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Abstract—Traffic congestion has a negative economic and
environmental impact. Traffic conditions become even worse in
areas with high volume of trucks. In this paper, we propose
a coordinated pricing-and-routing scheme for truck drivers to
efficiently route trucks into the network and improve the overall
traffic conditions. A basic characteristic of our approach is the
fact that we provide personalized routing instructions based
on drivers’ individual routing preferences. In contrast with
previous works that provide personalized routing suggestions,
our approach optimizes over a total system-wide cost through
a combined pricing-and-routing scheme that satisfies the budget
balance on average property and ensures that every truck driver
has an incentive to participate in the proposed mechanism by
guaranteeing that the expected total utility of a truck driver
(including payments) in case he/she decides to participate in the
mechanism, is greater than or equal to his/her expected utility
in case he/she does not participate. Since estimating a utility
function for each individual truck driver is computationally
intensive, we first divide the truck drivers into disjoint clusters
based on their responses to a small number of binary route
choice questions and we subsequently propose to use a learning
scheme based on the Maximum Likelihood Estimation (MLE)
principle that allows us to learn the parameters of the utility
function that describes each cluster. The estimated utilities are
then used to calculate a pricing-and-routing scheme with the
aforementioned characteristics. Simulation results in the Sioux
Falls network demonstrate the efficiency of the proposed pricing-
and-routing scheme.

Index Terms—Utility learning, Road pricing, Freight, Routing.

I. INTRODUCTION

Traffic congestion is a major problem in urban areas.
According to statistics, in 2017, traffic congestion costed
urban Americans an extra 8.8 billion hours and an extra
3.3 billion gallons of fuel to travel, for a total congestion
cost of $166 billion. Not surprisingly, the major congested
points are in metropolitan areas where truck traffic mixes with
other traffic and along major interstate highways connecting
major metropolitan areas [1]. In the United States (U.S.),
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transportation’s total estimated contribution to U.S. Gross Do-
mestic Product (GDP) was $1,298.1 billion in 2019. Trucking
contributed the largest amount of all the freight modes, at
$368.9 billion [2]. In the European Union (EU), transportation
sector is also a major contributor to the economy, representing
more than 9% of EU gross value added in 2016 [3]. Therefore,
it becomes clear that efficient route planning could have a large
positive impact on the global economy.

The Traffic Assignment Problem (TAP) [4] is a key problem
for efficient planning in transportation networks. Based on
the objective of the assignment process and user behavior
assumptions, many assignment models can be classified as
User Equilibrium (UE) or System Optimum (SO) [5]. In a UE,
drivers act independently in an effort to maximize their own
individual utility. On the other hand, in a SO, drivers follow
coordinated routing instructions that minimize the expected
total cost of the network. It is well known that user optimality
does not imply system optimality. The inefficiency between
the UE and the SO has been addressed in the literature as
the Price of Anarchy (POA) [6]. Recent research efforts have
tried to estimate the POA [7], [8] demonstrating that realistic
transportation networks suffer from this problem.

Many previous works have tried to address the problem of
the inefficiency between an equilibrium flow pattern and a
SO solution through pricing schemes. Congestion pricing [9]–
[12] is the most frequently studied among these methods. In
a congestion pricing scheme, drivers are asked to pay a fee
(toll) corresponding to the additional cost their presence causes
to the network. Other strategies include the applications of
Tradable Credit Schemes (TCS) [13], [14] or tradable travel
permits [15] among the drivers of the network. In this work,
we propose to address the problem of the inefficiency between
an equilibrium flow pattern and the SO through a pricing-and-
routing scheme that has a toll-and-subsidy form, similar to
[16]–[18]. This scheme has three main characteristics. First, it
is budget balanced on average. Second, it guarantees that every
truck driver has an incentive to participate in the proposed
mechanism and lastly, it drives the network close to the SO
solution.

To ensure that every truck driver has an incentive to par-
ticipate in the proposed mechanism, we first need to estimate
the utility function that describes the routing preferences of
each driver. A large amount of research has been conducted
to study discrete choice modeling under the Random Utility
Maximization (RUM) framework [19]. In the RUM frame-
work, the utility to the decision maker of each alternative is
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not completely known. It consists of a deterministic compo-
nent which is a function of the attributes of the alternative
and the characteristics of the decision-maker and a random
error term that follows a probability distribution. Depending
on whether the error terms are assumed to be multivariate
normal or independently and identically Type I extreme value
(gumbel) distributed, we get the Multinomial Probit (MNP)
model [20] and the Multinomial Logit (MNL) model [21],
respectively. For further information related to route choice
modeling, we refer the interested reader to [22] and references
therein. Recently, there is also a growing interest in studying
the connection between traditional discrete choice models
and modern machine learning methods, e.g. Deep Neural
Networks (DNNs) [23]. Inspired by these research efforts,
in this paper, we propose a learning scheme based on the
Maximum Likelihood Estimation (MLE) principle that allows
us to learn the utility of each cluster of truck drivers using a
set of binary route choice questions. A basic characteristic of
our method is the use of a model that calculates the difference
between the utilities of two alternatives, thus guaranteeing that
the transitivity property is satisfied. The transitivity property
is important since by only using a binary model and doing
a pairwise comparison between 2 routes, we can accurately
calculate the utility of each alternative even if the total number
of routes per Origin-Destination (OD) pair is greater than
2. Accurately learning the utility function that describes the
routing preferences of each cluster of truck drivers helps us
provide more personalized route recommendations.

Previous research efforts have tried to incorporate person-
alization in route planning. In [24], Rogers and Langley used
a linear perceptron to learn the drivers’ routing preferences
and subsequently solved the routing problem using Dijkstra’s
shortest path algorithm [25]. In [26], Letchner et al. designed
a route planner that used real-world GPS data to estimate
both time-dependent road speeds and individual driver pref-
erences. In [27], Cui et al. used historical GPS trajectories
and a collaborative filtering approach [28] in order to provide
personalized travel route recommendations. Using trajectory
data and considering three commonly used travel costs, namely
travel distance, travel time and fuel consumption, [29] pro-
posed a method to recommend personalized routes to individ-
ual drivers. Another work proposed to solve a multi-criteria
optimization problem to find the optimal route considering
air quality, travel time, and fuel consumption from the source
to the destination [30]. Recently, multi-modal transportation
recommendations have been also studied [31]. Most of the
aforementioned works take into account user optimality only
and therefore, the provided solutions may be inefficient for
the network. On the other hand, in this paper, we propose a
method to learn truck drivers’ individual routing preferences
and we design a pricing-and-routing scheme that recommends
routes that are beneficial for the system optimum.

