 1.17 1.21 1.09 1.09 0.97 0.96 1.17 1.05 1.116

Q2′ 4.32 4.32 4.32 4.32 4.32 4.32 4.32 4.32 4.32 4.32 4.32

ROM

Q′′ 5.20 5.27 5.19 5.23 5.10 5.52 4.99 4.97 5.18 5.48 5.213

Q1′′ 0.92 0.99 0.91 0.95 0.82 1.24 0.71 0.69 0.90 1.20 0.933

Q2′′ 4.28 4.28 4.28 4.28 4.28 4.28 4.28 4.28 4.28 4.28 4.28

Improve(%)

(Q−Q′′)
Q

47.84 30.11 47.84 30.27 59.10 46.41 59.63 59.73 58.69 57.39 51.66
(Q′−Q′′)

Q′ 5.62 5.56 5.46 5.42 5.73 -2.03 5.67 5.87 5.65 -2.05 4.10

Next, for the sake of exploring the influence of the robust parameters Γ on the objective values, transfer

waiting time, and access passenger waiting time, we conduct a set of experiments with different Γ from 1 to

4 with fixed deviation range of uncertain transfer walking time of 5%, 10% and 15% of em
′

m,s. The results are

summarized in Table 8. Γ = 4 means the transfer walking times of the four transfer nodes (i.e. e12,s1,e
2
1,s1,

e13,s2 and e31,s2) are set as uncertain parameters. As is shown in Table 8, the objective value(Q) and transfer

waiting time(Q1) increase rapidly, and access passenger waiting time (Q2) increases gradually with larger

values of Γ. When Γ = 0, the optimal results are consistent no matter the maximum deviation range of

em
′

m,s. It is the least conservative level of uncertainty of transfer walking time, and it makes the objective

function value the smallest. On the contrary, the most conservative solution and the largest objective value

are obtained when Γ = 4. Table 8 shows the tradeoff between the level of conservatism on the objective

values. Also, Q,Q1 and Q2 increase with the growing deviation range and fixed Γ (except Γ = 0).
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Table 8: The influence of the parameter Γ on results during peak period (unit: s)

Deviation Index Γ = 0 Γ = 1 Γ = 2 Γ = 3 Γ = 4

5%

Q 5.02·103 5.19·104 5.39·104 5.45·104 5.73·104

Q1 7.68·103 9.43·103 1.13·104 1.18·104 1.45·104

Q2 4.25·106 4.25·106 4.27·106 4.27·106 4.28·106

10%

Q 5.02·103 5.36·104 5.77·104 5.89·104 6.45·104

Q1 7.68·103 1.12·104 1.49·104 1.60·104 2.13·104

Q2 4.25·106 4.25·106 4.28·106 4.29·106 4.32·106

15%

Q 5.02·103 5.54·104 6.15·104 6.32·104 7.25·104

Q1 7.68·103 1.29·104 1.85·104 2.01·104 2.82·104

Q2 4.25·106 4.24·106 4.30·106 4.31·106 4.44·106

Table 9 shows the transfer situation between two trains on connecting lines, in which the mark ”-”

represents a failed connection. It can be seen that all the passengers who need to transfer on the 10 trains

at station s1 and s2 on line 1 transfer successfully to lines 2 and 3. All the trains connected successfully

from line 3 to 1 at station s2, and only the first 9 trains at station s1 on line 2 could connect with trains on

line 1. Figure 3 shows the time-distance diagrams at transfer station s1 between lines 1 and 2 and transfer

station s2 between lines 1 and 3. It is noted that the passengers in the second train of line 2 could transfer

successfully with the second train of line 1 after optimization instead of connecting with the first train before

optimization. With the slight adjustment of arrival and departure times of each train, the total passenger

waiting time can be reduced. We next enlarge the simple network example to bi-direction, which means

there are 16 transfer nodes. As is shown in Figure 4, the objective values and transfer waiting time almost

increase similarly with Γ, while the access passenger waiting time with the weight coefficients ρ2 = 2 · 10−3

increases at a slower rate.

