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A B S T R A C T
Due to the uncertain nature of the traffic system, it is not trivial for delivery companies to reliably
satisfy customers’ time windows. To guarantee the reliability of the pickup and delivery service
under stochastic and time-dependent travel times, we consider a pickup and delivery problem
with hard time windows considering stochastic and time-dependent travel times. We propose a
chance-constrained model where the operational cost and the service’s reliability are considered.
To quantify the service reliability, every node is associated with a desired node service level, and
there exists a global service level, both measured by success probabilities. We present an estima-
tion method for arrival times and success probabilities under stochastic travel and service times.
We propose an exact solution approach based on a branch-price-and-cut framework, where a
labeling algorithm generates columns. Computational experiments are conducted to assess the
effectiveness of the solution framework, and Monte Carlo simulations are used to show that the
proposed method can generate routes that satisfy both node and global service levels.

1. Introduction
The pickup and delivery problem (PDP) is an extensively studied routing problem. Customer requests consist of

two parts: a pickup at one location and a delivery at another. The pickup and delivery problem has a wide range of
applications, including ridesharing services (Wang et al., 2016) and meal delivery services (Aziez et al., 2020). In
pickup and delivery services, an important factor that influences customer satisfaction is the punctuality of the service.
Nguyen et al. (2019) states that being able to perform the delivery service within a specified time window is one
of the most important attributes in customer’s decision-making, given multiple service options. For ridesharing and
shuttle services, punctuality is significant to passenger satisfaction. In most used meal delivery apps, like Uber Eats
and Meituan, customers can request refunds or cancel the order if the service is later than a specific time. Therefore,
companies must perform the service punctually and reliably.

However, it is not trivial to satisfy customers’ time windows because of the uncertain nature of the traffic system.
Traffic congestion is very common in urban areas where pickup and delivery services are frequently used. Conse-
quently, travel times are usually unpredictable and fluctuate significantly with the time of day (Yazici et al., 2012). It
is hard for delivery companies to find efficient routing solutions that balance operational costs and service reliability.
To provide reliable pickup and delivery solutions with time window constraints in an urban setting, we propose an
algorithm that solves pickup and delivery problems while considering the service’s reliability under stochastic and
time-dependent travel times.

In a significant part of the vehicle routing literature, the travel times between certain customers are assumed to be
deterministic. Most of the existing work that studies stochastic travel times adopts the assumption that the time windows
are soft, meaning that the time windows can be violated at the expense of some penalty cost in the objective function.
At each customer node, a penalty cost is imposed according to how early or late the vehicle arrives. If a vehicle arrives
early, it can start its service right away. A limitation of the above method is that it is impractical to measure the cost
of late deliveries and determine such penalty cost function in terms of money in real-world applications. The cost can
be much more than the refund, for such late deliveries could impact future sales. An alternative method is to assume
time windows are hard. Under the setting of hard time windows, a vehicle must wait until the start of a time window
to begin its service if it arrives early. This is common for passenger services since they may not be available before
their scheduled pickup time. Arriving later than the end of a time window results in a service failure of the whole
route. Compared to the soft time window assumption, the hard time window assumption can evaluate the reliability of
the service with the probability of satisfying time windows. In this paper, we assume that time windows are hard and
introduce the concept of service level, which indicates the desired probability that delivery is on-time. As customers
may have different requirements and expectations of punctuality, we assume each node is associated with a node service
level. We also assume a global service level measures the reliability of an overall routing solution. The global service
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level is a direct indicator for the service provider to evaluate its overall service reliability. The precise definitions of
these terms are presented in later sections of the paper.

We consider a pickup and delivery problem with hard time windows considering stochastic and time-dependent
travel times (PDPHTW-STDTT). We assume the travel times between customer locations follow a specific probability
distribution, and the distribution may depend on when the travel begins. The distribution is considered known and can
be derived from historical data. Each customer is assumed to be associated with a hard time window and the desired
node service level. There is a desired global service level. Using a chance-constrained approach, we aim to provide a
routing solution that satisfies the desired service levels with the minimum operational cost.

We propose an arrival time estimation method based on the works of Jula et al. (2006) and Ehmke et al. (2015).
Different from the heuristic solution method proposed by Ehmke et al. (2015), our solution method is an exact so-
lution method based on branch-cut-and-price. We propose a set partitioning formulation of the PDPHTW-STDTT
that includes a route success probability constraint. Since it is inefficient and not practical to enumerate all possible
routes in the pricing problem, a labeling algorithm is developed to eliminate the less promising routes to accelerate the
solution process. However, given the presence of probabilistic information in the routes, deciding if one route is more
promising than the other is not trivial. To deal with this challenge, exact dominance rules that handle probabilistic
information are proposed. To further accelerate the algorithm, heuristic dominance rules are also proposed. Compu-
tational experiments are performed, and Monte Carlo simulations are conducted to show the algorithm’s effectiveness
under stochastic travel times.

The main contributions of this paper are summarized as follows.
1. We define the pickup and delivery problem with hard time windows considering stochastic and time-dependent

travel times and propose a chance-constrained model for the problem.
2. We present an exact algorithm that is based on branch-cut-and-price to solve the proposed problem. New labeling

algorithms and dominance rules are proposed in the pricing problem to deal with stochastic travel times and
probabilistic information.

3. In the numerical experiments, we evaluate the trade-off between the reliability and the total cost of the routing
solution. We also demonstrate the algorithm’s effectiveness in guaranteeing desired service levels.

The paper is structured as follows. Section 2 presents a review of the related literature. Section 3 defines PDPHTW-
STDTT and introduces the route service level estimation method. In Section 4, the solution method based on branch-
cut-and-price is described. Computational results are reported in Section 5, followed by conclusions in Section 6.

2. Literature Review
The literature dealing with uncertainty can be categorized into stochastic vehicle routing problems (SVRP) and

robust vehicle routing problems. Adulyasak and Jaillet (2016) summarizes that stochastic vehicle routing problems
are applied to cases where known probability distributions can describe the uncertainty. In contrast, the robust vehicle
routing problem is proposed to deal with scenarios where probability distributions are hard to estimate. Bertsimas
et al. (2011) outlined that, compared to Stochastic VRP, the uncertainty model of robust VRP is not stochastic but de-
terministic and set-based, and its goal is to develop a solution that is feasible for all possible uncertainty realizations in
the given set. Agra et al. (2013) proposed two new formulations for the robust vehicle routing problem with time win-
dows and implemented a cutting-plane algorithm for the path inequalities formulation. Braaten et al. (2017) proposed
an efficient heuristic for the robust vehicle routing problem with time windows based on adaptive large neighborhood
search. Munari et al. (2019) proposed a compact formulation for the robust vehicle routing problem with time windows
and first developed a branch-price-and-cut method to solve the set partitioning formulation of the problem.

In our work, however, we assume the travel time distribution is known since there is sufficient work that studies the
distribution of travel times in urban areas using historical data (Yazici et al., 2012), and information is also available
from online databases. Therefore, our work falls into the category of SVRP, and the following literature review will
focus on how to deal with time windows in the SVRP context. Recent surveys of SVRP can be found in review papers
by Oyola et al. (2017, 2018).

Some of the work that studies SVRP does not take time windows into account, and the objectives are usually related
to the duration of the routes. In the work by Laporte et al. (1992), the VRP with stochastic travel and service time
was considered for the first time. Time windows are not introduced, and the intention is to limit the maximal route
duration. The authors presented three different formulations based on stochastic programming and solved the problem
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with a branch-and-cut approach. Kenyon and Morton (2003) proposed two models with different objective functions.
The first objective function minimizes the expectation of the route completion time, while the second maximizes the
probability of completing all the routes before a certain time. A solution method based on branch-and-cut is proposed.
Van Woensel et al. (2008) proposed a vehicle routing problem with dynamic travel times and utilized queueing theory
to determine the travel times on the arcs depending on the time. Lecluyse et al. (2009) studied a vehicle routing problem
with stochastic time-dependent travel times without time windows. The proposed method adjusts the objective of the
classical VRP that minimizes the expected total travel time by adding the standard deviation of the travel times into
the objective function. The method’s performance is evaluated on instances of up to 80 customers, which shows that
the reliability of the routing solution is improved when the standard deviation of travel times is considered.

In most of the literature studying SVRP with time windows, it is assumed that the time windows are soft. Soft
time windows imply that vehicles that arrive earlier than the start of time windows do not have to wait, and early and
late arrivals will lead to penalty costs. Ando and Taniguchi (2006) studied the VRPTW with uncertain travel times.
Late arrivals generate a penalty cost proportional to the delayed time length. The objective is to minimize the total
cost, including operational costs and penalties. A genetic algorithm is used to solve the problem. Li et al. (2010)
investigated the VRPTW with stochastic travel and service times. One of the two proposed formulations assumes soft
time windows, and a stochastic programming model with resource formulation is given. A tabu-search-based heuristic
solves the problem. Taş et al. (2013, 2014a,b) studied vehicle routing problems with stochastic travel times, including
soft time windows under both time-independent and time-dependent settings. The objective function is to minimize
a total weighted cost, which includes the penalty for delay and earliness. A method to estimate the expectation and
variance of arrival times is proposed. In Taş et al. (2013) and Taş et al. (2014a), the problems are solved by a tabu-
search based heuristic. In Taş et al. (2014b), a solution method based on column generation and branch-and-price
solution is proposed.