Perhaps closest to our work is the work of [32]. In their
work, Vayanos et al. built a survey that they distributed to
drivers of passenger vehicles. Using the results of the survey,
they first clustered the drivers into disjoint clusters, and then
using the assumption that the utility of the drivers can be
described by a linear function, they used a Mixed Integer

Programming (MIP) formulation to learn the parameters of
the utility of each cluster. Having learned a linear utility for
each cluster, they solved a deterministic traffic assignment
problem with an additional constraint to assign the drivers into
routes that they will likely follow, i.e. the assigned route will
make the utility of the driver not to be much lower than the
utility he/she would have if he/she made his/her own routing
decisions.

In this paper, we study pricing-and-routing schemes that
can be specifically applied on trucks. Given that truck drivers
routinely use varying routes for the same journey depending
on the traffic conditions [17] and the fact that their travel
time is already a commodity, make trucks form an ideal
candidate subclass of vehicles for coordinated routing [18].
Our main goal is the design of pricing-and-routing schemes
that drive the network as close as possible to the SO solution
and concurrently guarantee that the expected total utility of
a truck driver (including payments) in case he/she decides to
participate in the mechanism, is greater than or equal to his/her
expected utility in case he/she does not participate. Note that
the participation to the mechanism is voluntary and therefore,
the mechanism can operate even if some drivers do not partici-
pate. Additionally, we prove that the resulting pricing scheme
is self-sustainable and the expected total payments made or
received by the coordinator of the mechanism, are equal to
zero. It is worth mentioning that estimating a utility function
for each individual truck driver is computationally intensive.
To overcome the computational complexity of this problem,
we first divide the truck drivers into disjoint clusters based
on their responses to a small number of binary route choice
questions and we subsequently propose to use a learning
scheme based on the MLE principle that allows us to learn the
parameters of the utility function that describes each cluster.
The estimated utilities are then used to calculate a pricing-
and-routing scheme with the aforementioned characteristics.

Let us now comment on the main differences between the
current work and [32]. First, in their work, Vayanos et al.
deal with passenger vehicles while on the other hand, we
focus on the design of coordination mechanisms that provide
routing suggestions only to truck drivers. Second, Vayanos et
al. assumed a deterministic model. In our work, we analyze
stochastic models and thus the system coordinator has different
information from the truck drivers which creates additional
opportunities for coordination. Third, instead of using a MIP
formulation to learn the utility of each cluster, we use a
learning scheme based on the MLE principle. The proposed
learning scheme satisfies the transitivity property and allows
us to learn utility functions of any form. In contrast, the MIP
formulation is limited to the linear case only. Lastly, in their
work, Vayanos et al. solved a traffic assignment problem with
an additional constraint based on which the assigned route will
make the utility of the driver not to be much lower than the
utility he/she would have if he/she made his/her own routing
decisions. However, in such a solution some drivers may have
a lower utility than the one they would have if they made
their own routing decisions, which reduces the incentives for
their participation. On the other hand, in our approach, we
propose a pricing-and-routing scheme that is budget balanced
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on average and guarantees that the expected total utility of
a truck driver (including payments) in case he/she decides
to participate in the mechanism, is greater than or equal to
his/her expected utility in case he/she does not participate.
Consequently, under the assumption that truck drivers are
rational and will be constantly seeking to maximize their
individual expected utility, every truck driver has an incentive
to participate in the proposed mechanism.

In general, previous research efforts, whether they used
utility-based or other approaches to recommend personalized
routes to individual drivers, either focused more on the system
optimality, e.g. [32], or on the user optimality, e.g. [24], [26],
[27]. In this paper, we propose a utility-based pricing-and-
routing scheme that drives the network as close as possible to
the SO solution and concurrently guarantees that the expected
total utility of a truck driver (including payments) in case
he/she decides to participate in the mechanism, is greater
than or equal to his/her expected utility in case he/she does
not participate. To the best of our knowledge, this is the
first research work in the field that proposes a method to
provide personalized route recommendations to the drivers
while taking system optimality into account.

The rest of the paper is organized as follows. Section II
deals with the problem formulation. In Section III, we present
the proposed methodology. Section IV presents the simulation
results related to the clustering of the truck drivers, the utility
learning approach and the application of the proposed pricing-
and-routing scheme to the Sioux Falls network. Finally, Sec-
tion V presents the conclusion.

II. MATHEMATICAL FORMULATION

A. Problem formulation

The notation used throughout the paper is summarized in
Table I. Let G = (V,E) denote a transportation network,
where V is the set of nodes and E is the set of road segments
of the network, respectively. We assume that the Origin-
Destination (OD) demand of the truck drivers is stochastic
and follows a probability distribution with finite support. Ad-
ditionally, we assume a symmetric information model where
all truck drivers have the same amount of information and
know the number of passenger vehicles at each road segment
of the network. Similar models have been used in [16]–[18].
Note that the passenger vehicles are a part of the model we are
using but the coordinator does not provide routing suggestions
to them.

Previous research efforts, e.g. [33], have shown that there
are several factors that can affect drivers’ routing decisions.
For instance, previous studies showed that on average, drivers
take the fastest route for only 35% of their journeys [26].
In this work, we aim to propose a methodology that learns
how different factors affect truck drivers’ routing decisions and
subsequently use this information to efficiently route the truck
drivers into the network. The proposed approach is general and
can be applied for any number of attributes that can possibly
affect drivers’ routing decisions. For illustrative purposes, for
the rest of this paper, we consider four different factors that
could affect the routing decision of a truck driver namely,

TABLE I
NOTATION

Variable Meaning
G(V,E) Network with nodes V and links E

Rw The set of all paths connecting OD pair w ∈ W
v The number of OD pairs in the network
L The number of OD road segments in the network
Ji Utility of cluster i
xr Vector of attributes of the route r
θi Learned weights of the attributes of the utility function of

cluster i
pc Probability of the demand realization c

αUE
w,i,r Proportion of truck drivers belonging to cluster i who want

to travel in OD pair w and choose route r at the UE
αc,w
i,r Proportion of truck drivers belonging to cluster i who want

to travel in OD pair w and are assigned in route r during
demand realization c

πc,w
r Payment (made or received) of truck drivers who want to

travel in OD pair w and are assigned in route r during
demand realization c

dcw,i Demand of truck drivers belonging to the cluster i who
want to travel in OD pair w during demand realization c