Table 9: The transfer situation between two connecting lines (Γ = 4, êm
′

m,s = 15s)

Station Transfer
Train

1 2 3 4 5 6 7 8 9 10

s1
1-2 1 2 3 4 5 6 7 8 9 10

2-1 2 3 4 5 6 7 8 9 10 -

s2
1-3 1 2 3 4 5 6 7 8 9 10

3-1 2 3 4 5 6 7 8 9 10 -

5.2. Example 2: a large-scale Beijing metro network

To demonstrate the practicability of the proposed model and solution method, we run some experiments

on a large-scale metro network with a set of routes and stations. The network in Figure 5 is the Beijing

metro network consisting of 15 operating lines and 51 transfer stations, where the operation direction is

marked with arrows in Figure 5.
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(a1) Original timetable at station s1 between line 1 and 2

9:209:00 9:40 10:00 10:20 10:40
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(b1) Optimized timetable at station s1 between line 1 and 2

9:209:00 9:40 10:00 10:20 10:40

s2

(b2) Optimized timetable at station s2 between line 1 and 3

9:209:00 9:40 10:00 10:20 10:40

s2

(a2) Original timetable at station s2 between line 1 and 3

Line 1 Line 2 Line 3

Figure 3: Time-distance diagrams at transfer stations s1 and s2.
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Figure 4: Optimal objective value with respect to different Γ.
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Figure 5: Illustration of part of Beijing metro network.

The planning horizon considered in this experiment is from 09:00 to 11:00, and 150 trains (10 trains

for each line) are dispatched from the first station of each line. The minimum and maximum headway

of each line are displayed in Table 10, and the other operational parameters are listed in Table 11. The

weight coefficients are specified as ρ1 = 1 and ρ2 = 2 · 10−1 in the objective function. In addition, the

transfer walking time em
′

m,s between connecting lines m and m′ at interchange station s is set according to

the practical operation data of the Beijing metro network. The maximum deviation êm
′

m,s is set as 10% of the

nominal transfer walking time. The passenger demands are set according to the actual records of Beijing

Metro Network on a workday, and they are not displayed here on account of the large number. Considering

95 interchange nodes, 15 involved lines, 10 dispatched trains, and the actual number of stations for each

line, the model for the Beijing metro network contains 19000 binary variables, 15181 continuous variables,

15181 equality constraints, and 37401 inequality constraints.

Table 10: The minimum and maximum headway of each line for the experimented Beijing metro network (unit: s)

Line 1 2 4 5 6 7 8 North 8 South

Minimum 150 150 150 150 180 180 210 210

Maximum 300 300 300 300 360 360 390 390

Line 9 10 13 14 West 14 East 15 16

Minimum 150 150 180 180 150 210 210

Maximum 300 300 360 360 300 390 390
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Table 11: Operational parameters in the Beijing metro network

Parameters Range of standard values

Station number 23,18,10,24,23,22,16,19,13,45,12,23,17,7,12

Dwell time Dm
i,s [10, 60]s

Running time Rm
i,s [120, 300]s

Trip time Am
i,S − Lm

i,1 [1000, 12000]s

We first try to solve the robust model with parameter Γ = 95 using the CPLEX solver and obtain

a solution with an objective function value of 1.31·107s and 107.43% gap when using a computational

time limit of 3600s. Then with the Benders decomposition method and the preset 10% gap, the objective

value of the robust model is found to be 4.87·106s as shown in Table 12. The computational time of the

Benders decomposition method was 395s, and it is markedly smaller than that of the CPLEX solver. 6

optimality cuts and 27 feasibility cuts are generated in the computational process of the large-scale Beijing

metro network case. Moreover, compared to the original timetable with the same headway for the trains

at the same station, the objective value is reduced by 14.11%, and the most significant decrease is 20.15%

for the total transfer waiting time after optimization. Table 13 exhibits the transfer waiting time and

the corresponding improvements at some representative interchange stations in the metro network. The

improvement of each transfer node is calculated as the difference on the total transfer waiting time of the

10 trains before and after optimization. For instance, the transfer waiting time for passengers getting off

from line 1 and catching train 1 on line 2 successfully at FuxingMen Station is 375s. Similarly, the transfer

waiting time for passengers getting off from line 2 and catching train 1 on line 1 successfully at FuxingMen