Few papers studied the SVRP with hard time windows, which are the most closely related references to our work.
In those papers, the key point is to guarantee a certain service level at each customer node. A major challenge is to deal
with the truncation of the probability distributions of arrival times caused by the hard time windows, as vehicles have
to wait for the start of the time window to begin service. Different methods are proposed to estimate the probability
distributions of arrival times after the truncation. The work of Jula et al. (2006) is one of the first efforts that investigate
the effect of hard time windows. Both travel times and service times are considered to be stochastic. A Taylor series
expansion approximates the mean and variance of arrival time at each customer node. The estimation method deals
with nonstationary time-varying travel time distributions. Chebyshev and Chernoff bounds determine if a route meets
the required service level. The proposed problem is a traveling salesman problem involving only one vehicle. Li et al.
(2010) also proposed a chance-constrained programming formulation for VRP with stochastic travel times, which
differs from the above formulation. In the chance-constrained programming model, the service level at each customer
node is guaranteed. The probability of route success is derived directly from Monte Carlo simulations without explicit
estimation expressions. Ehmke et al. (2015) studied a VRP with stochastic travel times and hard time windows. Using
extreme value theory, the authors proposed a different estimation method to approximate the mean and variance of
arrival times. When estimating the route success probability after estimating the mean and variance of arrival times,
it is approximated under the assumption that the distributions of the arrival times are normal. The authors defined
the route feasibility check to solve the problem and integrated it into existing heuristics like tabu-search. To show the
effectiveness of the proposed method, the notion of lateness is defined to evaluate the reliability of a route. Miranda
and Conceição (2016) proposed a method to approximate the distribution function of arrival times using convolution
functions. A metaheuristic is proposed to solve the VRP with stochastic travel times. The authors conducted numerical
experiments on instances with up to 100 customers. Gutierrez et al. (2018) extended the arrival times estimation method
by Ehmke et al. (2015) by integrating stochastic service times. Several different confidence levels are defined, and a
multi-population memetic algorithm is proposed.

All of the work above used heuristics to solve the problem. A limitation of the above heuristic solution methods
is that even though the service levels at customer nodes can be guaranteed, there is no guarantee on the global service
level. Errico et al. (2018) proposed an exact solution based on a branch-cut-and-price method to solve a VRP with hard
time windows. The goal is to guarantee a global service level, which is the probability that all the customer nodes are
served on time. However, the stochasticity lies in service times, not travel times. Unlike the work mentioned above,
the probability distribution functions of service times are assumed to be discrete. Therefore, the probability of a route’s
success can be computed directly, and no estimation is needed. The authors presented a set partitioning formulation
with a probability constraint and developed a branch-cut-and-price solution framework. Numerical experiments are
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Figure 1: The position of the proposed problem in the literature

performed on instances with up to 50 customers.
Another related research area is the time-dependent vehicle routing problem (TDVRP), whose survey can be found

in Gendreau et al. (2015). Ichoua et al. (2003) first introduced the "first in, first out" (FIFO) property under the
assumption of time-dependent travel times and proposed a step-wise function speed model which satisfies the property.
Dabia et al. (2013) proposed a branch-and-price algorithm for time-dependent vehicle routing problems with time
windows, which can solve instances with up to 100 customers. Sun et al. (2018b) studied the time-dependent pickup
and delivery problem with time windows and its variants where some customers can be skipped and the departure time
can be flexible. The definition of time-dependent under stochastic travel times assumption is slightly different from
the traditional definition used by the above papers and is given in the next section.

As for the solution method, our work adopts the branch-cut-and-price framework, which is an exact solution
method. The readers interested in the branch-cut-and-price method in VRP applications are referred to a survey by
Costa et al. (2019). We study the pickup and delivery problem more restrictive than the vehicle routing problem because
the PDP requires the pickup node and the delivery node served by the same vehicle. Therefore, the branch-cut-and-
price procedure for solving PDP varies from the VRP version to some degree. The interested readers are referred to the
work by Ropke and Cordeau (2009), which provides a detailed branch-cut-and-price solution method for the PDPTW.

Figure 1 summarizes the position of the proposed problem in the literature and its relation with similar problems.
The proposed method also belongs to time-dependent vehicle routing problems (TDVRP). Our work contributes to
the literature and differs from the other work that studies stochastic travel times VRP with hard time windows in the
following ways. First, our work integrates time-dependent travel times. Second, to our knowledge, we are the first to
propose an exact solution method by proposing a labeling algorithm with probabilistic information.

3. The PDPHTW-STDTT
In this section, we first introduce the definition of the pickup and delivery problem with hard time windows con-

sidering stochastic and time-dependent travel times. Then, the method to estimate the means and variances of arrival
times is presented. Finally, we show how the route success probability is estimated.
3.1. Problem description

Let 𝐺 = (𝑁,𝐴) be a directed graph, where 𝑁 = {0, 1, ..., 2𝑛 + 1} is the set of nodes and 𝐴 is the set of arcs
𝐴 = {(𝑖, 𝑗)|𝑖, 𝑗 ∈ 𝑁}. Nodes 0 and 2𝑛 + 1 represent the origin and destination depot of the vehicles. The set
𝑁𝑃 = {1, ..., 𝑛} ∈ 𝑁 represents the set of pickup nodes and 𝑁𝐷 = {𝑛 + 1, ..., 2𝑛} ∈ 𝑁 represents the set of delivery
nodes. There is a set of n requests. Each request 𝑖 is associated with a pickup node 𝑖 and a delivery node 𝑖 + 𝑛. For
each request, the pickup node must be visited before the delivery node, and both nodes must be visited by the same
vehicle. Each node must be visited only once.

We consider a capacitated pickup and delivery problem, where each request is associated with load size, 𝑞𝑖. Pickup
node 𝑖 has a load of 𝑞𝑖 and delivery node 𝑛 + 𝑖 has a load of −𝑞𝑖 (drop off). As there is no inventory at the depot,
𝑞0 = 𝑞2𝑛+1 = 0. Each node 𝑖 ∈ 𝑁𝑝 ∪ 𝑁𝑑 has a time window [𝑒𝑖, 𝑙𝑖], where 𝑒𝑖 is the start of the time window and 𝑙𝑖
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is the end of the time window. The vehicle arrives earlier than 𝑒𝑖 must wait until 𝑒𝑖 to start its service at node 𝑖. 𝑑𝑖𝑗denotes the distance between node 𝑖 and node 𝑗. A travel cost 𝑐𝑖𝑗 is associated with each arc (𝑖, 𝑗) ∈ 𝐴. For the sake
of simplicity, we assume the travel cost is proportional to the travel distance and 𝑐𝑖𝑗 = 𝑑𝑖𝑗 in this paper.

There is a fleet of identical vehicles, each with a maximum capacity of 𝑄. We assume there is no limit on the
number of vehicles used. However, a fixed cost 𝐶𝑓𝑖𝑥𝑒𝑑 is paid when a vehicle is used. All the vehicles depart at the
depot at time 0 and finish the route at the depot.

We assume the travel times between nodes and service times at nodes are stochastic. The travel time on each arc
(𝑖, 𝑗) ∈ 𝐴 is a Gaussian random process 𝑋𝑖𝑗(𝑡), with 𝑡 representing the time when the vehicle enters arc (𝑖, 𝑗). We
assume the mean of 𝑋𝑖𝑗(𝑡), 𝐸[𝑋𝑖𝑗(𝑡)] is time-dependent, while the variance of 𝑋𝑖𝑗(𝑡), 𝑉 𝑎𝑟[𝑋𝑖𝑗] is time-independent,
only proportional to the length of the arc, 𝑑𝑖𝑗 . Following Ehmke et al. (2015)’s notation, we define a variation coefficient
𝑐𝑣, so that 𝑉 𝑎𝑟[𝑋𝑖𝑗] = 𝑐𝑣𝑑𝑖𝑗 . We assume that stochasticity is only in the travel times but not path choices. Therefore,
there is only one path between any two nodes.

It is assumed that the travel times on an individual arc at any particular time 𝑡 are statistically independent. Most
of the literature that studies time-dependent travel times satisfies the "first in, first out" (FIFO) property. The FIFO
property under deterministic travel times states that if two vehicles traverse the same arc, the one that leaves first will
arrive first. Most literature adopts a speed profile model that consists of step-wise functions and satisfies the FIFO
principle proposed by Ichoua et al. (2003). However, when it comes to stochastic and time-dependent travel times, the
FIFO property can not be guaranteed at the single-vehicle level because of the uncertainty in travel times.

Nevertheless, based on real-life observations and experiences, on average, vehicles that leave early will arrive early.
Therefore, the FIFO property should hold at the macro level, meaning that 𝐸[𝑋𝑖𝑗(𝑡)] satisfies the FIFO principle. We
assume that 𝐸[𝑋𝑖𝑗(𝑡)] is derived from the speed profile model mentioned above. The speed profile model assumes that
the scheduling horizon is divided into 𝑘 intervals, and the vehicle’s speed is a constant in each of the intervals. Each
arc (𝑖, 𝑗) ∈ 𝐴 is associated with a speed profile that consists of a constant speed for each interval. We assume all the
arcs share the same speed profile, meaning that the speeds on all the arcs are the same at a specific time. The 𝐸[𝑋𝑖𝑗(𝑡)]derived by the above method is a piece-wise linear function. Details about the FIFO property and the definition of the
speed profile can be found in Ichoua et al. (2003) and Sun et al. (2018a). We note that the proposed method can deal
with more complicated travel time assumptions where travel speeds differ on different arcs or the travel times follow a
more complicated changing pattern. For the sake of simplicity, we adopt the simplified assumption above.

The service time at each node is a random variable that is time-independent. The service time 𝑆𝑖 at node 𝑖 has
mean 𝐸[𝑆𝑖] and variance 𝑉 𝑎𝑟[𝑆𝑖]. It is assumed that 𝑆𝑖 follows a normal distribution. Once the service is finished,
the vehicle starts to travel to the next node on the route.

A route 𝑟 is defined by a sequence of nodes 𝑟 = (𝑣0, 𝑣1, ..., 𝑣𝑚, 𝑣𝑚+1), where 𝑣1, ..., 𝑣𝑚 ∈ 𝑁𝑝 ∪ 𝑁𝑑 and 𝑣0, 𝑣𝑚+1represent the depot. We define a node as successful if the vehicle arrives at the node within its time window. Node
success probability is defined by the probability that a node in a route is successful when given the route and all
needed distributions. We define that a route is successful if the vehicle arrives at each node on the route within their
time windows. Route success probability is the probability that a given route is successful when given all needed
distributions. Each node 𝑖 ∈ 𝑁𝑝 ∪𝑁𝑑 is associated with a node service level 𝜃𝑗 (0 ≤ 𝜃𝑗 < 1), indicating the desired
node success probability by the corresponding customer. We also define a global service level Θ (0 ≤ Θ < 1),
indicating the desired probability that all the routes are successful. The objective is to minimize the total costs when
the node and global service levels are satisfied.
3.2. Arrival times estimation

Several methods for estimating the arrival times under stochastic travel time and hard time windows assumption
are mentioned in our literature review. We adopt the method proposed by Jula et al. (2006), because of its capability
of dealing with time-dependent travel times. In addition, this estimation method makes it more practical to generate
dominance rules for the proposed labeling algorithm, presented later in this paper. A comparison of the adopted method
and Ehmke et al. (2015)’s method can be found in Appendix A.