Fw
i,r Expected utility of a truck driver belonging to cluster i

who wants to travel in OD pair w using route r
Xlp Number of passenger vehicles traversing the road segment

l
XlT Number of trucks traversing the road segment l
ClT Travel time of a truck driver traversing road segment l

E[Ttr] Expected total travel time of the truck drivers
E[Tp] Expected total travel time of the passenger vehicles
E[TS ] Expected total travel time of the network
E[Utr] Expected total utility of the truck drivers
O(α) Objective function to be minimized. Weighted combination

of the expected total travel time and the negative of the
expected total utility

λ Weighting factor of the objective function
ρ Weighting factor of the objective function

L(θi, x, y) Binary cross-entropy loss function
s(θi, xm) Probability according to which we predict that a truck

driver belonging to cluster i will pick route 1 or route 2
K The number of clusters in the K-means algorithm

the distance, the number of freeway interchanges, the travel
time and the 80th percentile of the travel time of a route. Let
the vector xr contain these four attributes of route r. In this
paper, we assume that different drivers value these four factors
differently and therefore, we aim to cluster the truck drivers
into K distinct groups. Note that theoretically, we could have
picked any gth percentile to represent the variability of travel
time, without loss of generality. However, since we wanted
to include a feature that captures the scenarios where the
traffic conditions become worse, we decided to use the 80th
percentile of the travel time of a route.

Under the assumption that the OD demand of the truck
drivers follows a discrete probability distribution with finite
support, we define the gth percentile of travel time as the
value of u for which P (U ≤ u) is greater than or equal to
g

100 and P (U ≥ u) is greater than or equal to 1− g
100 . In this

paper, we assume that the OD demand of the truck drivers is
the only source of uncertainty that affects the variability of
travel time.

Let ClT (Xlp, XlT (α)) be a known nonlinear function rep-
resenting the travel time of a truck driver traversing the road
segment l when there exist Xlp passenger vehicles and XlT (α)
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trucks on it, where α is a set of variables defined as follows:

α = {αw
i,r : w = 1, . . . , v, i = 1, . . . ,K, r ∈ Rw} (1)

where w is the index corresponding to a specific OD pair,
i is the index corresponding to a specific cluster of truck
drivers, r ∈ Rw denotes a specific route among the set of
available routes Rw connecting OD pair w, K is the number
of clusters of truck drivers and v is the number of OD pairs in
the network. Therefore, αw

i,r expresses the proportion of truck
drivers belonging to cluster i with a desired OD pair w who
choose route r for their trip.

At this point let us clarify the notation used for the set
of variables α. As will be also discussed later, in a UE, the
truck drivers make their own routing decisions in an effort
to maximize their individual expected utility. Since we have
assumed that they know the probability distribution of the
demand for the rest of the truck drivers but not the exact
realization of it, their routing decisions αUE

w,i,r do not depend
on the exact demand realization c. On the other hand, in a
SO solution and in the pricing-and-routing scheme that we
discuss in this paper, we assume the existence of a coordinator
who knows the exact realization of the demand and provides
routing suggestions to truck drivers. Since the coordinator
has complete information of the traffic conditions, his/her
routing suggestions αc,w

i,r depend on the demand realization
c. Therefore, for the rest of this paper, in the decision variable
αUE
w,i,r (or equivalently αw

i,r), the truck drivers choose the route
r they want to follow, while in αc,w

i,r , they are assigned to it.
Based on the assumption that the demand of truck drivers is

stochastic, let dw,i be random variables denoting the number
of truck drivers belonging to cluster i with desired OD pair
w and let dcw,i be their corresponding values during demand
realization c. Then, the number of trucks traversing the road
segment l is given by:

XlT (α) =

v∑
w=1

K∑
i=1

∑
r∈Rw:l∈r

dcw,iα
w
i,r (2)

where on the left side of (2), we omitted the index c to simplify
the notation. Therefore, the expected total travel time of the
truck drivers in the network is given by:

E[Ttr(α)] = E

[
L∑

l=1

XlT (α)ClT (Xlp, XlT (α))

]
(3)

where L is the number of road segments in the transportation
network and XlT (α) is given by (2).

B. User Equilibrium (UE)

In the absence of cooperation, the users of the network act
independently in an effort to maximize their own individual
utility. This behavior drives the network to a situation called
User Equilibrium (UE).

In this paper, after clustering the truck drivers into K dis-
tinct groups, we aim to learn a utility function Jc,w

i,r (θi, xr(α))
for each cluster i. Note that Jc,w

i,r (θi, xr(α)) represents the
utility of a truck driver belonging to cluster i who wants to
travel in OD pair w and is assigned to route r during demand

realization c. Additionally, θi represents the parameters of the
utility function of cluster i that we aim to learn. In case
Jc,w
i,r (θi, xr(α)) is a linear function of the route attributes xr,

it can be written in the following form:

Jc,w
i,r (θi, xr(α)) = θi1x1r + θi2x2r + θi3x3r(α, c)+ θi4x4r(ᾱ)

(4)
where x1r and x2r are the distance and the number of freeway
interchanges of route r, respectively. Additionally, x3r(α, c)
and x4r(ᾱ) are the travel time and the 80th percentile of
travel time of route r during the demand realization c when
the vehicles are routed according to α, respectively. Note that
we use the notation ᾱ for x4r(ᾱ) to denote that the 80th
percentile of travel time depends on all the demand realizations
and consequently depends on all the values of α, for all the
realizations c. To simplify the notation, we omit using the
notation ᾱ when defining Jc,w

i,r (θi, xr(α)).
Based on the assumption that the truck drivers only know

the probability distribution of the demand for the rest of the
truck drivers and not the exact realization of it, their routing
decisions αUE

w,i,r do not depend on the exact demand realization
c. Additionally, it has been shown that there possibly exist
many non-equivalent UE solutions [17]. In this work, we
calculate a UE solution that minimizes a weighted combination
of the expected total travel time of the truck drivers and the
negative of their expected total utility. Given the aforemen-
tioned, we can calculate a UE solution by solving the following
optimization problem with complementarity constraints [34]:

minimize
α,δ

λE[Ttr(α)]− (1− λ)E[Utr(α)]

subject to 0 ≤ αw
i,r ⊥ δwi − Fw

i,r(α) ≥ 0, ∀w, i, r∑
r∈Rw

αw
i,r = 1, ∀w, i

(5)

where λ ∈ [0, 1] is a weighting factor, δwi is a set of free
variables and the notation ⊥ means that either αw

i,r = 0 or δwi −
Fw
i,r(α) = 0. Note that the free variables δwi are only used in

the complementarity constraints. This is a common technique
used in many similar problems, e.g. [16]–[18]. Finally, Fw

i,r(α)
is the expected utility of a truck driver belonging to cluster i
who wants to travel in OD pair w using route r and is given
by:

