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We investigate experimentally and theoretically the role of group-velocity dispersion and higher-order dispersion
on the bandwidth of microresonator-based parametric frequency combs. We show that the comb bandwidth and the
power contained in the comb can be tailored for a particular application. Additionally, our results demonstrate that
fourth-order dispersion plays a critical role in determining the spectral bandwidth for comb bandwidths on the
order of an octave. © 2014 Optical Society of America
OCIS codes: (140.3948) Microcavity devices; (190.4380) Nonlinear optics, four-wave mixing; (190.4390) Nonlinear

optics, integrated optics.
http://dx.doi.org/10.1364/OL.39.003535

Four-wave mixing (FWM) parametric oscillation in high-
Q microresonators is a highly effective approach for
producing optical frequency combs [1–7]. Since the para-
metric frequency comb bandwidth is determined by
phase-matching contributions from linear and nonlinear
effects, broadband and narrowband combs require
different operating conditions. A bandwidth regime of
importance is that associated with the generation of
octave-spanning combs [3,4], which are critical for
applications in spectroscopy, precision frequency met-
rology, and optical clocks. Alternatively, such combs can
be used as a chip-scale, multiple-wavelength source for
wavelength-division multiplexing (WDM) systems [8–10].
For such an application, efficient power consumption
is critical, and the comb bandwidth should be restricted
to the operation regime of the particular WDM system.
In this Letter, we theoretically and experimentally in-

vestigate the role of group-velocity dispersion (GVD) and
higher-order dispersion on the bandwidth of silicon–
nitride-based parametric frequency combs. We show that
dispersion engineering in the silicon–nitride (Si3N4) plat-
form allows for control of the comb bandwidth and
power in the comb to adapt to a particular application.
We use a theoretical model based on a modified

Lugiato–Lefever equation (LLE) to fully simulate the
dynamics of comb generation in Si3N4 microring resona-
tors [11–19]. The modified LLE describes the propagation
of the intracavity field E�t; τ� in the microring and is
written as,
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where tR is the round trip time in the resonator, α is the
total round trip loss, δ0 is the phase detuning between
the cavity resonance and the pump frequencies, θ is
the transmission coefficient between the resonator and

the bus waveguide, L is the cavity length, γ is the nonlin-
ear parameter, ω0 is the angular frequency of the pump,
and βk corresponds to the kth-order dispersion coeffi-
cients of the Taylor expansion of the propagation con-
stant. Here, τ represents the temporal coordinate within
the time scale of a single round trip and t represents
the long-time-scale evolution over many round trips.
Our modified LLE model, which includes higher-order
dispersion and self-steepening, enables simulations of
combs spanning an octave of bandwidth [16] and has
shown excellent agreement with previous experimental
demonstration. We investigate the effects of these terms
on sideband generation from FWM by analyzing the co-
upled mode equations associated with the field E�t; τ� �
A0 � A� � A

−

[19–21], where A0 is the pump field and A�
and A

−

represent the symmetrically detuned sidemodes.
For our analysis, we assume that the amplitude of the
sidebands are much smaller than A0, in which case the
coupled equations are given as
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where Ω is the sideband detuning, and the phase mis-
match is given by
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the gain coefficient. The gain coefficient Λ and phase
mismatch Δκ depend on the even-orders of dispersion,
while the odd-order dispersion terms add a phase contri-
bution to the sidebands which is opposite in sign with
respect to each other. The overall comb bandwidth is
highly dependent on the initial sideband detuning. As
the detuning increases, contributions from higher-order
terms become most important and must be taken into ac-
count in the analysis. While the odd-order terms do not
contribute directly to the amplitude growth, these phase
terms are relevant for pulse shaping and modelocking.
The inclusion of the self-steepening term does not affect
Δκ, but modifies the nonlinear term in the gain and con-
tributes an additional phase term.
We theoretically investigate how the comb bandwidth