The main idea of Jula et al. (2006)’s method is to estimate the first and second moments of the arrival times
iteratively. Let 𝐴𝑟

𝑖 denote the arrival time at node 𝑖 on route 𝑟 , and 𝐷𝑟
𝑖 denote departure time after service at node

𝑖 on route 𝑟. The means and variances of 𝑋𝑖𝑗(𝑡) and 𝑆𝑖 are known. When the vehicle travels from node 𝑖 to node 𝑗,
the expressions below give the means and variances of the arrival and departure times at node 𝑗. The estimations of
the means and variances of arrival times and departure times of all the nodes on a route can be derived iteratively by
repeating this process. As in Jula et al. (2006), the following equations can be derived:
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𝐸[𝐴𝑟
𝑗] ≈ 𝐸[𝐷𝑟

𝑖 ] + 𝐸[𝑋𝑖𝑗(𝐸[𝐷𝑟
𝑖 ])] (1)

𝑉 𝑎𝑟[𝐴𝑟
𝑗] ≈ {1 + 𝐸′[𝑋𝑖𝑗(𝐸[𝐷𝑟

𝑖 ])]}
2𝑉 𝑎𝑟[𝐷𝑟

𝑖 ] + 𝑉 𝑎𝑟[𝑋𝑖𝑗] (2)
𝐸(𝐷𝑟

𝑗) = 𝑔𝑗(𝐸[𝐴𝑟
𝑗]) + 𝐸[𝑆𝑗] (3)

𝑉 𝑎𝑟(𝐷𝑟
𝑗) ≈

1
4

(

∫

𝐸[𝐴𝑟
𝑗 ]+𝜎[𝐴

𝑟
𝑗 ]

𝐸[𝐴𝑟
𝑗 ]−𝜎[𝐴

𝑟
𝑗 ]

𝑔′𝑗(𝑥) 𝑑𝑥

)2

+ 𝑉 𝑎𝑟[𝑆𝑗] (4)

𝑔𝑗(𝑡) =

⎧

⎪

⎨

⎪

⎩

𝑒𝑗 𝑖𝑓 𝑡 ≤ 𝑒𝑗
𝑡 𝑖𝑓 𝑒𝑗 < 𝑡 ≤ 𝑙𝑗
𝑀(𝑡 − 𝑙𝑗) + 𝑙𝑗 𝑖𝑓 𝑡 > 𝑙𝑗

(5)

𝑔′𝑗(𝑡) =

⎧

⎪

⎨

⎪

⎩

0 𝑖𝑓 𝑡 ≤ 𝑒𝑗
1 𝑖𝑓 𝑒𝑗 < 𝑡 ≤ 𝑙𝑗
𝑀 𝑖𝑓 𝑡 > 𝑙𝑗

(6)

where 𝐸′[𝑋𝑖𝑗(𝑡)] is the derivative of 𝐸[𝑋𝑖𝑗(𝑡)] with respect to 𝑡. 𝜎[𝐴𝑟
𝑗] is the standard deviation of 𝐴𝑟

𝑗 . (5) and (6)
show that 𝑔𝑗(𝑡) is a piece-wise linear function to model the effect of the hard time window at node 𝑗, and 𝑔′𝑗(𝑡) is the
derivative of 𝑔𝑗(𝑡) with respect to 𝑡. 𝑀 represents a very big number. Expression (1) and (2) estimate the expectation
and variance of arrival time at a node based on the expectation and variance of departure time at the previous node
and travel time between the nodes. Expression (3) and (4) calculate the expectation and variance of departure time at
a node based on the expectation and variance of arrival time and service time at the same node.

3.3. Route success probability estimation
Given the mean and the variance of the arrival time at a node, the node success probability can be estimated. We

adopt the estimation method in Ehmke et al. (2015) that assumes the arrival times conform to a normal distribution.
Note that the actual distribution of arrival times may be skewed because of hard time windows, and the actual distribu-
tion can not be computed precisely. Thus, the node success probability at node 𝑖 on route 𝑟, denoted by 𝑃 𝑟

𝑖 , is estimated
by

𝑃 𝑟
𝑖 = 𝑃 (𝐴𝑟

𝑖 ≤ 𝑙𝑖) ≈ Φ

(

𝑙𝑖 − 𝐸[𝐴𝑟
𝑖 ]

√

𝑉 𝑎𝑟[𝐴𝑟
𝑖 ]

)

(7)

where Φ(⋅) is the cumulative distribution function of the standard normal distribution.
The estimated route success probability 𝑃 𝑟 is the product of the node success probabilities of the nodes on the route

and is given by the following equation:

𝑃 𝑟 =
∏

𝑖∈𝑟
𝑃 𝑟
𝑖 (8)

A route is considered feasible when all the node service levels of the nodes on the route and all constraints in the
pickup and delivery problem are satisfied. Let  be the set of all feasible routes. Let 𝑐ℎ𝑜𝑠𝑒𝑛 = {𝑟1, 𝑟2, ..., 𝑟𝑘} be
the set of routes that are chosen in the routing solution. Global success probability 𝑃𝑔𝑙𝑜𝑏𝑎𝑙 is the probability that all
chosen routes are successful. To satisfy the desired node service levels and the desired global service level, we have
the following constraints:

𝑃 𝑟
𝑖 ≥ 𝜃𝑖 ∀𝑟 ∈ 𝑐ℎ𝑜𝑠𝑒𝑛, ∀𝑖 ∈ 𝑟 (9)
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𝑃𝑔𝑙𝑜𝑏𝑎𝑙 =
∏

𝑟∈𝑐ℎ𝑜𝑠𝑒𝑛

𝑃 𝑟 ≥ Θ (10)

where 𝜃𝑖 is the node service level of node 𝑖, and Θ is the global service level. Expression (9) states that each node’s
success probability satisfies its node service level. Expression (10) states that the global success probability satisfies
the global service level.

4. Solution approach
This section presents a solution method for PDPHTW-STDTT based on branch-cut-and-price. We first provide

the set partitioning formulation of the problem. Then, we emphasize how to conduct column generation and solve
the pricing problem. Finally, we introduce the branch-cut-and-price framework, the cutting plane method, and the
branching strategies.
4.1. Set partitioning formulation

We define the cost of a route 𝑟 = (𝑣0, 𝑣1, ..., 𝑣𝑚, 𝑣𝑚+1) as 𝑐𝑟 = 𝐶𝑓𝑖𝑥𝑒𝑑 +
∑𝑚

𝑖=0 𝑐𝑣𝑖𝑣𝑖+1 . Let the parameter 𝑎𝑖𝑟 denotes
if node 𝑖 is visited on route 𝑟. 𝑎𝑖𝑟 = 1 if route 𝑟 visits node 𝑖, otherwise 𝑎𝑖𝑟 = 0. The binary variable 𝑥𝑟 indicates if
route 𝑟 is chosen in the solution.

The PDPHTW-STDTT can be formed in the following set partitioning formulation.

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
∑

𝑟∈
𝑐𝑟𝑥𝑟 (11)

𝑠.𝑡
∑

𝑟∈
𝑎𝑖𝑟𝑥𝑟 = 1 ∀𝑖 ∈ 𝑁𝑝 (12)

∑

𝑟∈
𝑥𝑟 𝑙𝑛(𝑃 𝑟) ≥ 𝑙𝑛(Θ) (13)

𝑥𝑟 ∈ {0, 1} ∀𝑟 ∈  (14)
The objective function (11) minimizes the total cost, including fixed vehicle and arc costs. Constraint (12) indicates

that each pickup node is visited exactly once. As we pair a pickup node with its corresponding delivery node in the
routes, each delivery node is guaranteed to be visited exactly once. Constraint (13) ensures the global service level is
satisfied and is derived from taking the logarithm of both sides of (10).
4.2. Column generation

The set of all feasible routes is large and cannot be explicitly enumerated. We utilize a column generation method
(Desaulniers et al., 2006) to generate routes iteratively. Only a subset of  is maintained in the linear program. In each
iteration, a relaxation of the restricted master problem (RMP) is solved, generating the dual multipliers of constraints
(12) and (13), 𝜋𝑖 (∀𝑖 ∈ 𝑁𝑝) and 𝜆 respectively. Then, the pricing algorithm is called to find routes with negative
reduced costs, which are added to the subset of  in the RMP. The iteration stops when no such route is found. The
subset of  is initialized with the set of routes that visit only one pair of pickup and delivery nodes.

The reduced cost 𝑐𝑟 of a route 𝑟 ∈  is calculated as:
𝑐𝑟 = 𝑐𝑟 −

∑

𝑖∈𝑁𝑝

𝑎𝑖𝑟𝜋𝑖 + 𝑙𝑛(𝑃 𝑟)𝜆 (15)

= 𝐶𝑓𝑖𝑥𝑒𝑑 +
𝑚
∑

𝑖=0
𝑐𝑣𝑖𝑣𝑖+1 −

∑

𝑖∈𝑁𝑝

𝑎𝑖𝑟𝜋𝑖 +
∑

𝑖∈𝑟
𝑙𝑛(𝑃 𝑟

𝑖 )𝜆 (16)

4.3. Pricing algorithm
The pricing algorithm finds routes with negative reduced cost (15). The pricing problem is a variant of the shortest

path problems with resource constraints (ESPPRC, Irnich and Desaulniers (2005)) and is mainly solved by a labeling
algorithm (Righini and Salani, 2008). The main idea of the labeling algorithm is to represent every partial route that
starts at node 0 and ends at any node 𝑖 with a label 𝐿. The label contains information about the route, including the
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current load on the vehicle, the delivery tasks that need to be finished, the accumulated reduced cost, and the arrival
times and probability estimations mentioned in Section 3, etc. Labels are extended from existing labels toward the
destination node. During the extension process, we check if the new label satisfies the constraints in the assumption of
the problem, like the capacity constraint, node service level constraint, etc. In other words, the routes generated by the
labeling algorithm are feasible. To speed up the algorithm, dominance rules are usually proposed to eliminate routes
that are not useful.