Fw
i,r(α) =

∑
c

pcJ
c,w
i,r (θi, xr(α)) (6)

where pc is the probability of demand realization c. Addition-
ally, E[Utr(α)] represents the expected total utility of the truck
drivers and at the UE, it is given by:

E[Utr(α)] =
∑
c

v∑
w=1

∑
i

∑
r∈Rw

pcd
c
w,iα

UE
w,i,rJ

c,w
i,r (θi, xr(α))

(7)
Note that by setting λ = 1 in the objective function of (5),
we can calculate the UE with the minimum expected total
travel time while on the other hand, by setting λ = 0, we can
calculate the UE with the maximum expected total utility of
the truck drivers.
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C. System Optimum (SO)

In a System Optimum (SO) solution, drivers make routing
decisions in an effort to minimize a total system cost compared
to the UE where they are acting in a manner that maximizes
their own individual utility. Before presenting the optimization
problem through which we calculate the SO solution, let us
first define some terms. The number of trucks traversing the
road segment l is given by:

XlT (α) =

v∑
w=1

K∑
i=1

∑
r∈Rw:l∈r

dcw,iα
c,w
i,r (8)

where the main difference between (2) and (8) is that in the
latter, αc,w

i,r depends on the exact demand realization c which is
known by the coordinator. Therefore, the expected total travel
time of the truck drivers in the network can be calculated by
substituting (8) into (3). Additionally, the expected total travel
time of the passenger vehicles is given by:

E[Tp(α)] = E

[
L∑

l=1

XlpClp(Xlp, XlT (α))

]
(9)

where it holds that Clp(Xlp, XlT (α)) = ClT (Xlp, XlT (α)).
In this work, we aim to minimize the expected total travel

time of the truck drivers drivers and maximize their expected
total utility. Therefore, we define the following objective:

O(α) = λ(ρE[Ttr(α)]+(1−ρ)E[Tp(α)])−(1−λ)E[Utr(α)]
(10)

where λ, ρ ∈ [0, 1] are weighting factors and E[Utr(α)] is
given by:

E[Utr(α)] =
∑
c

v∑
w=1

∑
i

∑
r∈Rw

pcd
c
w,iα

c,w
i,r Jc,w

i,r (θi, xr(α))

(11)
where the main difference between (7) and (11) is that in the
latter, αc,w

i,r depends on the exact demand realization c. Note
that the objective function of (12) is a weighted combination of
the expected total travel time of the truck drivers, the negative
of their expected total utility and the expected total travel
time of the passenger vehicles. This objective function aims
to guarantee that by only routing the trucks, the expected total
travel time of the passenger vehicles will not be significantly
affected.

Based on the aforementioned definitions, we calculate the
SO solution of the network by solving the following optimiza-
tion problem:

minimize
α(·)

O(α)

subject to
∑
r∈Rw

αc,w
i,r = 1, ∀c, w, i

αc,w
i,r ≥ 0, ∀c, w, i, r

(12)

where O(α) is given by (10).

III. PERSONALIZED ROUTE RECOMMENDATION

A. Overview

A System Optimum (SO) solution is not a practical solution
since as will be also experimentally shown later, drivers have

an incentive to deviate from this solution in order to increase
their individual utility. On the other hand, a UE solution is
inefficient for the network. To mitigate this issue, we propose
to initially learn individual drivers’ utilities. Subsequently,
using these utilities, we calculate a pricing-and-routing scheme
that minimizes a weighted combination of the expected total
travel time and the negative of the expected total sum of
utilities while guaranteeing that every truck driver has an
incentive to participate in such a mechanism. The participation
to the mechanism is voluntary. Note also that the designed
mechanism is self-sustainable since the expected total pay-
ments made or received by the coordinator are equal to zero.

The proposed approach is shown in Figure 1 and consists
of the following steps:

• Step 1: Based on drivers’ past routing choices, we first
divide the drivers into disjoint clusters. In our experi-
ments, we use the K-means algorithm. However, other
clustering algorithms can be also used. In case a truck
driver participates in the mechanism for the first time,
he/she will be asked to answer a small number of binary
route choice questions.

• Step 2: For each cluster, we learn a utility that is a
function of distance, travel time, 80th percentile of travel
time and number of freeway interchanges of a route.

• Step 3: Having learned a utility function for each cluster
of truck drivers, we solve an optimization problem that
calculates a pricing-and-routing scheme. The objective
function of this optimization problem is given by (10).
The constraints of the optimization problem guarantee
that every truck driver has an incentive to participate
in the proposed mechanism and that the total scheme is
budget balanced on average.

In the following sections, we describe each step of the pro-
posed approach in detail.

B. Clustering

Since learning a utility function for each individual truck
driver is computationally intensive, we propose to divide the
drivers into disjoint groups based on their past routing choices.
To achieve this, we propose to use a clustering algorithm.
Several algorithms can be used for clustering. In this paper,
we decided to use the K-means algorithm due to its simplicity
and speed. However, the choice of the clustering algorithm to
be used should be made after careful analysis of the available
data.

The K-means algorithm divides a set of Q samples into
K disjoint clusters C, each described by the mean νi of the
samples in the cluster. The K-means algorithm aims to create
the clusters and choose their centroids (clusters’ centers) by
minimizing the within-cluster sum-of-squares criterion:

argmin
C

K∑
i=1

∑
q∈Ci

∥q − νi∥2 (13)

where q is the vector containing the responses of a truck
driver to a set of binary route choice questions. Initially, the
algorithm selects K cluster centers. There are different ways
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Fig. 1. The proposed personalized route recommendation system.

to initialize the cluster centers. In this work, we use the k-
means++ initialization method [35] to speed up convergence.
The description of the K-means algorithm is presented in
Algorithm 1.