Station is 435s. Then, the total transfer waiting time for the 10 trains of FuxingMen Station from line

1 to 2 (1-2) after optimization is 4642s, and the original total transfer waiting time is 36442s. Thus the

improvement is 36442− 4642 = 31800s. The increase on the transfer waiting times of a few transfer nodes

can reduce the total passenger transfer waiting time of the entire metro network. Due to the limitation of

the departure time of each train at the first station on each line, six pairs of lines with six transfer nodes

could not be connected practically during the planning horizon, and passengers in the first several trains on

some lines may wait for an unreasonable long time. The complete results are displayed in Appendix A.

Table 12: Comparisons of the original and optimized results (unit: s)

Objective Transfer waiting time Access passenger waiting time

Original 5.67·106s 2.68·106s 1.50·107s
Optimized 4.87·106s 2.12·106s 1.38·107s
Improvement 14.11% 20.15% 8.00%
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Table 13: Transfer waiting time at representative transfer stations after optimization (unit: s)

Station
Connecting Train Optimized total Original total

Improvement
Line 1 2 3 4 5 6 7 8 9 10 waiting time waiting time

FuxingMen
1-2 375 585 375 435 405 552 180 805 465 465 4642 36442 31800

2-1 435 2461 1105 435 285 495 360 375 - - 5951 19500 13549

JianguoMen
1-2 7300 180 1750 180 225 315 525 240 405 330 11450 22456 11006

2-1 285 910 150 667 240 375 345 - - - 2972 16950 13978

XiDan
1-4 165 1850 210 300 1875 180 605 400 990 - 6575 1410 -5165

4-1 150 90 195 904 90 375 210 - - - 2110 5977 3867

Military Museum 1-9 180 105 150 180 210 1750 150 90 270 105 3190 12580 9390

Station 9-1 595 120 840 150 120 165 180 - - - 2290 7616 5326

GongzhuFen
1-10 675 770 645 715 750 - - - - - 3555 8250 4695

10-1 16275 5115 495 450 4050 360 300 390 300 255 38890 45150 6260

GuoMao
1-10 285 480 225 210 360 105 1100 - - - 2765 9912 7147

10-1 270 150 180 360 225 435 405 405 435 - 2865 14190 11325

DawangLu
1-14East 105 528 90 165 195 - - - - - 1887 2940 1053

14East-1 5320 2905 1435 120 165 75 570 105 180 135 11010 11640 630

XuanwuMen
2-4 160 180 120 75 45 90 210 - - - 880 804 -76

4-2 980 180 90 105 105 120 90 90 45 75 1880 5184 3304

To demonstrate the robustness of the proposed approach with the uncertainties of the transfer walking

time, we consider 10 scenarios with different transfer walking times by taking 10% of the nominal transfer

walking time as the maximum deviation range generated randomly. The experimented transfer walking times

for each scenario include 95 elements, which are not displayed here in detail. Table 14 exhibits the results,

including the objective value (Q and Q′), transfer waiting time (Q1 and Q1′), and access passenger waiting

time (Q2 and Q2′) under these 10 scenarios. For example, we first obtained a set of train connections

α from the robust solution when Γ = 95. The optimal objective value (Q), transfer waiting time (Q1),

and access passenger waiting time (Q2) are 4864390s, 2108442s and 13779744s under Scenario 1 with the

transfer walking times generated randomly. While the results become Q′ = 4871941s, Q1′ = 2115316s, and

Q2′ = 13783128s with the fixed train connection α using the generated random transfer walking times. It can

be seen that under different scenarios the maximum relative difference between the optimal results and results

with Γ = 95 are only 0.23% (Q
′−Q
Q ), 0.36% (Q1′−Q1

Q1 ) and 0.36% (Q2′−Q2
Q2 ) respectively. Thus, the robust

solutions (train connection α) within Γ = 95 generated by the proposed robust optimization model can

cope with most scenarios with the deviation of uncertain transfer walking times at the interchange stations.

The results with good performance can be obtained even when the transfer walking time significantly

fluctuates. The small relative differences on the objective values under the various scenarios further indicate

the robustness of the proposed method to the uncertainties on the transfer walking time.