Note that a bidirectional labeling algorithm is computationally more efficient than a unidirectional labeling algo-
rithm. We only consider a forward labeling algorithm. This is because the probability information can not be extended
backward.
4.3.1. Definition of labels

A partial route 𝑟𝑘 = (𝑣0, 𝑣1, ..., 𝑣𝑚) is a route that does not necessarily end at the destination. As the number of
partial routes may become large in the labeling algorithm, we use superscript 𝑘 to differentiate them. Each partial route
𝑟𝑘 is associated with a label 𝐿𝑘.

𝐿𝑘 = [ (𝐿𝑘),(𝐿𝑘),(𝐿𝑘),(𝐿𝑘), 𝐸𝐴(𝐿𝑘), 𝑉𝐴(𝐿𝑘), 𝐸𝐷(𝐿𝑘), 𝑉𝐷(𝐿𝑘), 𝑃 𝑟𝑜𝑏(𝐿𝑘),(𝐿𝑘), (𝐿𝑘), 𝜋(𝐿𝑘)]. The
components of 𝐿𝑘 are explained below:

•  (𝐿𝑘) is the last node visited on partial route 𝑟𝑘.
• (𝐿𝑘) is the partial route 𝑟𝑘, which contains all the nodes visited in the order that they are visited.
• (𝐿𝑘) is the load in the vehicle after visiting node  (𝐿𝑘).
• (𝐿𝑘) is the accumulated cost along partial route 𝑟𝑘 after visiting node  (𝐿𝑘), without considering the fixed

cost.
• For the necessary information to estimate arrival times and success probabilities,

𝐸𝐴(𝐿𝑘), 𝑉𝐴(𝐿𝑘) are the estimated mean and variance of the arrival time at node  (𝐿𝑘).
𝐸𝐷(𝐿𝑘), 𝑉𝐷(𝐿𝑘) are the estimated mean and variance of the departure time at node  (𝐿𝑘).
𝑃𝑟𝑜𝑏(𝐿𝑘) is the estimated route success probability of the partial route 𝑟𝑘.

• (𝐿𝑘) ⊆ 𝑁𝑝 is the set of pickup nodes that have been visited in partial route 𝑟𝑘, whose corresponding delivery
nodes have not been visited.

•  (𝐿𝑘) ⊆ 𝑁𝑝 is the set of unreachable requests . A node 𝑖 is said to be unreachable if:
1. node 𝑖 has already been visited on partial route 𝑟𝑘 (so that it will not be visited again), or
2. going directly from current node (𝐿𝑘) to pickup node 𝑖 can not satisfy the service levels, which is 𝑃𝑟𝑜𝑏(𝐿𝑘)⋅
𝑃 𝑟𝑘

⨁

𝑖
𝑖 < 𝜃𝑖, or 𝑃𝑟𝑜𝑏(𝐿𝑘) ⋅ 𝑃 𝑟𝑘

⨁

𝑖
𝑖 < Θ. Here, 𝑟𝑘⨁ 𝑖 represents the new partial route after extending partial

route 𝑟𝑘 to node 𝑖.
• 𝜋(𝐿𝑘) is the sum of the dual values associated with Constraint (12) on the partial route 𝑟𝑘.

4.3.2. Label extension
Given a label 𝐿𝑘 associated with partial route 𝑟𝑘, its extension to node 𝑖 is feasible only if:
(𝐿𝑘) + 𝑞𝑖 ≤ 𝑄 ∀𝑖 ∈ 𝑁 (17)
𝑖 ∉  (𝐿𝑘) ∀𝑖 ∈ 𝑁𝑝 (18)
𝑖 − 𝑛 ∈ (𝐿𝑘) ∀𝑖 ∈ 𝑁𝑑 (19)
(𝐿𝑘) = ∅ 𝑖𝑓 𝑖 = 2𝑛 + 1 (20)
𝑃𝑟𝑜𝑏(𝐿𝑘) ⋅ 𝑃 𝑟𝑘

⨁

𝑖
𝑖 ≥ 𝑚𝑎𝑥{𝜃𝑖,Θ} (21)
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Condition (17) guarantees the vehicle capacity constraint will not be violated. Conditions (18) - (20) make sure
the precedence constraint of the pickup and delivery problem is satisfied. Condition (21) ensures that the node and
global service levels are satisfied.

If it is feasible to extend an existing label 𝐿𝑘 to node 𝑖, a new label 𝐿ℎ is created, representing the new partial route
𝑟𝑘

⨁

𝑖. The label updating rules are:
 (𝐿ℎ) = 𝑖 (22)

(𝐿ℎ) =

{

(𝐿𝑘) ∪ {𝑖} 𝑖𝑓 𝑖 ∈ 𝑁𝑝

(𝐿𝑘)∖{𝑖 − 𝑛} 𝑖𝑓 𝑖 ∈ 𝑁𝑑
(23)

 (𝐿ℎ) =

{

 (𝐿𝑘) ∪ {𝑖} 𝑖𝑓 𝑖 ∈ 𝑁𝑝

 (𝐿𝑘) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(24)

(𝐿ℎ) = (𝐿𝑘) + 𝑞𝑖 (25)
(𝐿ℎ) = (𝐿𝑘) + 𝑐 (𝐿𝑘)𝑖 (26)

𝜋(𝐿ℎ) =

{

𝜋(𝐿𝑘) + 𝜋𝑖 𝑖𝑓 𝑖 ∈ 𝑁𝑝

𝜋(𝐿𝑘) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(27)

𝐸𝐴(𝐿ℎ) = 𝐸𝐷(𝐿𝑘) + 𝐸[𝑋 (𝐿𝑘)𝑖(𝐸𝐷(𝐿𝑘))] (28)
𝑉𝐴(𝐿ℎ) = (1 + 𝐸′[𝑋 (𝐿𝑘)𝑖(𝐸𝐷(𝐿𝑘))])2𝑉𝐷(𝐿𝑘) + 𝑉 𝑎𝑟[𝑋 (𝐿𝑘)𝑖] (29)
𝐸𝐷(𝐿ℎ) = 𝑔𝑖(𝐸𝐴(𝐿ℎ)) + 𝐸[𝑆𝑖] (30)

𝑉𝐷(𝐿ℎ) = 1
4
(∫

𝐸𝐴(𝐿ℎ)+
√

𝑉𝐴(𝐿ℎ)

𝐸𝐴(𝐿ℎ)−
√

𝑉𝐴(𝐿ℎ)
𝑔′𝑖 (𝑥) 𝑑𝑥)

2 + 𝑉 𝑎𝑟[𝑆𝑖] (31)

𝑃𝑟𝑜𝑏(𝐿ℎ) = 𝑃𝑟𝑜𝑏(𝐿𝑘)𝑃 𝑟𝑘
⨁

𝑖
𝑖 = 𝑃𝑟𝑜𝑏(𝐿𝑘)Φ

(

𝑙𝑖 − 𝐸𝐴(𝐿ℎ)
√

𝑉𝐴(𝐿ℎ)

)

(32)

Expressions (22) - (27) are derived from the definition of the label. Expressions (28) - (32) are derived from the
conclusions in Section 3.
4.3.3. Label dominance rules

The concept of label dominance is adopted to restrict the total number of labels and speed up the algorithm. A
dominance check is performed within the set of labels with the same ending node. If another dominates a label, the
dominated label will be discarded.

Definition of dominance: Consider two feasible partial routes 𝑟1 and 𝑟2, with labels 𝐿1 and 𝐿2, respectively. If
 (𝐿1) =  (𝐿2), a dominance check with the following principles will be performed. We say 𝐿1 dominates 𝐿2 so
that 𝐿2 can be eliminated, if:
(1) If extending 𝑟2 to any node 𝑖 generates a feasible route 𝑟2⨁ 𝑖, then extending 𝑟1 to node 𝑖 also generates a feasible

route 𝑟1
⨁

𝑖.
(2) For any such extensions 𝑟1⨁ 𝑖 and 𝑟2

⨁

𝑖, the reduced cost of 𝑟1⨁ 𝑖 is always less than or equal to the reduced
cost of 𝑟2⨁ 𝑖.

We first propose and prove Lemma 1, which will be used to prove the exact dominance rules.
Lemma 1: For partial route 𝑟1 associated with label 𝐿1 and 𝑟2 associated with label 𝐿2, if 𝐸𝐴(𝐿1) ≤ 𝐸𝐴(𝐿2),

𝑃𝑟𝑜𝑏(𝐿1) ≥ 𝑃𝑟𝑜𝑏(𝐿2) and (1+𝑓 ′
𝑚𝑎𝑥)

2𝑉𝐷(𝐿1) ≤ (1+𝑓 ′
𝑚𝑖𝑛)

2𝑉𝐷(𝐿2), then𝑃 𝑟1
⨁

𝑖
𝑖 ≥ 𝑃 𝑟2

⨁

𝑖
𝑖 holds for feasible extensions

to any node 𝑖, where 𝑓 ′
𝑚𝑎𝑥 and 𝑓 ′

𝑚𝑖𝑛 are the maximum and minimum value of the derivative of the expected travel time
with respect to time, over all arcs and over the scheduling horizon.

Proof of Lemma 1:
Assume 𝑟1

⨁

𝑖 and 𝑟2
⨁

𝑖 are feasible extensions of 𝑟1 and 𝑟2 to an arbitrary node 𝑖, and the associated labels are
𝐿1∗ and 𝐿2∗ , respectively.
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We first show that 𝐸𝐴(𝐿1∗ ) ≤ 𝐸𝐴(𝐿2∗ ). Given expression (30):
𝐸𝐷(𝐿ℎ) = 𝑔𝑖(𝐸𝐴(𝐿ℎ)) + 𝐸[𝑆𝑖]

where 𝑔𝑖(⋅) is non-decreasing, 𝐸𝐴(𝐿1) ≤ 𝐸𝐴(𝐿2), and 𝐸[𝑆𝑗] is constant, we derive that 𝐸𝐷(𝐿1) ≤ 𝐸𝐷(𝐿2). With
𝐸𝐷(𝐿1) ≤ 𝐸𝐷(𝐿2), and expression (28):

𝐸𝐴(𝐿ℎ) = 𝐸𝐷(𝐿𝑘) + 𝐸[𝑋 (𝐿𝑘)𝑖(𝐸𝐷(𝐿𝑘))]
where we assume the FIFO property of travel time function 𝐸[𝑋𝑖𝑗(𝑡)], we get 𝐸𝐴(𝐿1∗ ) ≤ 𝐸𝐴(𝐿2∗ ).