Algorithm 1 K-means clustering of truck drivers

1: Initialize cluster centers using k-means++
2: repeat
3: Step 1: Assign each truck driver to the closest cluster

center
4: Step 2: Update each cluster center to be the mean of

all of the samples (in this case truck drivers) assigned
to this cluster

5: until the difference between the old and the new centroids
becomes less than a threshold

Having clustered the truck drivers into disjoint clusters, in
the next section, we show how we can learn a utility function
for each cluster of the truck drivers.

C. Utility learning

For each cluster i of truck drivers, we solve the following
optimization problem:

minimize
θi

L(θi, x, y) (14)

where L(θi, x, y) is the binary cross-entropy loss function
given as follows:

L(θi, x, y) =− 1

M

M∑
m=1

ymlog(s(θi, xm))

+ (1− ym)log(1− s(θi, xm))

(15)

where θi are the learned parameters of the utility Ji of cluster
i, M is the total number of truck drivers in cluster i multiplied
by the number of route choices they have made in the available
dataset, ym is a binary variable that represents the route choice
that a driver made and can either take value 0 for route 1
or 1 for route 2. Finally, s(θi, xm) denotes the probability
according to which we predict that a truck driver belonging

to cluster i will pick route 1 or route 2 and is given by the
sigmoid function:

s(θi, xm) =
1

1 + exp(−(Ji(θi, xm1)− Ji(θi, xm2)))
(16)

where xm1 and xm2 are the attributes of route 1 and route 2,
respectively. In case we assume a linear model for utility Ji of
cluster i, then the probability according to which we predict
that a truck driver belonging to cluster i will pick route 1 or
route 2 takes the following form:

s(θi, xm) =
1

1 + exp(−θTi (xm1 − xm2))
(17)

Note that by taking the difference Ji(θi, xm1) − Ji(θi, xm2)
in the denominator of (16), we make sure that the transitivity
property is satisfied, i.e. if alternative a is preferred to alter-
native b (a ≻ b) and alternative b is preferred to alternative
c (b ≻ c), then alternative a is also preferred to alternative
c (a ≻ c). The transitivity property is important since by
only using a binary model and doing a pairwise comparison
between 2 routes, we can accurately calculate the utility of
each alternative even if the total number of routes per OD
pair is greater than 2.

D. Optimization formulation

Having learned the utility Ji of each cluster i of truck
drivers, we aim to design a mechanism that will provide
personalized routing instructions to the truck drivers which
at the same time will optimize a total system cost. To achieve
this, we introduce a pricing scheme πc,w

r to the system.
Depending on demand realization c, OD pair w and route r
that a truck driver follows, this pricing scheme determines if
the truck driver needs to pay or receive a payment by the
coordinator. The participation to the mechanism is voluntary.

Based on the aforementioned, let us formulate the following
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optimization problem:

minimize
α(·),π(·)

O(α)

subject to Bw
i ≥ Dw

i , ∀w, i∑
c

v∑
w=1

∑
i

∑
r∈Rw

pcd
c,w
i αc,w

i,r πc,w
r = 0∑

r∈Rw

αc,w
i,r = 1, ∀c, w, i

αc,w
i,r ≥ 0, ∀c, w, i, r

(18)

where Bw
i and Dw

i are given by the following equations:

Bw
i =

∑
c

∑
r∈Rw

pcα
c,w
i,r

(
Jc,w
i,r (θ, xr(α)) + πc,w

r

)
(19)

Dw
i = max

r∈Rw

∑
c

pcJ
c,w
i,r (θ, xr(α)) (20)

respectively and O(α) is given by (10).
The first constraint of (18) guarantees that the expected

total utility of a truck driver (including payments) in case
he/she decided to participate in the mechanism, is greater
than or equal to his/her expected utility in case he/she did
not participate. Additionally, the second constraint of (18)
guarantees that the total payments made or received by the
coordinator are equal to zero and hence, the overall mechanism
is budget balanced on average. The following lemma shows
that a solution to the optimization problem (18) always exists.

Lemma 1: The optimization problem (18) is feasible.
Proof: The first constraint of (18) can be equivalently

written as:∑
c

∑
r∈Rw

pcα
c,w
i,r

(
Jc,w
i,r (θ, xr(α)) + πc,w

r

)
≥
∑
c

pcJ
c,w
i,r (θ, xr(α)), ∀w, i, r

(21)

Let πc,w
r = 0 and additionally let αc,w

i,r = αUE
w,i,r.

The above values satisfy (21) and this concludes the proof.

Lemma 1 proves the existence of a pricing-and-routing
scheme that is budget balanced on average and guarantees that
the expected total utility of a truck driver (including payments)
in case he/she decides to participate in the mechanism, is
greater than or equal to his/her expected utility in case he/she
does not participate. Additionally, it is worth noting that
the pricing scheme πc,w

r is uniform across clusters and it
only depends on demand realization c, OD pair w and the
route r. Lastly, note that a pricing-and-routing scheme with
the aforementioned characteristics always exists and does not
depend on the form of the utility function Jc,w

i,r (θ, xr(α)).
In the next section, we experimentally show that the pro-

posed pricing-and-routing scheme provides a solution that is
close to the SO.

IV. SIMULATION RESULTS

In this section, we run simulations in order to demonstrate
the efficiency of the proposed approach. First, we describe
how we generated synthetic data. Using the generated data,

after splitting the data into a train and a test set, we cluster
the drivers, learn the utility function of each cluster and then
decide the appropriate number of clusters to use. Subsequently,
we experimentally show the degree at which the truck drivers
would have an incentive to deviate from a SO solution, demon-
strating the necessity for a pricing-and-routing scheme. Lastly,
we run simulations in a benchmark transportation network and
compare the proposed pricing-and-routing scheme with the UE
and the SO solutions.

A. Data Generation

To cluster the truck drivers into disjoint clusters and learn
a utility function for each cluster, we first need to have access
to drivers’ past routing decisions. As mentioned in section III,
in case a truck driver participates in the mechanism for the
first time, he/she will be asked to answer a small number of
binary route choice questions. In this work, we use 9 route
choice questions for training and 5 questions for test1. An
example of a route choice question is shown in Table II.

