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Synopsis Although tails are common and versatile appendages that contribute to evolutionary success of animals in a broad
range of ways, a scientific synthesis on the topic is yet to be initiated. For our Society for Integrative and Comparative Biology
(SICB) symposium, we brought together researchers from different areas of expertise (e.g., robotosists, biomechanists, func-
tional morphologists, and evolutionary and developmental biologists), to highlight their research but also to emphasise the
interdisciplinary nature of this topic. The four main themes that emerged based on the research presented in this symposium
are: (1) How do we define a tail?, (2) Development and regeneration inform evolutionary origins of tails, (3) Identifying key
characteristics highlights functional morphology of tails, and (4) Tail multi-functionality leads to the development of bioin-
spired technology. We discuss the research provided within this symposium, in light of these four themes. We showcase the
broad diversity of current tail research and lay an important foundational framework for future interdisciplinary research on
tails with this timely symposium.

Introduction
Tails are extremely versatile appendages that contribute
to the evolutionary success of animals in remarkable
ways. They play key roles in mating displays, terri-
torial disputes, and mediating predator-prey interac-
tions (e.g., Andersson 1992; Hawlena 2009; Putman and
Clark 2015). They can also be reduced, elongated, pre-
hensile, round or angular, or covered in spines (e.g.,
Hickman 1979) (Fig. 1). Tails are fundamental to loco-
motion for many animals as well as bio-inspired robotic
designs, providing propulsion in water and on land,
stabilisation, maneuvering, and grasping in trees (e.g.,
Hsieh 2016; Persons and Currie 2017; Vidal and Diaz
2017; Fish et al. 2018; Saab et al. 2018). They are com-
mon to all chordates and analogous structures have
arisen convergently in numerous invertebrate species.
This simple fact that tails persist as a common structure
of the basic animal body plan emphasises their evolu-
tionary importance. Yet, compared to appendages such
as legs, tails are vastly understudied. In contrast to other
parts of the body (i.e., limbs or parts of the axial skele-

ton other than the tail), tails have not yet been the focus
of a scientific synthesis to bring to bear the power of in-
tegrative and comparative approaches.

This was the impetus for our symposium, for which
we brought together speakers from all over the world,
representing a multitude of career stages and research
interests, to try to jumpstart a new scientific synthesis.
In this and a subsequent issue, authors present cutting
edge research that will serve as a foundation on which to
build a broader synthesis of tail evolution and function.
Contributions from across disciplines provide insight-
ful examples from individual species, while compara-
tive studies hint at potential unifying themes within and
across clades. For organizational purposes, the sympo-
sium was arranged into broad categories. However, the
vast degree of overlap and the challenges of placing in-
dividual studies into a single category underscores the
interdisciplinarity inherent in tail research. Here, we
highlight four main themes which emerged about tail
research: (1) “Tail” is a term that is used colloquially,
and as such, defies attempts at a formal definition, (2)
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Fig. 1 Selected variation of tail shapes across the animal kingdom.
Tails from a primate (A), fish (B), cheetah (C), chameleon (D),
kangaroo rat (E), ringworm (F), whale (G), deer mouse (H), alligator
(I), and gecko (J). Research related to tails A, B, C, D, E, G, H, and J
was highlighted in this symposium. Drawing by Brooke Christensen.

By studying tail development and regeneration, we not
only learn about the evolutionary origins of tails but
can also use this information to inform our understand-
ing of the rest of the axial and appendicular skeleton,
(3) Although tail morphology is tightly correlated with
its function, natural selection drives specializations that
make identifying the key characteristics critically im-
portant, and (4) Tails are highly multi-functional, mak-
ing them of particular interest for bioinspired technol-
ogy.