We then show that 𝑉𝐴(𝐿1∗ ) ≤ 𝑉𝐴(𝐿2∗ ). In the Lemma statement, we have:
(1 + 𝑓 ′

𝑚𝑎𝑥)
2𝑉𝐷(𝐿1) ≤ (1 + 𝑓 ′

𝑚𝑖𝑛)
2𝑉𝐷(𝐿2) (33)

Because of the definition of 𝑓 ′
𝑚𝑎𝑥 and 𝑓 ′

𝑚𝑖𝑛, we have:
𝐸′[𝑋 (𝐿1)𝑖(𝐸𝐷(𝐿1))] ≤ 𝑓 ′

𝑚𝑎𝑥 (34)
𝐸′[𝑋 (𝐿2)𝑖(𝐸𝐷(𝐿2))] ≥ 𝑓 ′

𝑚𝑖𝑛 (35)
From inequalities (33) - (35), it can be derived that

(1 + 𝐸′[𝑋 (𝐿1)𝑖(𝐸𝐷(𝐿1))])2𝑉𝐷(𝐿1) ≤ (1 + 𝐸′[𝑋 (𝐿2)𝑖(𝐸𝐷(𝐿2))])2𝑉𝐷(𝐿2) (36)
Given (36), and expression (29):

𝑉𝐴(𝐿ℎ) = (1 + 𝐸′[𝑋 (𝐿𝑘)𝑖(𝐸𝐷(𝐿𝑘))])2𝑉𝐷(𝐿𝑘) + 𝑉 𝑎𝑟[𝑋 (𝐿𝑘)𝑖]
where 𝑉 𝑎𝑟[𝑋𝑖𝑗] is time-independent, we have 𝑉𝐴(𝐿1∗ ) ≤ 𝑉𝐴(𝐿2∗ ).

Since 𝐸𝐴(𝐿1∗ ) ≤ 𝐸𝐴(𝐿2∗ ) and 𝑉𝐴(𝐿1∗ ) ≤ 𝑉𝐴(𝐿2∗ ), we have 𝑙𝑖−𝐸𝐴(𝐿1∗ )
√

𝑉𝐴(𝐿1∗ )
≥ 𝑙𝑖−𝐸𝐴(𝐿2∗ )

√

𝑉𝐴(𝐿2∗ )
. Since Φ(⋅) is monotonic

increasing, 𝑃 𝑟1
⨁

𝑖
𝑖 = Φ

(

𝑙𝑖−𝐸𝐴(𝐿1∗ )
√

𝑉𝐴(𝐿1∗ )

)

≥ Φ

(

𝑙𝑖−𝐸𝐴(𝐿2∗ )
√

𝑉𝐴(𝐿2∗ )

)

= 𝑃 𝑟2
⨁

𝑖
𝑖 . □

Then, the exact pricing rule is proposed. If all eight conditions in Proposition 1 are satisfied, it is guaranteed that
one label dominates the other label, according to the definition of dominance.

Proposition 1 (Exact pricing): Label 𝐿2 is dominated by 𝐿1, if the following 8 conditions are satisfied:
(1)  (𝐿1) =  (𝐿2).
(2)  (𝐿1) ⊆  (𝐿2).
(3) (𝐿1) = (𝐿2). Note that under the stochastic and time-dependent assumption, the triangle inequality for travel

times does not necessarily hold, so this is different from (𝐿1) ⊆ (𝐿2) proposed in Ropke and Cordeau (2009).
(4) (𝐿1) ≤ (𝐿2).
(5) (𝐿1) − 𝜋(𝐿1) + 𝜆𝑃 𝑟𝑜𝑏(𝐿1) ≤ (𝐿2) − 𝜋(𝐿2) + 𝜆𝑃 𝑟𝑜𝑏(𝐿2).
(6) 𝐸𝐴(𝐿1) ≤ 𝐸𝐴(𝐿2).
(7) (1 + 𝑓 ′

𝑚𝑎𝑥)
2𝑉𝐷(𝐿1) ≤ (1 + 𝑓 ′

𝑚𝑖𝑛)
2𝑉𝐷(𝐿2).

(8) 𝑃𝑟𝑜𝑏(𝐿1) ≥ 𝑃𝑟𝑜𝑏(𝐿2).
Proof of Proposition 1:
We prove that it is sufficient to derive dominance relationship between 𝐿1 and 𝐿2 from proposition 1. In other

words, we want to show the definition of dominance is satisfied if given all the conditions in Proposition 1. Assume
there exists partial routes 𝑟1 and 𝑟2 whose corresponding labels 𝐿1 and 𝐿2 satisfy conditions (1) - (8) in proposition 1,
and 𝑖 is an arbitrary node.

Regarding number (1) in the definition of dominance, we want to show if 𝑟2⨁ 𝑖 is feasible based on the definition of
feasibility in (17) - (21), 𝑟1⨁ 𝑖 is also feasible, for any node 𝑖. For the vehicle capacity constraint, the load associated
with partial route 𝑟1

⨁

𝑖 does not violate the capacity constraint (17) if 𝑟2⨁ 𝑖 satisfies the requirement because of
condition (4). For the route success probability constraint, condition (8) gives 𝑃𝑟𝑜𝑏(𝐿1) ≥ 𝑃𝑟𝑜𝑏(𝐿2), and Lemma
1 gives 𝑃 𝑟1

⨁

𝑖
𝑖 ≥ 𝑃 𝑟2

⨁

𝑖
𝑖 for all nodes 𝑖. Therefore, 𝑃𝑟𝑜𝑏(𝐿1)𝑃 𝑟1

⨁

𝑖
𝑖 ≥ 𝑃𝑟𝑜𝑏(𝐿2)𝑃 𝑟2

⨁

𝑖
𝑖 states that 𝑟1⨁ 𝑖 does not

violate the probability constraint (21) provided that 𝑟2⨁ 𝑖 satisfies the constraints. As for precedence constraints of
the pickup and delivery problem, conditions (2) and (3) guarantee that if 𝑟2⨁ 𝑖 satisfies (18) - (20), 𝑟1⨁ 𝑖 will also
satisfy. Thus, for any node 𝑖, if 𝑟2⨁ 𝑖 is feasible, 𝑟1⨁ 𝑖 is also feasible.
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Regarding number (2) in the definition, let 𝑐(𝐿𝑘) be the reduced cost of 𝐿𝑘 as defined in (15). We assume the
labels for new feasible partial routes 𝑟1⨁ 𝑖 and 𝑟2

⨁

𝑖 are 𝐿1∗ and 𝐿2∗ . We show that 𝑐(𝐿1∗ ) ≤ 𝑐(𝐿2∗ ) for all feasible
node 𝑖.

𝑐(𝐿1∗ ) = (𝐿1∗ ) − 𝜋(𝐿1∗ ) + 𝜆 ⋅ 𝑙𝑛(𝑃𝑟𝑜𝑏(𝐿1∗ )) + 𝐶𝑓𝑖𝑥𝑒𝑑 (37)
= [(𝐿1) + 𝑐 (𝐿1)𝑖] − [𝜋(𝐿1) + 𝜋𝑖] + 𝜆 ⋅ 𝑙𝑛(𝑃𝑟𝑜𝑏(𝐿1) ⋅ 𝑃 𝑟1

⨁

𝑖
𝑖 ) + 𝐶𝑓𝑖𝑥𝑒𝑑 (38)

= [(𝐿1) − 𝜋(𝐿1) + 𝜆 ⋅ 𝑙𝑛(𝑃𝑟𝑜𝑏(𝐿1))] + 𝜆 ⋅ 𝑙𝑛(𝑃 𝑟1
⨁

𝑖
𝑖 ) + 𝑐 (𝐿1)𝑖 − 𝜋𝑖 + 𝐶𝑓𝑖𝑥𝑒𝑑 (39)

≤ [(𝐿2) − 𝜋(𝐿2) + 𝜆 ⋅ 𝑙𝑛(𝑃𝑟𝑜𝑏(𝐿2))] + 𝜆 ⋅ 𝑙𝑛(𝑃 𝑟1
⨁

𝑖
𝑖 ) + 𝑐 (𝐿1)𝑖 − 𝜋𝑖 + 𝐶𝑓𝑖𝑥𝑒𝑑 (40)

≤ [(𝐿2) − 𝜋(𝐿2) + 𝜆 ⋅ 𝑙𝑛(𝑃𝑟𝑜𝑏(𝐿2))] + 𝜆 ⋅ 𝑙𝑛(𝑃 𝑟2
⨁

𝑖
𝑖 ) + 𝑐 (𝐿1)𝑖 − 𝜋𝑖 + 𝐶𝑓𝑖𝑥𝑒𝑑 (41)

= (𝐿2∗ ) − 𝜋(𝐿2∗ ) + 𝜆 ⋅ 𝑙𝑛(𝑃𝑟𝑜𝑏(𝐿2∗ )) + 𝐶𝑓𝑖𝑥𝑒𝑑 (42)
= 𝑐(𝐿2∗ ) (43)

Dual multipliers 𝜆 and 𝜋𝑖 for 𝑖 ∈ 𝑁𝑝 are defined in Section 4.2. For 𝑖 ∉ 𝑁𝑝, we define 𝜋𝑖 = 0. Inequality (40) is
derived from condition (5), and inequality (41) is derived from Lemma 1. □
4.3.4. Heuristic Pricing

With the exact dominance rules in proposition 1, we eliminate labels carefully to guarantee that the exact optimal
solution can be found, which could be very time-consuming. To speed up the algorithm, we propose heuristic pricing
rules which are less restrictive than proposition 1. As condition (7) in Proposition 1 may be very strict when the
travel times change rapidly with time, we loosen it in the heuristic pricing rules. The algorithm may end up with a
sub-optimal solution, and the performance of the heuristic pricing is evaluated in Section 5.3.