TABLE II
AN EXAMPLE OF A ROUTE CHOICE QUESTION USED TO LEARN

DRIVERS’ ROUTING PREFERENCES.

Route 1 Route 2
Distance (miles) 45.0 55.0

Travel time duration (min) 55.0 50.0
80th percentile of travel time (min) 69.0 65.0

# of freeway interchanges 7 4

As a first step in the data generation process, we generate
the variables θ that describe the drivers’ routing preferences.
To do this, we draw samples from a Gaussian mixture model
assuming 3 components consisting of isotropic Gaussian dis-
tributions. In our experiments, we generated 200 samples
per cluster. Note that the term ‘clusters’ here refers to the
Gaussian distributions of the Gaussian mixture model. The
cluster centers and the standard deviations of the correspond-
ing covariance matrices were assumed to be:

µθ1 = [−0.08,−0.12,−0.06,−0.02]

µθ2 = [−0.15,−0.15,−0.15,−0.05]

µθ3 = [−0.04,−0.12,−0.12,−0.04]

and
σθ1 = [0.03, 0.04, 0.02, 0.01]

σθ2 = [0.03, 0.04, 0.04, 0.01]

σθ3 = [0.02, 0.04, 0.02, 0.02]

respectively, where θi are the parameters of cluster i. Note
that for each cluster, there are 4 parameters that correspond to
distance, travel time, 80th percentile of travel time and num-
ber of freeway interchanges, respectively. The cluster centers
were chosen with the following intuition. The first Gaussian
distribution includes the truck drivers who consider travel
time as the most important factor, followed by the distance
of the route. The second Gaussian distribution describes the

1The train and test route choice questions can be found in this link:
https://bit.ly/3o8fZif

https://drive.google.com/drive/folders/1ciSd5Du4V-UkJencVze0hEAgmaBdUjer?usp=sharing
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truck drivers who treat both distance, travel time and the
80th percentile of travel time as equally important factors
when making a routing decision. Lastly, the third Gaussian
distribution describes the truck drivers who consider the travel
time and the 80th percentile of travel time as the most
important factors when making a routing decision.

Assuming that the truck drivers’ utility can be described by
a linear function, e.g. like the one described by (4), using
the generated θ in (17), we can subsequently generate the
responses of the drivers to the route choice questions. Given
that we generated a total of 600 samples from the Gaussian
mixture model and we used 9 route choice questions for
training and 5 questions for test, we got a total of 5400 data
points for training and 3000 for test.

B. Clustering and Utility Learning

Given the responses of the drivers to the route choice
questions, we can cluster the drivers into disjoint clusters using
the K-means algorithm as described in Section III-B and then
use the learning algorithm as described in Section III-C in
order to learn the parameters θ̃i of each cluster i. However,
an important factor in this procedure is the number of clusters
K that we assume in the K-means algorithm. To apply the K-
means algorithm, we used the Scikit-learn package in Python
[36].

Before describing the way we determine K, let us first
mention some additional implementation details regarding the
learning algorithm described in Section III-C. Assuming that
the function that describes the utility of each cluster of truck
drivers is linear, e.g. like the one described by (4), we build
a linear model that we train using projected gradient descent
with a fixed learning rate η = 0.001. The projected gradient
descent is implemented as follows:

ξk = θ̃k − η∇L(θ̃k)
θ̃k+1 = Pr

R4≥0
(ξk)

(22)

where L(θ̃k) is given by (15) and Pr is the projection
to the positive orthant. In our case, the projection operator
ensures that at each iteration, the learned θ̃k is non-positive.
Additionally, in case there is class imbalance in the data, we
modify (15) as follows:

L(θi, x, y) =− 1

M

M∑
m=1

ϵ0,iymlog(s(θi, xm))

+ ϵ1,i(1− ym)log(1− s(θi, xm))

(23)

where ϵ0,i and ϵ1,i are weights for the classes 0 (Route 1) and
1 (Route 2), respectively. After clustering the truck drivers
using the K-means algorithm, for each cluster i, we determine
the values of ϵ0,i and ϵ1,i using the following formulas:

ϵ0,i =
max(# of samples in class 0, # of samples in class 1)

# of samples in class 0

ϵ1,i =
max(# of samples in class 0, # of samples in class 1)

# of samples in class 1

Note that the loss function described by (23) is the weighted
cross-entropy loss function [37]. There are several ways to

pick the weights ϵ0,i and ϵ1,i. However, a common approach
is to give more weight to the minority class.

At this point, let us describe how we choose the number
of clusters K in the K-means algorithm. First, we cluster the
drivers based on their responses to the 9 route choice questions
that are used for training, as described in Section IV-A. In
this work, we experiment with K = 1, 2, 3, 4, 5 and 10.
Subsequently, for each cluster i of truck drivers, we train a
linear model using the 9 training route choice questions and
we learn the parameters θ̃i using (23) and (17). Having learned
the parameters θ̃i for each cluster, we test the performance of
our method using the 5 test route choice questions. To measure
the performance of our learning approach, we use the Area
Under the Receiver Operating Characteristic curve (AUROC)
[38] and the Area Under the Precision-Recall curve (AUPR)
[39]. The results are presented in Table III.

TABLE III
AUROC AND AUPR FOR DIFFERENT NUMBER OF CLUSTERS K .

K AUROC AUPR
1 0.75 0.79
2 0.86 0.90
3 0.90 0.94
4 0.89 0.94
5 0.94 0.96

10 0.94 0.96

As can be observed from Table III, choosing K = 5 or
K = 10 gives us the highest AUROC and AUPR scores.
In general, we expect that as the number of clusters K
increases, the AUROC and AUPR on the test set will also
increase until they reach a point at which the performance
will start degrading. Additionally, as the number of clusters
K increases, the computational complexity increases as well.
To demonstrate this, in Table IV, we report the computational
time needed to solve (18) in the Sioux Falls network [40] for
different number of clusters K. To calculate the solution of
(18), we used the fmincon optimization solver implemented
in the MATLAB Optimization Toolbox [41].

TABLE IV
COMPUTATIONAL TIME (IN SECONDS) TO SOLVE (18) FOR DIFFERENT

NUMBER OF CLUSTERS K .