Table 14: Comparison of the results under the different scenarios (unit: s)

Scenario Q(Optimal) Q′(Γ = 95) Q′−Q
Q Q1(Optimal) Q1′(Γ = 95) Q1′−Q1

Q1 Q2(Optimal) Q2′(Γ = 95) Q2′−Q2
Q2

1 4864390 4871941 0.16% 2108442 2115316 0.33% 13779744 13783128 0.02%

2 4859222 4866770 0.16% 2107120 2114732 0.36% 13760510 13760192 -0.00%

3 4864884 4870750 0.12% 2112437 2117713 0.25% 13762236 13765189 0.02%

4 4893958 4897688 0.08% 2099226 2101226 0.10% 13973662 13982312 0.06%

5 4846187 4850714 0.09% 2120134 2124523 0.21% 13630265 13630956 0.01%

6 4848837 4856298 0.15% 2120983 2128424 0.35% 13639272 13639371 0.00%

7 4839765 4850714 0.23% 2123484 2124523 0.05% 13581405 13630956 0.36%

8 4835453 4842631 0.15% 2123099 2129566 0.31% 13544386 13555837 0.08%

9 4828219 4834441 0.13% 2126703 2130597 0.18% 13525601 13524379 -0.01%

10 4828925 4832603 0.08% 2126576 2131464 0.23% 13511114 13510031 -0.01%
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6. Conclusion

This paper developed a computationally efficient train timetable generation method for large-scale urban

metro networks. A mixed integer nonlinear programming model was presented to optimize the timetable by

determining the arrival and departure time of each train in the metro network within the planning horizon.

A robust optimization model was developed to handle uncertainty in the transfer walking time. Due to

the proposed model consisting of a number of binary variables and associated constraints, computational

complexity tends to be a significant problem for large-scale networks. Thus, a generalized Benders decom-

position technique based approach was designed to cope with the robust optimization model. Two series of

numerical examples were conducted to validate the performance and availability of the proposed model and

approach.

The computational results showed that the generalized Benders decomposition technique based approach

has a significant advantage in solving the large-scale metro network problem in a relatively short amount

of computation time. The proposed model and method can generate a robust train timetable with as few

transfer waiting times and access passenger waiting times as possible, concerning the uncertain transfer

walking time. In addition, by adjusting the conservative robustness level, we find that the lower robustness

conservative level of uncertain transfer walking time will bring a smaller objective function value.

Further research will focus on the following two aspects. On the one hand, in order to describe the over-

saturated condition during peak periods more accurately, we can regard the number of transfer passengers,

the number of passengers waiting at stations, the train load, and the passenger flow control as decision vari-

ables to construct the dynamic evolution equation of passenger flow. This will make the optimal timetable

design problem for large-scale metro networks more complicated due to the nonlinear objective function

and coupling constraints. On the other hand, to realize the simultaneous optimization of metro network

timetable and passenger choices of travel paths more rigorously, we need to construct further the complex

coupling constraints between the dynamic passenger choice behavior and the train timetable. We may incor-

porate other decomposition methods for the design of an efficient train coordination optimization algorithm,

which will be another future research work.
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Appendix A. Results of large scale network problem using the Benders decomposition method

Table 15: Waiting time at all transfer stations after optimization (unit: s).

Station
Connecting Train

Optimized Original Improvement
Line 1 2 3 4 5 6 7 8 9 10

FuxingMen
1-2 375 585 375 435 405 552 180 805 465 465 4642 36442 31800

2-1 435 2461 1105 435 285 495 360 375 - - 5951 19500 13549

JianguoMen
1-2 7300 180 1750 180 225 315 525 240 405 330 11450 22456 11006

2-1 285 910 150 667 240 375 345 - - - 2972 16950 13978

XiDan
1-4 165 1850 210 300 1875 180 605 400 990 - 6575 1410 -5165

4-1 150 90 195 1000 90 375 210 - - - 2110 5977 3867

DongDan
1-5 120 75 150 285 195 210 666 970 - - 2671 4785 2114

5-1 - - - - - - - - - - 0 0 0

Military

Museum

1-9 180 105 150 180 210 1750 150 90 270 105 3190 12580 9390

Station 9-1 595 120 960 150 120 165 180 - - - 2290 7616 5326
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GongzhuFen
1-10 675 770 645 715 750 - - - - - 3555 8250 4695