Proposition 2 (Heuristic pricing): Label 𝐿2 is dominated by 𝐿1 heuristically, if:
(1)  (𝐿1) =  (𝐿2)
(2)  (𝐿1) ⊆  (𝐿2)
(3) (𝐿1) = (𝐿2)
(4) (𝐿1) ≤ (𝐿2)
(5) (𝐿1) − 𝜋(𝐿1) + 𝜆𝑃 𝑟𝑜𝑏(𝐿1) ≤ (𝐿2) − 𝜋(𝐿2) + 𝜆𝑃 𝑟𝑜𝑏(𝐿2)
(6) 𝐸𝐴(𝐿1) ≤ 𝐸𝐴(𝐿2)
(7) 𝑉𝐷(𝐿1) ≤ 𝑉𝐷(𝐿2)
(8) 𝑃𝑟𝑜𝑏(𝐿1) ≥ 𝑃𝑟𝑜𝑏(𝐿2)

4.4. Branch-cut-and-price framework
The branch-cut-and-price algorithm is a branch-and-bound-based method to solve integer programs, which inte-

grates column generation where variables are generated dynamically.
Algorithm 1 describes the structure of the proposed branch-cut-and-price algorithm. The interested readers are

referred to Barnhart et al. (1998) for more details of a branch-and-price algorithm.
The column generation and pricing algorithm used that generate new variables are introduced in Section 4.2 and

4.3 in detail. The following subsections describe the cutting planes and branching strategies used.
4.4.1. Cutting planes

Cuts or valid inequalities strengthen the lower bound after column generation is finished at a given node of the
branch-and-bound tree. Jepsen et al. (2008) introduce subset-row cuts (SRC) defined over routing variables 𝑥𝑖, which
are:

∑

𝑟∈
⌊𝑝

∑

𝑖∈𝑆
𝑎𝑖𝑟⌋𝑥𝑟 ≤ ⌊𝑝|𝑆|⌋ ∀𝑆 ⊆ 𝑁𝑝, 0 < 𝑝 < 1 (44)

SRCs are efficient in strengthening the linear relaxation. However, adding the above cut to the RMP makes the
pricing problem more challenging, as extra information is needed in the labels to deal with the new constraints. Pecin
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Algorithm 1 Branch-cut-and-price algorithm
while stopping criteria is not satisfied and there exists unprocessed nodes do

Select an unprocessed node from the branch-and-bound tree.
𝐹 𝑙𝑎𝑔 ← 𝑇 𝑟𝑢𝑒
while True do

Solve the linear relaxation of the selected node’s restricted master problem (RMP).
Find routes with negative reduced costs by solving the pricing problem repeatedly until no such route can be

found. Add the found routes to the RMP.
if the current objective value of the RMP is greater than the current upper bound then

𝐹 𝑙𝑎𝑔 ← 𝐹𝑎𝑙𝑠𝑒
break

end if
Generate cuts using the method introduced in Section 4.4.1.
if new cuts are found then

Add the constraints to the RMP.
else

break
end if

end while
if 𝐹 𝑙𝑎𝑔 is 𝐹𝑎𝑙𝑠𝑒 then

continue
end if
if the solution to the relaxation of the RMP is an integer solution then

Update the upper bound.
else

Generate child nodes using the branching strategies introduced in 4.4.2. Add the generated nodes to the
branch-and-bound tree.

end if
end while

et al. (2017) propose a generalization of SRCs named limited-memory subset-row cuts (lm-SRC), which have less
impact on the pricing problem and make the pricing process faster. We apply the limited-memory subset-row cuts in
the following form:

∑

𝑟∈
𝛼(𝐶,𝑀, 𝑝, 𝑟)𝑥𝑟 ≤ ⌊𝑝|𝐶|⌋ ∀𝐶 ⊆ 𝑀 ⊆ 𝑁𝑝, 0 < 𝑝 < 1 (45)

where M is an additional memory set, 𝐶 ⊆ 𝑀 ⊆ 𝑁𝑝, and 𝛼 is a function of 𝐶,𝑀, 𝑝, 𝑟. The algorithm to compute
coefficient 𝛼 and decide memory set 𝑀 is explained in Pecin et al. (2017) in detail and is not included here. Even
though each label should have an additional dimension for each lm-SRC, the coefficients do not need to be stored in
the labels. Therefore, the structure of the pricing problem is not changed, and only minor changes are needed. The
interested readers are referred to Pecin et al. (2017) and Sun et al. (2018b). In this paper, we generate cuts with |𝐶| = 3
and 𝑝 = 0.5.
4.4.2. Branching strategies

When the solution to the linear relaxation of the RMP is not integral, we follow the branch-and-bound framework
and divide the feasible region of the current node into two regions, generating two child nodes of the current node.
The following branching rules are applied. First, we branch on the total number of vehicles used, 𝑛𝑣 = ∑

𝑟∈ 𝑥𝑟. If 𝑛𝑣is fractional, constraints ∑𝑟∈ 𝑥𝑟 ≤ ⌊𝑛𝑣⌋ and ∑

𝑟∈ 𝑥𝑟 ≥ ⌈𝑛𝑣⌉ are added to the child nodes. The pricing problem will
add a dual variable associated with the vehicle number constraint. Then, we branch on the arc-flow variables. The arc
(𝑖, 𝑗) whose flow is closest to 0.5 is selected. On the first branch, we set the flow on this arc to 0 by removing arc (𝑖, 𝑗)
from arc set 𝐴 of this child node. Also, the routes containing arc (𝑖, 𝑗) are removed from the RMP of the child node.
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Table 1: Speed profiles
speed
profile
number

speed in
interval
(0, 120)

speed in
interval

(120,600)
speed in
interval

(600,720)
speed in
interval

(720,840)
1 1 1 1 1
2 0.9 1.1 0.9 1.1
3 0.75 1.2 0.8 1.25
4 0.67 1.33 0.88 1.33

On the second branch, we set the flow to 1, and all other arcs starting from 𝑖: (𝑖, 𝑘), 𝑘 ≠ 𝑗 are removed from arc set 𝐴.

5. Computational experiments
In this section, we first introduce the design of the computational experiments. Instances for the proposed problem

are generated based on the instances introduced by Ropke et al. (2007) for the PDPTW. Then, the performance of
the heuristic pricing is evaluated. Finally, we present the results of the experiments and show the proposed method
is adequate to satisfy the desired service levels. Besides, the importance of modeling time-dependent travel times is
evaluated, and the impact of service levels is analyzed.
5.1. Experiment design

Ropke et al. (2007) introduced a set of instances for the PDPTW, where the coordinates of the pickup and delivery
nodes are randomly chosen according to a uniform distribution over a [0, 50]×[0, 50] square. The depot is located
at (25, 25). Our instances adopt the same node coordinates, maximum capacity of vehicles, load quantities, and start
times of time windows as those in Ropke et al. (2007). The maximum capacity of a vehicle 𝑄 is set to 15. Ropke et al.
(2007) assumes the width of time windows is 60 in some instances and 120 in others. We modify Ropke’s assumptions
on time window width, making the width of the windows range from 60 to 100. For the fixed cost, we adopt the
same parameter as Ropke and Cordeau (2009) that sets a vehicle’s fixed cost 𝐹𝑓𝑖𝑥𝑒𝑑 to 10000. We assume the cost of
traversing an arc equals the arc’s length (𝑐𝑖𝑗 = 𝑑𝑖𝑗).For the parameters regarding stochastic travel and service times, the mean of the service time at each node is
randomly chosen from values [8, 10, 12], and the variance of the service time at each node is randomly chosen from
values [1, 2, 3]. The variance of travel times is decided by variation coefficient 𝑐𝑣, so that 𝑉 𝑎𝑟[𝑋𝑖𝑗] = 𝑐𝑣𝑑𝑖𝑗 . In the
experiments, 𝑐𝑣 is an adjustable parameter ranging from 0 to 0.4. The means of travel times are decided by the speed
profile model (Ichoua et al., 2003), which assumes the travel speed is constant in a time interval on all arcs. We divide
the scheduling horizon (0,840) into 4 time intervals: [(0, 120), (120, 600), (600, 720), (720, 840)], representing four
periods in a day, as suggested in Sun et al. (2018b). Four different speed profiles are used in the experiments, one at a
time, presented in Table 1. The mean of the travel times of each arc 𝐸[𝑋𝑖𝑗(𝑡)] can be computed according to the speed
profiles, and 𝐸[𝑋𝑖𝑗(𝑡)] are piece-wise linear functions.

As for service levels, we focus on studying the global service level, rather than node service levels, in our main
experiment. This is because some computational experiments studying node service levels can be found in previous
work, including Miranda and Conceição (2016) and Gutierrez et al. (2018). The estimation algorithms show that the
node service levels can be guaranteed to a large extent. However, no computational study focuses on the global service
level. Here, we evaluate how well the global service level can be satisfied using our estimation methods, and we analyze
the impact of the different global service levels Θ. The desired node service levels are set to 70% in the experiments.
The instance set can be found in the following link: bit.ly/3uX5zF9.

We use Monte Carlo simulations to determine the actual success probabilities as benchmarks. We evaluate the
algorithm’s effectiveness by checking if the simulated success probabilities satisfy the desired service levels. We also
compare the difference between the estimated success probabilities and simulated success probabilities. In each Monte
Carlo simulation, travel and service times are sampled from the assumed probability distributions. We compute the
simulated success probability after 1000 runs.

We compare the proposed algorithm’s routes with those generated by a deterministic routing algorithm that does
not consider the stochasticity in travel times and service times (based on Ropke and Cordeau (2009)). The deterministic
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Figure 2: Comparison of deterministic routing algorithm with proposed routing algorithm

routing algorithm is introduced in Section 5.2. In this way, the difference in the simulated success rate illustrates the
effectiveness of the proposed algorithm.

The proposed algorithm is implemented in Java with linear program solver Gurobi 9.0.2. The experiments are
performed on a Windows 10 computer with AMD 3.4 GHz CPU and 64 GB RAM.
5.2. An illustrative example

In this section, an example is given to show the difference in generated routes between the proposed algorithm and
the deterministic routing algorithm. In the example, there are 20 pickup nodes, with the variation coefficient 𝑐𝑣 = 0.15,
and the width of the time windows is set to 70. The arc travel times follow speed profile number 4 in Table 1.