How do we define a tail?
Among all chordates, the tail is defined as the axial por-
tion of the body extending beyond the anus, or the post-
anal appendage (Brown et al 2008; Fodor et al. 2021a).
Remarkably, the developmental generation of cells to
elongate the tail is due to a conserved wnt/brachyury sig-
naling mechanism found in a number of animal phyla,
including vertebrates and invertebrates (Holland 2002;
Martin and Kimelman 2009). Yet, some tail-like ap-
pendages in invertebrates defy the established defini-
tion for chordates. In the chordate nonfeeding ascidian
tadpoles, for example, there is no mouth or anus, but
there is a clear head and tail (Fodor et al. 2021b). During
metamorphosis in ascidians, the larval tail undergoes
apoptosis and is phagocytized, and the sessile adult has a
U-shaped gut (Fodor et al. 2021a). For a different exam-
ple, malacostracan crustacean “tails” (e.g., shrimp and

lobsters) are actually an elongate abdomen that is flexed
when startled, to promote a rapid retreat (Arnott et al.
1998), but the abdomen is specified developmentally by
posterior Hox genes (Abzhanov and Kaufman 2000).
Similarly, the scorpion “tail”, also known as the meta-
soma, is an extension of the abdomen, with only the en-
larged vesicle and stinger comprising the post-anal por-
tion (Farley 2001). Vinegaroons possess a tail-like flag-
ellum which is used for defense via distraction by wav-
ing, followed by the ejection of a chemical substance
from the flagellar base to ward off potential predators
(Schmidt 2009). This brings to question: Should tails
be identified by location (i.e., post-anal appendage),
developmental mechanism (i.e., expression of poste-
rior Hox genes), function, or other characteristics alto-
gether? How do we rectify analogous, “tail-like” struc-
tures among invertebrates and vertebrates? We hope
that through this collection of papers in this and a sub-
sequent Integrative Comparative Biology (ICB) issue,
we highlight the extraordinary morphological, develop-
mental, and functional diversity of tails, and challenge
an eventual formalization of what “tail” truly means.

Development and regeneration inform
the evolutionary origins of tails
Key to understanding the functional diversity of tails is
a deeper knowledge of their evolutionary history and
development. Vertebrate animals are divided into three
regions that differ in the way that they develop: Head,
trunk, and tail (Burke et al. 1995). Developmentally, the
brain is formed first, then neural crest cells move out-
ward and form the skull. The trunk region is where the
major organs are housed, protected by the ribs, and the
posterior tail is formed last, as all vertebrates develop
from anterior to posterior (Burke et al 1995; Fodor et al
2021b). Anterior–posterior development in vertebrates
is determined by the developmental gene Hox complex
(Burke et al. 1995) and the tail is also specifically de-
pendent on posterior Hox gene expression and caudal
expression, as caudal mouse mutants lack a tail (Mallo
2010). In tetrapods, the posterior limb forms at the Hox
9/10 boundary in the somites, and the tail is determined
by the posterior Hox genes, 10–13. Vertebrates have had
two genome duplications, so they have four Hox com-
plexes, A–D, except in teleost fish, that have an extra
genome duplication and contain eight Hox complexes
(Fodor et al 2021b). By this criteria, some invertebrates,
for example, Saccoglossus hemichordate larvae, express
posterior Hox genes in their tail (Lowe et al. 2003; Fodor
et al 2021b). Remarkably, this posterior tail is used to
wrap around sand grains to tether the larva on the ocean
floor (Lowe et al. 2003). The invertebrate cephalochor-
dates (amphioxus) also determine their chordate post-
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anal tail by a Wnt/brachyury posterior gene network, in-
cluding caudal (Holland 2002) and delayed expression
of the posterior Hox genes in the tail tissues at the larval
and late larval stages (Pascual-Anaya et al. 2012).