10-1 16275 5115 5495 5450 4950 360 300 390 300 255 38890 45150 6260

GuoMao
1-10 285 480 225 210 360 105 1100 - - - 2765 9912 7147

10-1 270 150 180 360 225 435 405 405 435 - 2865 14190 11325

DawangLu
1-14East 105 1332 90 165 195 - - - - - 1887 2940 1053

14East-1 5320 2905 1435 120 165 75 570 105 180 135 11010 11640 630

XiZhiMen

2-4 19432 19584 18648 22878 12936 10512 1794 240 1250 480 107754 131667 23913

4-2 195 - - - - - - - - - 195 0 -195

2-13 2835 120 240 352 532 624 290 575 760 2016 8344 0 -8344

4-13 240 545 - - - - - - - - 785 0 -785

XuanwuMen
2-4 160 180 120 75 45 90 210 - - - 880 804 -76

4-2 980 180 90 105 105 120 90 90 45 75 1880 5184 3304

ChongwenMen
2-5 135 650 174 135 875 90 60 - - - 2119 6068 3949

5-2 1295 280 625 150 45 485 750 75 120 90 3915 9450 5535

YongheGong
2-5 180 165 459 270 1875 225 150 - - - 3324 8800 5476

5-2 1683 195 1375 270 155 440 165 90 135 150 4658 12550 7892

ChegongZhuang
2-6 20265 13300 15525 15775 3125 405 870 4950 450 1219 75884 84498 8614

6-2 24035 12330 5418 1705 90 2460 270 330 1007 555 48200 42350 -5850

ChaoyangMen
2-6 120 975 2900 165 864 - - - - - 5024 4647 -377

6-2 345 580 - - - - - - - - 920 644 -276

GulouDaJie
2-8North 270 150 225 2000 345 510 180 315 2000 195 6190 11032 4842

8North-2 240 1190 360 375 240 385 180 - - - 2970 8928 5958

DongzhiMen 13-2 30 90 - - - - - - - - 120 0 -120

PinganLi
4-6 1911 2385 285 315 1403 3792 270 315 135 240 11051 14924 3873

6-4 225 3861 1494 270 567 300 120 - - - 5541 9115 3574

CaiShiKou
4-7 8879 3624 1526 45 875 135 135 75 75 210 15579 18390 2811

7-4 135 120 195 60 75 - - - - - 585 2428 1843

National Library 4-9 - - - - - - - - - - 0 0 0

JiaoMen West
4-10 5950 3125 2625 480 450 420 555 360 285 1530 15780 33840 18060

10-4 390 375 360 375 360 2625 435 495 330 - 5745 24012 18267

HaiDianHuang- 4-10 875 105 75 325 150 90 105 135 60 90 2010 8400 6390

Zhuang 10-4 165 270 170 30 45 165 150 - - - 995 4545 3550

Beijingnan
4-14East 120 280 150 750 120 375 255 - - - 2050 0 -2050

Railway

Station

XiYuan 4-16 105 75 1500 135 - - - - - - 1815 0 -1815

DongSi
5-6 105 180 1029 135 1232 75 175 1500 75 - 4506 5953 1447

6-5 1772 332 165 135 468 195 165 90 1150 - 4472 3288 -1184

CiQiKou
5-7 275 90 1375 135 165 165 120 105 715 75 3220 9180 5960

7-5 150 180 150 195 135 270 60 110 30 - 1280 5618 4338

SongjiaZhuang 10-5 195 2530 5805 450 315 405 - - - - 9700 0 -9700

HuiXinXiJie- 5-10 1375 330 360 3250 255 1330 270 1260 2320 1495 12245 13192 947

NanKou 10-5 2175 385 875 165 1815 180 255 210 - - 6060 9894 3834

LiShuiQiao
5-13 120 105 105 480 150 180 - - - - 1140 528 -612

13-5 4690 2800 1680 60 90 480 60 75 90 120 10145 10781 636

PuHuangYu
5-14East 150 90 45 90 315 250 135 45 90 135 1345 4718 3373

14East-5 160 45 120 150 225 45 60 60 105 - 970 4680 3710

DaTunLu East
5-15 875 180 165 135 1575 150 1325 60 30 - 4495 5213 718

15-5 170 920 150 510 200 90 165 - - - 2205 3480 1275

Nan Lu-

ogu

6-8North 28275 38115 23280 18255 13936 14175 3685 2790 255 165 142931 152426 9495