For the deterministic routing algorithm, the travel times are deterministic and computed based on speed profile
number 4. Service times are also deterministic, and service time 𝑠𝑖 = 𝐸[𝑆𝑖]. Service levels are not considered in the
deterministic algorithm, and the goal is to minimize the total cost. The proposed algorithm’s desired global service
level is set to 70%.

The routing solutions generated by the above two algorithms are shown in Figure 2. Three vehicles are needed in
the solution generated by the deterministic routing algorithm, while four vehicles are needed in the solution generated
by the proposed routing algorithm. Note that routes #1 in the two generated solutions are identical and are therefore
omitted in Figure 2. Route #2 (blue) and route #3 (red) in the deterministic algorithm are split into three different routes
(blue, red, purple) in the proposed algorithm. In the proposed algorithm, one more vehicle is needed to guarantee the
desired service rate, leading to a higher total cost. However, compared to the deterministic routing algorithm, the
reliability of the routing solution improves significantly, and the simulated global success probability is greater than
the desired service level. Some "compact" routes in the deterministic routing algorithm are split into some more
"reliable" routes in the proposed algorithm.
5.3. Performance of heuristic pricing

As shown in section 4.3.4, when the travel times are not time-dependent, the exact pricing method is identical to
the heuristic pricing method, and it is efficient to obtain the exact solution. However, the faster the means of the travel
times change throughout the day, the slower the exact pricing algorithm gets. In this section, we evaluate the time used
to solve the problem to optimality and the quality of the solutions provided by the heuristic pricing algorithm. The
experiment is conducted on smaller instances with 20 pickup nodes, with 𝑐𝑣 = 0.3 and the width of time windows set
to 80.

Table 2 compares the performance of the exact pricing algorithm and the heuristic pricing algorithm. It is demon-
strated that when the travel time is time-independent, the time used by the exact and heuristic pricing algorithm is
almost the same. The time used by the exact pricing algorithm grows significantly with 𝑓 ′

𝑚𝑎𝑥 and |𝑓 ′
𝑚𝑖𝑛|, which is con-

sistent with the conjecture. In the worst cases, the run time of the exact pricing algorithm is more than 100 times the run
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Table 2: Comparison of exact pricing with heuristic pricing

speed profile f_max f_min desired global
service level

exact pricing heuristic pricing
cost time(ms) cost time(ms)

1 0 0
0.6 30783.95 71178 30783.95 70129
0.7 30790.93 116086 30790.93 113668
0.8 40772.44 72428 40772.44 71255
0.9 40773.78 1397 40773.78 1439

2 0.22 -0.18
0.6 30780.71 304674 30780.71 119490
0.7 30790.93 128771 30790.93 117126
0.8 40766.95 5970 40766.95 3399
0.9 40772.44 1866 40772.44 1160

3 0.5 -0.375
0.6 40759.56 26141 40759.56 2807
0.7 40759.56 24417 40759.56 2602
0.8 40759.56 14792 40759.56 1802
0.9 40766.95 15898 40766.95 1487

4 0.511 -0.496
0.6 40753.20 231522 40753.20 2515
0.7 40757.64 414671 40757.64 4690
0.8 40759.56 548095 40759.56 5986
0.9 40766.95 320102 40766.95 10297

Average 38269.69 143625.5 38269.69 29740.75
Table 3: Base instance

number
of total
nodes

𝑐𝑣
time

window
width

desired global
service level

number of
vehicles cost

estimated
global

success
probability

simulated
global

success
probability

time(ms)

60 0.3 80
0.6 5 51124.92 63.99% 78.3% 46997
0.7 5 51134.51 70.36% 79.6% 38488
0.8 5 51158.50 80.47% 83.2% 117882
0.9 5 51174.49 90.12% 98.7% 79416

time of the heuristic pricing algorithm. It can be seen that the heuristic pricing algorithm generates the same solutions
as the exact pricing method. We conduct extensive tests on small instances up to 25, as the exact algorithm cannot
solve some larger instances. It is concluded that the heuristic pricing algorithm can generate high-quality solutions
and even optimal solutions in small instances.
5.4. Model performance

We next test the sensitivity of the algorithm to the following parameters: the number of nodes, the width of time
windows, and the variation coefficient. To avoid the confusion caused by too many sets of different parameters, we
generate a base instance as a baseline and change one parameter based on the baseline at a time. In each instance, we
set the desired global service rate to 60%, 70%, 80%, and 90% and observe the number of vehicles used, total cost,
estimated global success probability, simulated global success probability, and running time used. Heuristic pricing is
used in all experiments in this section, and speed profile number 4 is adopted.

For the base instance, the following parameters are chosen: number of pickup nodes = 30 , 𝑐𝑣 = 0.3, and window
width = 80. From the results shown in Table 3, we see that when a higher desired global service level is required, the
solution ends up with a higher total cost, which is intuitive. The estimated global success probability is always greater
than the desired service level, which conforms to the probability constraint in the problem formulation. The simulated
global success probability is greater than the desired global service level, which shows the algorithm’s effectiveness.

Table 4 shows the model performance when the number of pickup nodes varies from 20 to 45. The number of
needed vehicles and the total cost grows with the number of pickup nodes. Ten vehicles are needed in the last instance

: Draft Page 15 of 21



in Table 4 because the problem is very close to an infeasible problem regarding the probability constraints. Therefore,
more vehicles are needed to guarantee global success probability. Table 5 shows the model performance when the
variance coefficient of travel times varies from 0.1 to 0.4. The number of needed vehicles and the cost grows with the
variance of the travel times. An instance is not solved when it is impossible to satisfy the desired global service level,
meaning that the estimated global success probability is still less than the desired global service level even if each route
visits only a single pair of requests. The last two instances in the table show that when the variation coefficient gets
large, it is impossible to maintain a high global service level. Table 6 shows the model performance when the window
width varies from 60 to 90. When all other conditions remain the same, the tighter the time windows are, the less
possible it is to satisfy a high desired global service level. From all the above experiments, we observe that there is
no apparent relationship between the model parameters and the estimation error of global success probability, and the
performance of the algorithm is not sensitive to the number of pickup nodes, the variance coefficient of travel times,
and the widths of time windows.

We compare the above results generated by the proposed algorithm with routing solutions generated by the de-
terministic routing algorithm introduced in Section 5.2 in Table 7. The desired global service level of the proposed
algorithm is set to 0.6 in different experiment settings in Table 7. As the deterministic routing algorithm’s optimiza-
tion goal is to minimize the total cost regardless of the service reliability, the simulated global success probabilities
are below 10% in most cases. The proposed algorithm improves the reliability of the pickup and delivery service
significantly and guarantees the global success probabilities are above 60%. Taking the stochastic information about
traffic into account is vital for ensuring the reliability of the service. However, the improvement in reliability comes at
the cost of more needed vehicles and increased operational costs. With the proposed algorithm, 1 to 2 more vehicles
are needed compared to the deterministic algorithm in Table 7.

We conclude by mentioning a limitation of the proposed algorithm. It is observed that there is a gap between the
estimated global success probability and the simulated global success probability. The gap exists because there is no
closed form of the actual probability distribution of arrival times, and the estimation method has an estimation error.
The average gap between the estimated global success probability and the simulated global success probability of the
instances listed in this section is 9.9%. As the experiments show, in the vast majority of the cases, the estimation
method gives a lower bound of the estimated probability. Therefore, the gap makes the simulated success probability
even higher than the desired service level. The proposed algorithm is thus more reliable and more robust to fluctuations
than required. In a real-life setting, the decision maker can balance the actual success probability and operational cost
by adjusting the desired service level slightly.
5.5. The importance of considering time-dependent travel times

In this section, we analyze the importance of considering time-dependent travel times. We assume the real travel
speed follows speed profile number 4. The proposed algorithm can model the changes in travel times during the day by
incorporating speed profile number 4. We compare the proposed algorithm with an algorithm considering stochastic
but time-independent travel times. The time-independent algorithm assumes the travel speed does not change during
the day and has the value of the average travel speed of speed profile number 4, which is 1.17 in time intervals (0, 840).

In Table 8, the differences in cost and simulated global success probability between the time-dependent and time-
independent solutions are evaluated. The simulation sampled travel times between nodes based on speed profile number
4. As Table 8 shows, not considering time-dependent travel time may lead to a lower cost but also result in a much
lower success probability. Sometimes, there is little chance that some time windows can be satisfied. We conclude
that modeling the change in travel time during the day is instrumental in developing routes for improving delivery
reliability.
5.6. The impact of node and global service levels

In the previous experiments, for the sake of simplicity, it is assumed that the desired node service levels are fixed
at 0.7. In this section, we assume that the desired node service levels are not the same, as some of the nodes require
more reliable service. These nodes are referred to as special nodes, whose desired node service levels are set to 0.9.
The special nodes are chosen randomly from the node-set. We adjust the proportion of the special nodes in the data set
and the desired global service level and observe the operational costs under different combinations of node and global
service levels. In the experiments, the number of total nodes is 60, with the time window width being 80 and 𝑐𝑣 = 0.3.

