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Abstract: We experimentally and theoretically investigate the dynamics of microresonator-
based frequency comb generation assisted by mode coupling in the normal group-velocity
dispersion (GVD) regime. We show that mode coupling can initiate intracavity modulation
instability (MI) by directly perturbing the pump-resonance mode. We also observe the formation
of a low-noise comb as the pump frequency is tuned further into resonance from the MI point.
We determine the phase-matching conditions that accurately predict all the essential features of
the MI and comb spectra, and extend the existing analogy between mode coupling and high-
order dispersion to the normal GVD regime. We discuss the applicability of our analysis to the
possibility of broadband comb generation in the normal GVD regime.
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1. Introduction

Optical frequency comb generation based on nonlinear microresonators [1–24] is a rapidly
evolving field of research that could potentially benefit such diverse fields as optical metrology,
spectroscopy, optical waveform synthesis and telecommunications [6]. Not only are such combs
attractive for applications, but they also exhibit rich nonlinear dynamics that are of fundamental
interest such as modelocking and cavity soliton formation [10, 12, 20, 22–24], and dispersive
wave emission [22], which were all observed previously in driven passive fiber cavities [25,26].

Many studies have been dedicated to understanding the mechanisms that drive comb
generation in microresonators [3, 6, 27, 28]. It is now well understood that microresonator
comb generation relies on the Kerr nonlinearity and the associated multimode four-wave-
mixing (FWM). Intracavity modulation instability (MI) [28–31] is specifically cited as a key
nonlinear process that governs the initial dynamics of the comb growth. Anomalous group-
velocity dispersion (GVD) inherently allows phase-matching of the MI process, and for this
reason, microresonator combs have been investigated primarily in resonators with anomalous
GVD. More recently, various studies have reported evidence of frequency combs in resonators
characterized by normal GVD [9, 14, 15, 17, 18]. Intracavity MI is possible in the normal GVD
regime due to the cavity boundary condition which provides an extra degree of freedom, via the
cavity detuning, to the MI phase-matching condition [30, 31]. In the microresonator geometry,
on the other hand, intracavity MI process is difficult to achieve reliably in the normal GVD
regime since it occurs in the red-detuned region of the Kerr-bistability cycle [17] where the
resonators are thermally unstable [32]. An alternative route to normal GVD comb generation
can be realized by exploiting coupling between different mode families that are supported
simultaneously by the resonators. Such mode coupling occurs when longitudinal resonances of
different spatial [33] or polarization [34] mode families overlap in frequency, causing shifting
of the coupled resonances and locally altering the GVD.

The effects of mode coupling in microresonator comb generation in the anomalous GVD
regime have been shown to be mostly detrimental and can inhibit soliton generation in the
most severe cases [35]. In addition, it has been suggested that in this regime, mode coupling
can play a role similar to high-order dispersion, in which case comb spectra display features
similar to those of dispersive waves [21, 36–38]. In contrast, mode coupling has been reported
to aid comb generation in normal GVD microresonators [9, 14, 15, 17, 18] which in some cases
corresponds to the formation of dark pulse-like structures in the time domain [18]. This latter
work also hinted that mode coupling may be responsible for generating the initial MI sidebands
in which phase-matching was achieved by shifting one of the sideband modes far away from the
pump-resonance mode while allowing the pump to operate in the blue-detuned regime of the
Kerr bistability and remain thermally stable [32]. Nevertheless, in comparison to the dynamics
of the anomalous GVD regime, the comb generation in the normal GVD regime is relatively
unexplored.

In this Article, we investigate in detail the dynamical behavior of comb generation triggered
by mode coupling in a microresonator characterized by normal GVD. In contrast to [18]
where mode coupling influenced one of the sideband modes far away from the pump, we
focus on the scenario in which the pumped longitudinal resonance mode is directly perturbed
by mode coupling. We show that the initial comb spectrum consists of a pair of multiple-
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mode-spaced sidebands exhibiting low amplitude noise, which is reminiscent of intracavity
MI. The mode coupling in this case shifts and aligns the pumped resonance mode with the
pump laser wavelength, leading to strong build-up of the intracavity power and allowing the
associated parametric gain to overcome the cavity roundtrip loss. We subsequently tune the
pump frequency further into resonance and study the generated low-noise comb. This comb
exhibits spectral features similar to dispersive waves, and we explain them in terms of the
analogy between high-order dispersion and mode coupling. Such analogy was already applied in
the anomalous GVD regime [21, 36–38]. Here we effectively extend this concept to the normal
GVD case and show that our study is generally applicable to normal GVD combs formed under
similar conditions. The potential of broadband comb generation is also discussed in this context.