Xiang 8North-6 1105 - - - - - - - - - 1105 0 -1105

BaiShiQiao 6-9 - - - - - - - - - - 0 0 0

South 9-6 22200 28800 12960 9835 14100 3660 5240 4970 1485 195 103385 201250 97865

Cishou Si
6-10 - - - - - - - - - - 0 0 0

10-6 105525 117900 91875 93085 75160 66430 67960 79920 86635 78970 863460 918520 55060

Hujia Lou
6-10 14220 10725 6324 4355 620 2170 75 1064 180 675 40408 33840 -6568

10-6 240 1332 2184 165 1025 105 - - - - 5051 4752 -299

JintaiLu
6-14East 3675 2250 595 620 105 60 135 135 255 210 8040 8245 205

14East-6 120 75 45 60 902 606 90 - - - 1898 5523 3625

Zhushi Kou 7-8South 210 30 150 - - - - - - - 390 0 -390

Beijing

West 7-9 - - - - - - - - - - 0 0 0

Railway

Station

Shuang Jing
7-10 13167 8625 3705 600 495 600 735 765 150 105 28947 29976 1029

10-7 345 1755 3720 435 375 - - - - - 6630 9660 3030

Jiulong Shan
7-14East 2035 310 135 620 15 180 60 896 165 570 4986 8037 3051

14East-7 90 105 150 1169 1272 75 105 - - - 2966 1320 -1646

BeituCheng
8North-10 9350 315 360 435 475 540 495 405 555 - 12930 26610 13680

10-8North 725 925 585 980 4625 330 585 500 3335 - 12590 26190 13600

HuoYing
8North-13 4680 5200 1540 30 140 250 120 135 135 60 12290 13756 1466

13-8North 240 45 630 90 120 1950 - - - - 3075 4170 1095

Olympic Green
8North-15 3135 50 30 45 225 150 60 150 165 330 4340 7140 2800

15-8North 165 150 30 1575 75 120 90 - - - 2205 2236 31

Liuli Qiao
9-10 3645 1210 - - - - - - - - 4855 7350 2495

10-9 28200 21875 11305 11160 10080 3465 360 1190 4455 330 92420 88590 -3830

Qili Zhuang 14West-9 30 90 240 60 280 1085 180 90 45 - 2100 0 -2100

Xiju 14West-10 7750 510 690 1170 330 285 1350 345 285 - 315 0 -315

ShaoyaoJu
10-13 10872 555 390 540 540 585 570 450 525 2835 17862 7404 -10458

13-10 47190 43260 29810 22040 21505 17270 11495 11310 3724 580 208184 291360 83176

Zhichun Lu
10-13 - - - - - - - - - - 0 0 0

13-10 120 120 120 150 1980 105 630 - - - 3225 6360 3135

Shili He
10-14East 450 405 360 315 2375 360 855 1495 - - 6615 15540 8925
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14East-10 7750 510 690 1170 330 285 1350 345 285 - 12715 16574 3859

Yongding 8South-14East 435 330 330 360 510 435 360 330 - - 3090 15133 12043

MenWai 14East-8South 195 255 90 1240 195 210 195 180 270 165 2995 14040 11045

WangJing
14East-15 150 90 90 1085 45 60 165 3280 30 - 4995 6201 1206

15-14East 55 180 135 195 30 195 462 1480 90 - 2822 5955 3133

WangJing 13-15 850 1025 75 105 875 90 135 180 - - 3335 6360 3025

West 15-13 1880 45 15 120 105 120 105 75 60 135 2660 4333 1673
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