Developmental mechanisms also play a key role in
appendage regeneration and the retention of these de-
velopmental pathways into adulthood is believed to be
at least partially responsible for observed differences
in regenerative abilities among various taxa. For ex-
ample, metamorphosis relies on similar developmen-
tal processes, so invertebrates and amniotes that un-
dergo different life stages are more commonly capa-
ble of regenerating structures morphologically indistin-
guishable from the original, with minimal, if any, de-
tectable loss of function (Alibardi 2020; Stocum and
Cameron 2011). This includes salamanders and newts,
which can replace a lost tail or limb with full segmen-
tation and anatomical complexity intact (Joven et al.
2019). In contrast, regeneration in predominantly ter-
restrial amniotes—which notably lack metamorphic life
stages—is limited to imperfect appendage regeneration
with reduced function, as is seen among lizards (Al-
ibardi 2020). Among lizards, the regenerated tail con-
sists of a cartilaginous rod with significantly simplified
neuromuscular morphology (e.g., Gilbert et al. 2013).
Such morphological simplification can be correlated
with decreased functional breadth, having differential
impacts on performance. For example, tail autotomy
may change the kinematics of prey capture for some
geckos, but it does not necessarily alter success rate
(Vollin and Higham 2021). And in another species of
gecko, tail regeneration is associated with neuroplas-
ticity, potentially underlying changes in neural control
patterns required for locomotion or other tasks with a
regenerated tail (Bradley et al. 2021).

Why regenerative capabilities differ and how they re-
late to evolutionary and ecological histories remain ac-
tive areas of exploration. The ability to regenerate all
body parts is ubiquitous among basal metazoan lin-
eages, suggesting that the act of regeneration has deep
evolutionary roots (Bely and Nyberg 2010; Alibardi
2020). This is further supported by the observation that
general stages of healing and regrowth are mostly con-
served across phylogeny (although see Ramon-Mateu et
al. 2019), suggesting a strong presence of phylogenetic
constraint (Dunoyer et al. 2020), with clear divergences
that may indicate novel evolution of regenerative pro-
cesses (Bely and Nyberg 2010). Among vertebrates, limb
and tail regeneration follow what appear to be similar
molecular mechanisms (Stocum and Cameron 2011),
making tails an excellent model for understanding re-
generation processes for both axial and appendicular
appendages. Much remains to be discovered about the
mechanisms, physiological impacts, and behavioral im-

plications of tail loss and regeneration, and it has been
identified as a key area of focus for future tail research.

Identifying the key characteristics
highlights functional morphology of tails
Driven by the great diversity of tail form and func-
tion, much of the research on tails has focused on the
underlying functional morphology. Given the impor-
tance of tails in the aquatic environment for propul-
sion, fish have provided an ideal model for explor-
ing these structure–function relationships. It has long
been known that body and fin morphology, and es-
pecially tail shape are reliable predictors of swimming
performance and even habitat preference among fish
(Webb 1982). Because tail shape strongly influences
vortex wake structure (Wilga and Lauder 2004; Fish et
al. 2021), it is possible for a tail to simultaneously pro-
duce thrust, stabilise, and generate lift during a single
stroke (Lauder 2000; Nauen and Lauder 2002). Further-
more, the flexible nature of the tail and coordination of
the fine intrinsic musculature facilitates nimble modu-
lation of tail shape, further increasing its importance for
rapid maneuvering (Flammang and Lauder 2009). Al-
though somewhat less common, fish tails are also used
for propulsion on land (Hsieh 2010; Hsieh 2013; Ashley-
Ross et al. 2014; Gibb et al. 2013; Bressman et al. 2015).
More recent work examining details of tail morphol-
ogy and kinematics among fish and tetrapods, taking
into account their drastically different material prop-
erties and flexibilities, have given additional nuance to
how tail morphology affects function, as well as insight
into the drivers for evolutionary, ecological, and behav-
ioral patterns (Donatelli et al. 2021; Fish et al. 2021;
Giammona 2021; Mekdara et al. 2021; Naughton et al.
2021).