can be controlled using two different waveguide cross
sections of 690 × 1900 nm and 910 × 1800 nm. Previ-
ously, the high stress in silicon–nitride films prevented
deposition of high quality nitride films, which in turn lim-
ited the magnitude of the anomalous GVD that could be
reached. However, recent advances in fabrication tech-
niques have allowed for deposition of thick, high-quality
films [22], enabling higher anomalous GVD values and
access to a wider parameter space for waveguide
dispersion. The GVD for the Si3N4 waveguide is shown
in Fig. 1(a) which was calculated with a finite-element
mode-solver. For cross sections where waveguide di-
spersion dominates over material dispersion, the taller
waveguide height results in a larger anomalous GVD.
For the comb simulations, the microring has a 100 μm
radius and is pumped at 1550 nm. The resonator is in the
undercoupled regime, with 50% power transmission. The
power in the coupling waveguide is 650 and 400 mW for
the 690 × 1900 nm and 910 × 1800 nm cross sections, re-
spectively. Figure 1(b) shows the simulated comb spec-
tra for the two different dimensions. While the region of
anomalous GVD for the 690 × 1900 nm cross section
spans only 550 nm, the low anomalous GVD at the pump
wavelength allows the comb to span a bandwidth far
exceeding the anomalous GVD region. In contrast, for the
910 × 1800 nm cross section, for which the anomalous

GVD region spans 1250 nm, the large anomalous GVD
at the pump wavelength results in narrowband comb gen-
eration. For our simulated parameters, self-steepening
has a minimal effect on the generated comb bandwidth.
Considering the phase mismatch equation with only the
GVD contribution, the detuning is inversely proportional
to the square root of β2. This implies that for larger
(smaller) β2 values the smaller (larger) the frequency de-
tuning results in a narrower (broader) bandwidth. The
bandwidth dependence on GVD is consistent with the
predictions based on steady-state analysis by Coen and
Erkintalo [15]. Figure 1(c) shows the temporal profile
of the simulated combs and indicates single-pulse mod-
elocking and cavity soliton formation, which is indicative
of a stabilized comb [6,7]. The narrower bandwidth al-
lows for a higher power per comb line, allowing for more
efficient power conversion from the pump to the comb
lines, which is critical for an energy-efficient multiple-
wavelength source for WDM applications.

Next, we investigate the effects of higher-order
dispersion by modeling comb generation at three differ-
ent pump wavelengths, 1550, 1400, and 1200 nm.
Figure 2(a) shows the GVD and fourth-order dispersion
(FOD) for a 690 × 1900 nm cross section, and Fig. 2(b)
shows the simulated comb spectra for each pump wave-

Fig. 1. (a) Simulated GVD for silicon–nitride waveguides with
cross sections 690 × 1900 nm (blue) and 910 × 1800 nm (green).
(b) Simulated comb spectra and (c) temporal plot for 260 GHz
free spectral range (FSR) Si3N4 microring resonators with cross
sections 690 × 1900 nm (top) and 910 × 1800 nm (bottom).

Fig. 2. (a) Simulated GVD and FOD for 690 × 1900 nm cross
section Si3N4 waveguide. (b) Simulated comb spectra for pump
wavelengths of 1550, 1400, and 1200 nm.
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length. In each case, a stabilized, single-pulsed mode-
locked comb is achieved. In comparing the comb spectra
for the 1550 and 1400 nm pumps, the comb bandwidth is
significantly broader for the 1400 nm pump even though
the magnitude of GVD is smaller for the 1550 nm pump.
This is due to the FOD contribution to phase matching,
which becomes significant for FWM over broader
bandwidths. The broadest comb is generated with the
1200 nm pump, where the GVD and FOD values are the
lowest. While the GVD at 1200 nm (β2 � −16 ps2∕km) is
close to that at 1550 nm (β2 � −17 ps2∕km), as a result of
the different FOD values at 1200 nm (β4 � 2.6 × 10−4 ps4∕
km) and 1500 nm (β4 � 1.8 × 10−3 ps4∕km), the 30 dB
bandwidth with a 1200 nm pump is 1.8 times broader than
that with a 1550 nm pump. Our results show that, while
low anomalous GVD is a necessary requirement for
broadband combs, small FOD is also critical to further
extend the bandwidth.
In addition, we observe dispersive wave (DW) forma-