K Computational time
1 1.8
2 4.5
3 43.2
4 253.8
5 764.6

10 3215.8

As can be observed from the results of Table IV, the
computational time needed to solve (18) increases as the
number of clusters increases. This can be justified by the
fact that the set of decision variables α(·) in the optimization
problem (18) depends on i. Additionally, note that for each
cluster i, we first need to learn a different set of parameters
θ̃i that we will later use in (18). This will further increase the
computational complexity of the proposed method.
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Based on the aforementioned observations, we choose K =
5 as the appropriate number of clusters for the rest of the
experiments. Then, for each cluster, we train a linear model
using the 9 training route choice questions and we learn the
parameters θ̃i using (23) and (17). These parameters are shown
below:

θ̃1 = [−0.843,−0.529,−0.636,−0.148]

θ̃2 = [−0.686,−1.225,−1.189, 0]

θ̃3 = [−0.770,−0.912,−0.319,−0.537]

θ̃4 = [−0.654,−1.310,−0.765,−0.340]

θ̃5 = [0,−0.868,−1.004,−1.059]

(24)

where each element of a set of parameters θ̃i corresponds to
distance, travel time, 80th percentile of travel time and number
of freeway interchanges.

Having clustered the truck drivers into K = 5 disjoint
clusters and by using the learned parameters θ̃i given by
(24), in the following sections, we compute the UE, the SO
and a Pricing-and-Routing scheme by solving the optimization
problems (5), (12) and (18), respectively.

C. Necessity of a Pricing-and-Routing Scheme

In this section, we experimentally show the degree that truck
drivers have an incentive to deviate from the SO generated
routes. In our experiments, we use the Sioux Falls network
which is a benchmark in the transportation research field
consisting of 24 nodes and 76 links [40]. The Sioux Falls
network2 is shown in Figure 2. In our experiments, we

Fig. 2. The Sioux Falls network.

assumed that the cost of each route corresponds to travel time

2The distance of each link can be found in this link: https://bit.ly/3lW8Oah

and can be described by a Bureau of Public Roads (BPR)
function [42] of the form:

ClT (Xlp, XlT ) = γa + γb

(
Xlp + 3XlT

γc

)4

where γa, γb and γc are constants3.
After solving an equilibrium assignment problem for the

passenger vehicles, we calculated the number of passenger
vehicles at each link of the Sioux Falls network. Similar
to [18], these numbers were assumed to remain constant4.
For the truck drivers, we assumed that they want to travel
in 6 available Origin-Destination (OD) pairs, namely
(E1, E7), (E1, E11), (E10, E11), (E10, E20), (E15, E5) and
(E24, E10) and that they follow the 5 least congested routes
per OD pair. Their demand was assumed to take one of
the 5 equiprobable values, namely d1, d2, d3, d4 and d5

5. In
other words, for the purpose of the simulation experiments,
we assumed that the demand of the truck drivers follows
a discrete uniform distribution. However, the proposed
methodology in this paper can be applied in the case that
the demand of the truck drivers follows any probability
distribution with finite support. Lastly, the values of the
weighting factors of the objective function (10) were chosen
to be λ = ρ = 0.9.

Using the aforementioned, we solved the optimization prob-
lem (12) that gives us the SO solution. To demonstrate the
necessity for a pricing-and-routing scheme, in Table V, we
present results that show the percentage by which the truck
drivers could increase their utility in case they decided to
deviate from the SO solution.

TABLE V
PERCENTAGE BY WHICH THE TRUCK DRIVERS COULD INCREASE THEIR
UTILITY IN CASE THEY DECIDED TO DEVIATE FROM THE SO SOLUTION.

OD pair / Cluster 1 2 3 4 5
1 4.0 0.3 6.0 0.3 2.0
2 10.0 0 7.7 3.9 2.5
3 5.0 0 7.0 0.5 3.5
4 8.9 0.1 6.2 4.3 4.6
5 8.3 0 7.6 7.3 7.1
6 9.6 2.8 6.8 6.5 12.0

More specifically, Table V measures:

I1 − I2
I2

∗ 100%

where I1 and I2 are given by:

I1 = max
r∈Rw

∑
c

pcJ
c,w
i,r (θ̃, xr(α

SO))

I2 =
∑
c

∑
r∈Rw

pcα
SO
c,w,i,r

(
Jc,w
i,r (θ̃, xr(α

SO)) + πc,w
r

)
3The values of γa, γb and γc can be found in this link:

https://bit.ly/3ibHNi1
4The number of passenger vehicles at each link of the network can be found

in this link: https://bit.ly/3zBJoDy
5The demand values of the truck drivers can be found in this link:

https://bit.ly/3zJ3Ims

https://drive.google.com/file/d/1B9xipTw0uz-6SsFLCiksefnHa3Va4v0N/view?usp=sharing
https://drive.google.com/file/d/1p-B9WJG_SI-Aa5e_G2x9fgXc43-_I1he/view?usp=sharing
https://drive.google.com/file/d/1H0ZTrtc7NVf5RL03BJPWV5wq02E3wvuJ/view?usp=sharing
https://drive.google.com/file/d/1SefiOzdRoYbK8dradkiOYWWUk6RuZE5J/view?usp=sharing
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respectively. As can be observed from the results of Table V,
most truck drivers have an incentive to deviate from the SO
solution regardless of the OD pair or the cluster they belong.
This result was expected since it is known in the literature that
system optimality does not imply user optimality. Therefore,
the SO solution is not a practical solution and a pricing-and-
routing scheme is needed in order to guarantee the participa-
tion of the truck drivers.

D. Pricing-and-Routing
In this section, we run simulations in the Sioux Falls

network. More specifically, using the learned parameters θ̃i
from (24), we calculate the UE, the SO and the pricing-and-
routing scheme by solving the optimization problems (5), (12)
and (18), respectively.

Before presenting the results of the simulation experiments,
let us first explain the choice of UE and SO as benchmarks
for our comparison. It has been previously proved that as
the number of GPS routing apps is increased, the observed
traffic assignment converges to a UE [43]. Additionally, using
simulation experiments based on real data of the Los Angeles
network, it was shown that the minimum travel time of a
driver can be achieved whenever all drivers in the network
use GPS routing apps [43]. Therefore, the UE can be seen
as an optimistic version of the real traffic conditions. On the
other hand, the SO is the best possible traffic assignment that
could be achieved in the network.