Surprisingly, tails can also perform non-locomotor
tasks underwater, most commonly used as an anchor,
to help animals grasp stationary objects within their en-
vironments (e.g., seahorses and pipefish: Weber 1926;
Blake 1976; Porter et al. 2015). Such prehensility has fas-
cinated scientists for centuries. Animals such as opos-
sums (e.g., Hamilton 1958) and new world primates
(Karrer 1970) are just some additional models that have
been used to examine this behavior. Currently, cutting
edge analyses of chameleon tails have begun to iden-
tify how vertebral shape and muscle arrangement en-
able force production during prehensile grasping (Luger
et al. 2021).

While tails are fundamental for locomotion for many
species in a wide range of environments, their role
in providing balance and maneuverability has received
particular attention. In arboreal environments, tails are
key to maintaining stability (Shield et al. 2021; Smith
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and Hilliard Young 2021; Young et al. 2021). When an-
imals jump from elevated surfaces or leap high in the
air, tails are able to control orientation, perform self-
righting maneuvers, and provide dynamic stability to
ensure a safe landing (Gillis et al. 2009; Libby et al. 2012;
Clark et al. 2021; Fukushima et al. 2021; Schwaner et al.
2021a; Siddall et al. 2021).

Considering the importance of tails for all types of
locomotion, it becomes even more important to un-
derstand the evolutionary drivers that may lead to tail
length variability (Mincer and Russo 2020; Hager and
Hoesktra 2021; Smith and Hilliard Young 2021) or why
they may be lost, altogether (Fish et al. 2021).

Tail multi-functionality leads to the
development of bioinspired technology
The extraordinary robustness and functional breadth
of an object as externally apparently simplistic as a tail
have attracted the attention of biologists and engineers
who seek to emulate their performance in robotic sys-
tems (Fish et al. 2021; Liu and Ben-Tzvi 2021). For ex-
ample, fish tails have long inspired investigations striv-
ing to understand their incredible efficiency of thrust
production (e.g., Triantafyllou et al. 1993). This has also
led to multiple groups to develop fish-like robots that
can achieve or exceed the performance of an actual fish
(e.g., Anderson and Chhabra 2002; Liao and Du 2014;
White et al. 2021). On land, their utility for both sta-
bilisation and maneuvering has led to tails being fit-
ted to wheeled robots, both to better understand the
physical mechanism of aerial stabilisation (Jusufi et al.
2010; Libby et al. 2012), as well as to emulate the hunt-
ing behavior of cheetahs replete with rapid directional
changes (Patel and Braae M 2014). This, in turn, has in-
spired researchers to explore tail shapes and their effect
on stability in maneuvers (Shield et al. 2021; Lui and
Ben-Tzvi 2021). Combining these data with mathemat-
ical and physical modeling approaches can help define
the limits of tail performance and explore the capac-
ity of inertial reorientation maneuvers (Schwaner et al.
2021b).

Conclusion
The most recent comprehensive review of animal tails
was by Hickman in 1979, which examined only mam-
malian tails (although Saab et al. 2018 more recently re-
viewed robotic tails). This shows that despite a common
interest, there has been no opportunity to bring tail re-
lated research together. Research on tails continues in
a broad range of fields, from evo-devo to behavior to
robotics, but these fields remain largely isolated from
one another. This symposium and ICB special issue are

a first step towards a foundation of scientific synthesis of
tails and tail-related research with an interdisciplinary
approach.

Tails are key to the evolutionary success of many an-
imals and yet, the topic of tails has not received sim-
ilar attention as other appendages, such as limbs, for
example. Here, we lay a small foundation for what can
be great interdisciplinary and collaborative research en-
deavors. Much about tails remains to be discovered. For
example, mechanisms of tail development and evolu-
tion, regeneration, functional morphology, their role in
sensorimotor control, and their application in physi-
cal and computational models. These topics have been
identified as key areas of focus for future tail research
and are highlighted in a forward-looking article at the
end of this issue (Schwaner et al. 2021b).
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