tion at the edges of the comb spectra. Recent studies
have investigated the role of third-order dispersion
(TOD) and FOD on DW formation [15,17]. Since the
dispersion profile has two zero-GVD (ZGVD) points at
1100 and 1646 nm, we observe in Fig. 2(b), on the long
wavelength side, the DW redshifts as expected as the
pump wavelength is tuned to shorter wavelengths away
from the long-λ ZGVD point. Furthermore, at the short
wavelength side, a second DW redshifts as the pump
wavelength is tuned toward the short-λ ZGVD point. The
wavelength for DW formation can be predicted by phase-
matching conditions between the cavity soliton and the
DW wave across a ZGVD point [23]. While TOD and FOD
contribute to DW generation, due to the broad bandwidth
of the generated comb, these contributions alone do not
accurately predict the spectral positions for DW genera-
tion and the group velocity of the soliton and the DW, and
higher-order dispersion terms must be taken into
account.
We investigate the predictions from Fig. 1 experimen-

tally by pumping at a microring resonance near 1560 nm
using an amplified single-frequency laser. The power in
the coupling waveguide is 650 mW. To cover the entire
spectral measurement range, we utilize two optical
spectrum analyzers operating from 900 to 1200 nm and
from 1200 to 2400 nm. Figures 3(a) and 3(b) show the
measured spectra from the 690 × 1900 nm and 910 ×
1800 nm cross section microring, respectively. Each gen-
erated comb undergoes a transition to the low-noise state
characteristic of modelocking as observed in previous
studies [4,6]. The 690 × 1900 nm microring [Fig. 3(a)]
generates a 158 THz bandwidth comb, which represents
the broadest comb generated to date in a silicon–nitride
platform. In contrast, the comb generated in the 690 ×
1900 nm microring [Fig. 3(a)] spans a significantly

narrower bandwidth of 28 THz. The measured spectra
are in good agreement with our theoretical predictions
[Fig. 1(b)]. The difference in bandwidth can arise from
discrepancies in estimates of the losses and the wave-
length-dependent coupling conditions for the resonator
and from deviations in dispersion resulting from fabrica-
tion tolerances.

We further investigate narrowband comb generation.
Figure 4(a) shows the GVD for a 950 × 1700 nm cross sec-
tion Si3N4 microring with two different radii of 100 and
46 μm, which corresponds to free spectral ranges (FSRs)
of 260 and 530 GHz, respectively. The mode-solver takes
into account the radius of curvature of the microring,
which results in a small deviation in the GVD from that
of a straight waveguide. Figures 4(b) and 4(c) show the
simulated comb spectra for the two different FSRs. The
taller waveguide further increases the anomalous GVD,
narrowing the comb bandwidth. The spectra show 16
and 8 combs lines over a 3 dB bandwidth for the 260 and
530 GHz FSR resonators, respectively. The comb band-
width is primarily dictated by the microring GVD, and
the spacing is determined by the cavity FSR. Simulations
indicate that by adjusting the coupling between the mi-
croring and the bus waveguide, power conversion of the
pump to the comb lines as high as 60% can be achieved.
Thus, the microring dispersion and FSR can be con-
trolled such that the comb-based multiple wavelength
source is customized to the WDM system.

In conclusion, we investigate the role of GVD and
higher-order dispersion on parametric comb generation.
The flexibility in the Si3N4 platform allows for indepen-
dent control of the dispersion and FSR offering potential
for use as a power-efficient multiple-wavelength source
in a WDM system. In addition, we observe that FOD
plays a large role for comb bandwidths of the order of
an octave and hence, the waveguide geometry must be
precisely engineered based on the bandwidth require-
ments for comb generation.
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Fig. 3. Measured comb spectra in Si3N4 microrings with cross sections (a) 690 × 1900 nm and (b) 910 × 1800 nm.
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ing to 260 and 530 GHz FSRs, respectively.
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