In the simulations, we use the same network parameters as
the ones described in Section IV-C. Note that we consider 6
available OD pairs for truck drivers to retain computational
tractability since as the number of OD pairs increases, the
computational time increases as well. For realistic transporta-
tion networks with tens, hundreds or thousands of OD pairs,
more computationally efficient solutions need to be studied.

To solve these problems, the fmincon optimization solver
implemented in the MATLAB Optimization Toolbox was used.
Since fmincon solves optimization problems with local opti-
mality guarantees, in this section, we compare local minima
between the approaches. Note also that the UE solution was
obtained with a constraint tolerance of 4 · 10−3, while the SO
and the pricing-and-routing scheme solutions were obtained
with a constraint tolerance of 10−6. In our experiments, we
increased the constraint tolerance when calculating the UE
solution compared to the default of 10−6 in order to accelerate
the computation of the solution. The results are shown in
Table VI.

TABLE VI
SIMULATION RESULTS OF THE SIOUX FALLS NETWORK.

UE SO Pricing-and-Routing
E[Ttr] 33025.5 30141.3 30169.7
E[Utr] -69688.2 -60681.5 -60996.0
E[TS ] 51381.4 47557.9 47603.8
O(a) 35371.5 32050.1 32106.2

As can be observed from the results presented in Table VI,
the pricing-and-routing scheme achieves a significant reduc-
tion in the expected total travel time of the truck drivers and

the expected total travel time of the network compared to
the UE, while simultaneously increasing the expected total
utility of the truck drivers. Furthermore, the pricing-and-
routing scheme achieves a performance that is close to the
SO solution. However, in contrast with the SO, the pricing-
and-routing scheme guarantees that the expected total utility of
a truck driver (including payments) in case he/she decided to
participate in the mechanism, is greater than or equal to his/her
expected utility in case he/she did not participate through
the first constraint of (18). Lastly, as already mentioned, the
expected total payments made or received by the coordinator
are equal to zero, thus making the mechanism self-sustainable.

E. Computational Complexity with respect to OD pairs

In this section, we present results that demonstrate how
the proposed methodology scales with respect to the number
of OD pairs. Using the same network parameters as the
ones described in Section IV-C, in Table VII, we report the
computational time needed to solve (18) for varying number
of OD pairs.

TABLE VII
COMPUTATIONAL TIME (IN SECONDS) TO SOLVE (18) FOR DIFFERENT

NUMBER OF OD PAIRS.

OD pairs Computational time
2 5.3
3 44.5
4 148.2
5 355.1
6 764.6

As can be observed from the results of Table VII, as the
number of OD pairs increases, the computational time needed
to solve (18) increases very fast. This can be explained by
the fact that both the set of decision variables α(·) as well as
the set of decision variables π(·) depend on the OD pairs w.
Additionally, the number of constraints of (18) also increases
with the increase of the number of OD pairs. Therefore, even
though the proposed methodology can be applied to medium
size networks, more computationally efficient solutions need
to be studied for larger networks.

F. Degree of Personalization

In this section, we present results that demonstrate the
degree of personalization that the pricing-and-routing scheme
can provide to the truck drivers. Using the same network pa-
rameters as the ones described in Section IV-C, in Table VIII,
we report the percentage of truck drivers who have a higher
total utility (including payments) compared to the UE at each
demand realization and for each cluster.

As can be observed from the results of Table VIII, at most
demand realizations and for most clusters, the percentage of
truck drivers who have a higher total utility compared to the
UE is relatively high. Note also that even though at some
demand scenarios and for some clusters, some truck drivers
may have a lower utility, it is guaranteed through the first
constraint of (18) that on average, the expected total utility of
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TABLE VIII
PERCENTAGE OF TRUCK DRIVERS WHO ARE BETTER-OFF COMPARED TO

THE UE AT EACH DEMAND SCENARIO AND FOR EACH CLUSTER.

Scenario / Cluster 1 2 3 4 5
1 99.0 97.2 68.4 62.5 95.5
2 60.8 80.2 78.1 73.8 72.6
3 72.2 69.9 73.3 66.1 71.1
4 74.6 99.3 73.0 69.0 93.9
5 88.5 96.8 41.6 95.5 89.0

a truck driver (including payments) in case he/she decided to
participate in the mechanism, is greater than or equal to his/her
expected utility in case he/she did not participate. Therefore,
under the rationality assumption, every truck driver has an
incentive to participate in the proposed mechanism.

V. CONCLUSION

In this paper, we proposed a pricing-and-routing scheme for
trucks that can be applied in a general transportation network.
The proposed approach consists of 3 steps. In the first step, we
cluster the truck drivers into disjoint clusters based on their
responses to a small number of binary route choice questions.
In the second step, we propose to use a learning scheme based
on the Maximum Likelihood Estimation (MLE) principle that
allows us to learn the parameters of the utility function that
describes each cluster. In the third step, the estimated utilities
are used to calculate a pricing-and-routing scheme that satisfies
certain properties. The pricing-and-routing scheme guarantees
that the expected total utility of a truck driver (including pay-
ments) in case he/she decided to participate in the mechanism,
is greater than or equal to his/her expected utility in case he/she
did not participate. Additionally, it satisfies the budget balance
on average property and optimizes a total system-wide cost.

There are several potential extensions of this work. First,
pricing-and-routing schemes similar to the one that we pro-
pose in this paper, belong to the category of route-based
schemes. Route-based schemes can be applied to trucks that
constitute a subclass of vehicles with certain characteristics.
However, different approaches that can be applied to passenger
vehicles need to be studied. Second, the current form of the
proposed approach does not allow it to scale to very large
transportation networks with tens, hundreds or thousands of
OD pairs. This is mainly because the proposed scheme is
route-based. Additionally, distributed optimization methods
are also a promising direction for scaling the idea of a pricing-
and-routing scheme into large transportation networks. Third,
the proposed approach is studied for transportation networks
that are in an equilibrium state. A potential future direction is
the study of dynamic pricing-and-routing schemes that can be
applied in real-time. Lastly, future research efforts also need
to focus on the problem of the design of stable infrastructure
that will allow the application of similar pricing-and-routing
schemes in a real world scenario. Nevertheless, we believe that
the proposed method can form the foundation and initial step
in the design of personalized pricing-and-routing schemes that
also take system optimality into account.
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