2. Numerical and experimental characterization of mode coupling

In our experiments, we employ an oxide-clad silicon nitride (Si3N4) microresonator with a
free-spectral-range (FSR) of 200 GHz. The cross-section of the Si3N4 waveguide is 730 nm
high and 3000 nm wide, which ensures that the fundamental TE mode of the waveguide is
in the normal GVD regime near the pump wavelength. The resonator is pumped with a tunable
continuous-wave (CW) laser which is tuned from 1541 to 1548 nm depending on the experiment.
The typical pump power in the integrated bus waveguide, which is evanescently coupled to the
resonator, varies from 5 to 10 mW. Comb generation is initiated when the frequency of the CW
laser is externally tuned into resonance from the blue-detuned regime, and no active stabilization
of the pump nor cavity was utilized. The output is collimated and collected for analysis by an
optical spectrum analyzer, an RF spectrum analyzer, and an oscilloscope.

Due to its relatively large width, this Si3N4 waveguide supports multiple spatial mode
families. Each mode family exhibits a unique mode spacing and as a consequence, it is
possible for longitudinal resonances belonging to two distinct spatial mode families to overlap
in frequency. Waveguide imperfections in the form of surface roughness could lead to coupling
between the overlapping resonances and to breaking of the frequency degeneracy, that is, local
shifting and splitting of the resonance modes [33, 34]. This effect results in significant local
disruptions in the GVDs, experienced by both the mode families involved. It was reported that
such a GVD modification can facilitate the phase-matched FWM process, which can initiate
comb generation in normal GVD resonators [9, 18]. In particular, a recent study has shown that
the vicinity of mode coupling can act as a ‘pinning’ site where one of the nearest generated
sidebands is robustly anchored over a significant tuning range of the pump wavelength [15].
We verify this result for our resonator by tuning the pump laser wavelength within proximity
of the mode-coupling region. The results are summarized in Figs. 1(a)–(d). It can be seen that
although the laser is tuned over 4 resonances from 1542.8 nm to 1547.6 nm, the first blue-
detuned sideband (relative to the pump) remains anchored at approximately 1540 nm, implying
the presence of mode coupling.

Direct experimental characterization of the resonator GVD and mode coupling prove to be
difficult due to the presence of a large number of resonances belonging to different spatial mode
families. Furthermore, interactions between these modes prevent us from consistently tracking
the resonances of the fundamental mode family. Instead, we estimate the coupling strength by
performing numerical simulations based on a generalized Lugiato-Lefever equation (LLE) [29,
30, 39–41]

tR
∂E(t , τ)
∂t

=

[
− α − iδ0 + iL

∑
m≥2

βm
m!

(
i
∂

∂τ

)m
+ iγL |E |2

]
E(t , τ) +

√
θEin , (1)

where E(t , τ) is the intracavity field envelope, t is the ‘slow’ evolution time on the order of the
cavity roundtrip time tR while τ is a ‘fast’ time axis that travels at the group velocity of light
around the cavity, L is the cavity length, α describes the total cavity roundtrip loss, γ is the
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Fig. 1. The experimental [(a)–(d)] and simulated [(e)–(h)] optical spectra as the pump
wavelength is tuned over 4 consecutive resonances. The first blue-detuned sideband rela-
tive to the pump remains pinned at ∼ 1540 nm.

Kerr-nonlinearity coefficient, and βm is the mth order dispersion coefficient. Finally, θ is the
input coupling coefficient, Ein is the pump field amplitude such that |Ein |2 is the pump power
measured in W, and δ0 is the pump phase detuning with respect to the nearest resonance. We
use the following parameters to match our experiment: tR = 1/FSR = 5 ps, L = 810 μm, α =
7.6 × 10−4, γ = 0.63 W−1m−1, β2 = 36 ps2/km, β3 = 0.016 ps3/km, β4 = 9.0 × 10−4 ps4/km,
and θ = 3.5 × 10−4. Although high-order dispersion (third-order and higher) plays a negligible
role here, we have included it for completeness. The effect of mode coupling on the resonance
positions is incorporated phenomenologically in our simulation by using the empirical two-
parameters model [35]. We assume all resonances have the same linewidth. For the fundamental
TE mode, we estimate the mode-coupling-induced resonance shift to be 0.064% of the FSR
(� 130 MHz) at the position of mode coupling at 1541.2 nm. We support this estimated value
by showing in Figs. 1(e)–(h) that our simulation results based on these parameters are in good
qualitative agreement with the experimental results.