Table 9 shows the operational costs under different node and global service level settings. The operational cost
increases monotonically with the desired global service level and the proportion of special nodes. It is intuitive, as
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Table 4: Model performance on instances with different numbers of nodes

number
of total
nodes

𝑐𝑣
time

window
width

desired global
service level

number of
vehicles cost

estimated
global

success
probability

simulated
global

success
probability

time(ms)

40

0.3 80

0.6 4 40753.20 61.12% 77.7% 2515
0.7 4 40753.42 73.96% 80.8% 4690
0.8 4 40759.56 85.9% 93.6% 5986
0.9 4 40766.95 91.26% 98.0% 10297

50
0.6 4 40980.69 69.07% 79.6% 22012
0.7 4 40984.27 70.47% 78.0% 21440
0.8 4 41011.97 80.43% 80.6% 48496
0.9 5 50997.64 93.15% 99.5% 32665

70
0.6 5 51298.32 63.34% 78.2% 919768
0.7 5 51299.06 74.28% 91.2% 474662
0.8 5 51323.53 85.60% 90.7% 1167582
0.9 6 61325.10 90.03% 95.2% 167783

80
0.6 6 61484.20 62.86% 68.3% 550447
0.7 6 61490.87 73.57% 89.7% 132978
0.8 6 61499.46 84.41% 95.1% 357319
0.9 6 61546.67 90.73% 94.8% 323820

90
0.6 6 61689.53 62.18% 79.9% 597232
0.7 6 61691.90 74.24% 80.7% 1355956
0.8 6 61705.41 81.21% 87.3% 1032443
0.9 10 101698.51 90.06% 94.7% 1509237

Table 5: Model performance on instances with different variation coefficient

number
of total
nodes

𝑐𝑣
time

window
width

desired global
service level

number of
vehicles cost

estimated
global

success
probability

simulated
global

success
probability

time(ms)

60

0.1

80

0.6 4 41122.46 79.11% 98.0% 96064
0.7 4 41122.46 79.11% 97.8% 120711
0.8 4 41128.76 93.15% 98.5% 55734
0.9 4 41128.76 93.15% 98.5% 74231

0.15
0.6 4 41128.76 73.04% 89.7% 65609
0.7 4 41128.76 73.04% 88.2% 77473
0.8 4 41132.32 86.45% 91.0% 36828
0.9 5 51113.35 98.47% 98.1% 71536

0.2
0.6 4 41132.32 61.07% 76.6% 31061
0.7 5 51113.35 87.64% 89.7% 27885
0.8 5 51113.35 87.64% 87.7% 13200
0.9 5 51121.74 92.60% 93.1% 15215

0.4
0.6 5 51174.49 61.00% 87.2% 1046310
0.7 6 61170.89 71.02% 97.7% 6028135
0.8 not solved
0.9 not solved

: Draft Page 17 of 21



Table 6: Model performance on instances with different time window width

number
of total
nodes

𝑐𝑣
time

window
width

desired global
service level

number of
vehicles cost

estimated
global

success
probability

simulated
global

success
probability

time(ms)

60 0.3

60
0.6 not solved
0.7 not solved
0.8 not solved
0.9 not solved

70
0.6 5 51189.82 61.06% 89.50% 440004
0.7 not solved
0.8 not solved
0.9 not solved

90
0.6 4 41148.06 61.21% 84.8% 867478
0.7 4 41165.97 70.98% 83.9% 500526
0.8 5 51113.35 83.97% 88.7% 37562
0.9 5 51124.92 91.81% 91.6% 69572

Table 7: Comparison of the proposed algorithm and deterministic routing algorithm
number
of total
nodes

𝑐𝑣
time

window
width

deterministic routing algorithm proposed algorithm
number of
vehicles cost

simulated
global

success
probability

number of
vehicles cost

simulated
global

success
probability

40 0.3 80 3 30751.72 46.5% 4 40753.20 77.7%
50 0.3 80 3 30992.84 9.2% 4 40980.69 79.4%
60 0.3 80 3 31141.39 6.5% 5 51124.92 78.3%
70 0.3 80 4 41273.51 1.5% 5 51298.32 78.2%
80 0.3 80 4 41493.92 3.7% 6 61484.20 68.3%
90 0.3 80 4 41678.40 0.4% 6 61689.53 79.9%
60 0.1 80 3 31141.39 19.1% 4 41122.46 98.0%
60 0.15 80 3 31141.39 13.2% 4 41128.76 89.7%
60 0.2 80 3 31141.39 8.4% 4 41132.32 76.6%
60 0.4 80 3 31141.39 2.5% 5 51174.49 87.2%
60 0.3 70 4 41120.98 9.0% 5 51189.82 89.5%
60 0.3 90 3 31108.07 6.9% 4 41148.06 84.8%

more reliable service leads to more operational costs. The cost grows almost linearly with the enhancement of the
proportion of special nodes and achieves a plateau when the proportion is higher than a threshold.

Overall, the number of vehicles needed and the operational cost increase with desired node and global service
levels and decrease with the length of the time windows. Therefore, to achieve reliable and punctual service with a
lower cost, it is practical to give the customers wider time windows if possible.

6. Conclusions
The paper studies the pickup and delivery problem with hard time windows considering stochastic and time-

dependent travel times. We focus on satisfying customers’ expectations of the punctuality of the delivery, measured by
node success probabilities and global success probability. We present an estimation method for arrival times and suc-
cess probabilities under stochastic travel and service times. In most cases, the estimated success probabilities provide
a lower bound for the actual success probabilities. A solution approach based on a branch-price-and-cut framework
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Table 8: Comparison of time-dependent solution and the time-independent solution
number
of total
nodes

𝑐𝑣
time

window
width

desired global
service level

proposed algorithm time independent algorithm
cost simulated global

success probability cost simulated global
success probability

30
0.1

70 0.8

20561.75 87.2% 20586.85 85.3%
40 40753.20 86.1% 30758.08 0.0%
50 40977.37 93.9% 31129.29 0.6%
60 51121.74 93.2% 41133.21 0.2%
30

0.15
20590.70 95.8% 20586.85 85.9%

40 40759.56 98.5% 30766.05 0.2%
50 40978.28 85.8% 40984.92 3.3%
60 51126.76 89.4% 41139.14 57.3%
30

0.2
30551.70 98.4% 30550.87 34.3%

40 40759.56 93.6% 30766.05 0.7%
50 40989.72 95.0% 40989.72 96.5%
60 51151.28 97.9% 41148.76 44.9%

Average 39193.47 92.9% 33379.15 34.1%
Table 9: Costs under different node and global service levels settings

proportion
of special nodes

cost global service level
0.5 0.6 0.7 0.8 0.9

0 51116.53 51124.92 51134.51 51158.50 51174.49
0.2 51131.43 51131.43 51140.44 51162.18 61147.06
0.4 51148.65 51148.65 51148.65 51162.18 61147.06
0.6 51151.02 51151.02 51151.02 51162.18 61147.06
0.8 51151.02 51151.02 51151.02 51162.18 61147.06

is proposed, including exact and heuristic labeling algorithms that integrate the probability distributions’ information.
Computational experiments on smaller instances show that the heuristic pricing algorithm can provide high-quality
solutions in less time. The results of computational experiments indicate that the heuristic pricing algorithm can solve
instances with up to 50 pickup nodes. Monte Carlo simulations show that the proposed method can ensure the desired
service levels. The comparison between the proposed method and the deterministic routing algorithm that assumes
travel times are constant further illustrates the advantage of the proposed method.

A possible direction for future research is to integrate Monte Carlo simulations into the route construction phase,
namely the pricing algorithm, so that the estimation error can be reduced. Research can also consider other approaches
to solve this problem, such as a robust optimization approach. Furthermore, currently, we assume that the travel time
variance is proportional to the travel distance, and there is only one path between two nodes, which is restrictive. These
assumptions can be relaxed in future research.
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Table 10: Percentage estimation errors of the two estimation methods

𝑐𝑣
proposed algorithm

compared with simulation
Ehmke’s estimation method
compared with simulation

mean variance mean variance
0.1 -0.6% +4.6% +0.2% +6.1%

0.15 -0.9% +12.6% +0.5% +10.7%
0.2 -1.6% +18.1% +0.8% +14.2%
0.3 -2.9% +23.7% +1.4% +23.5%
0.4 -4.4% +24.9% +1.5% +35.1%

259–269.
Yazici, M.A., Kamga, C., Mouskos, K.C., 2012. Analysis of travel time reliability in new york city based on day-of-week and time-of-day periods.

Transportation research record 2308, 83–95.

A. Comparison of the proposed and Ehmke’s estimation methods
In this section, we compare the proposed arrival time estimation method based on Jula et al. (2006) with the arrival

time estimation method proposed by Ehmke et al. (2015).
The proposed method and Ehmke’s method both first estimate the means and the variances of node arrival times,

and then calculate the node success probabilities according to Expression (7). To compare the estimation accuraries
of the two methods, we compare the estimated means and variances of arrival times with simulation result. In the
simulation, travel times are sampled from normal distributions where 𝑐𝑣 is the variance coefficient. The simulated
mean and variance of arrival time at a node are calculated after 1000 runs. We study the arrival times of 458 nodes
along a set of 54 routes derived from routing solutions in Section 5.4. For each node, the percentage errors of estimated
mean and variation for each estimation method are calculated. Table 10 shows the average percentage estimation errors
of the two methods over the 458 nodes.

The proposed method underestimates the mean while Ehmke’s method overestimates the mean. The two methods
are both effective on estimating the means of arrival times, since the estimation errors are less than 5% of arc travel
times on average. Both of the two methods overestimate the variance of arrival times, and the estimation errors grow
with the variance of travel times. Overall, the two estimation methods have similar performance on estimating node
arrival times.

In Table 11, we applied Ehmke’s method to the proposed branch-cut-and-price solution framework using the same
heuristic pricing rules and compared the generated solutions with the proposed method. The result shows that the
two estimation methods have the same performance in most of the cases. In the last three cases, the proposed method
outperforms Ehmke’s methods in terms of cost. A possible reason for this is that Ehmke’s method overestimates the
needed travel times.
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Table 11: Quality of routing solutions generated by the two estimation methods
number
of total
nodes

𝑐𝑣
time

window
width

desired
global
service
level

proposed algorithm Ehmke’s estimation method
number

of
vehicles

cost
simulated

global
success

probability

number
of

vehicles
cost

simulated
global

success
probability

60 0.15 80 0.6 4 41128.76 89.7% 4 41128.76 88.5%
60 0.15 80 0.7 4 41128.76 88.2% 4 41128.76 89.1%
60 0.15 80 0.8 4 41132.32 91.0% 4 41132.32 91.6%
60 0.15 80 0.9 5 51113.35 98.1% 5 51113.35 97.5%
60 0.2 80 0.6 4 41132.32 76.6% 4 41132.32 78.0%
60 0.2 80 0.7 5 51113.35 89.7% 5 51113.35 88.1%
60 0.2 80 0.8 5 51113.35 87.7% 5 51113.35 88.4%
60 0.2 80 0.9 5 51121.74 93.1% 5 51121.74 92.3%
60 0.3 80 0.6 5 51124.92 78.3% 5 51124.92 79.4%
60 0.3 80 0.7 5 51134.51 79.6% 6 61128.32 85.8%
60 0.3 80 0.8 5 51158.50 83.2% 6 61129.49 87.1%
60 0.3 80 0.9 5 51174.49 98.7% 6 61147.06 98.6%
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