3. Mode-coupling-assisted intracavity modulation instability

We examine the comb generation dynamics in the presence of mode coupling. As the pump
laser is tuned into resonance at 1541.2 nm, we initially observe a pair of sidebands separated
by multiple-FSR’s [Fig. 2(a)]. The corresponding simulated spectrum [Fig. 2(b)] is in good
agreement with the experiment and is similar to low-noise primary combs that are routinely
reported in anomalous GVD resonators as the initial stage of comb generation driven by
intracavity MI [30, 31]. The latter statement is further confirmed by the corresponding low-
noise RF spectrum shown in Fig. 2(c). In this light, we seek an analogous explanation in the
normal GVD case. The phase-matching condition of intracavity MI can be expressed as [30,31]

L
∑
m≥2

βm
m!
Ωm + 2γL |E0(δ′0) |2 − δ0 = 0, (2)
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Fig. 2. (a) The experimental and (b) numerical spectra of intracavity modulation instability.
The red circles indicate the predicted positions of the first sideband pair based on Eq. (2),
and the black dashed curves the corresponding MI power gain profile. (c) The experimental
RF spectrum corresponding to (a) in red. The black plot shows the background noise.

where Ω is the frequency detuning of the phase-matched sideband relative to the pump, and
E0(δ′0) is the steady-state CW intracavity field of the pump mode. For the pump mode, the
shifted detuning δ′0 = δ0 −ΔωtR, where Δω is the mode-coupling-induced resonance frequency
shift, is the relevant detuning. Accordingly in the phase-matching condition Eq. (2), we use the
modified intracavity power |E0(δ′0) |2, where E0(δ′0) is computed by calculating the steady-state
CW (∂/∂t = 0 = ∂/∂τ) field of Eq. (1) with δ′0 replacing δ0. Sideband modes are not affected
by mode coupling and thus, the unshifted detuning δ0 is used in the third term in Eq. (2). We
apply this modified MI phase-matching condition to the simulated plot in Fig. 2(b) and obtain
very accurate predictions of the phase-matched frequencies where the first sideband pair is
expected, as displayed by two red circles. The existence of analytic MI gain, indicated by black
dashed curves on the same plot also supports our hypothesis. In this sense, this process can be
interpreted as mode-coupling-assisted intracavity MI in a normal GVD resonator.

Intracavity MI can occur only if two general requirements, namely phase-matching and power
threshold Pth = α/(γL), are simultaneously satisfied [30, 31]. For normal GVD resonators in
the absence of mode coupling, MI can only occur over a small parameter region within the
effectively red-detuned regime of the Kerr-bistability cycle where thermal soft-locking is not
possible [32]. Analysis based on our numerical parameters reveals that our system operates
outside the bistability cycle. In this case, the pumped mode is directly perturbed by mode
coupling such that the steady-state intracavity power is boosted above the threshold power
at which the parametric gain exceeds the cavity roundtrip loss. This clearly distinguishes our
current work from [18] in which mode coupling occurred far from the pumped resonance.
Indeed, the significance of mode coupling in our system is confirmed by the fact that in its
absence, the intracavity power stabilizes at a level far below the threshold and no oscillation
occurs.
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Fig. 3. (a) The experimental and (b) numerical spectra of the comb generated via mode
coupling. The red dashed lines show theoretical predictions of the secondary spectral peaks.
(c) The experimental RF spectrum corresponding to (a) in red. The black plot shows the
background noise.

4. Analogy between high-order dispersion and mode coupling in normal GVD

As the pump laser is tuned further into resonance, the spectral gaps fill in with additional comb
lines to form a 1-FSR-spaced frequency comb [Fig. 3(a)]. This frequency comb is qualitatively
similar to the modelocked normal GVD comb reported in [17]. It has several distinct features,
such as a dip adjacent to the pump and asymmetrically located secondary spectral peaks with
respect to the pump. In addition, the complementary RF spectral measurement in Fig. 3(c)
shows that this comb exhibits low amplitude noise. The simulation [Fig. 3(b)] reveals that
it corresponds to a stable pulse-like structure in the time domain (Fig. 4) with a decaying
oscillatory radiation tail on each side of the intensity peak. This time domain structure also
undergoes a constant drift with respect to the time reference of the LLE Eq. (1). Although
different mechanisms are at play, the dynamics strongly resembles that of dispersive wave
emission under the influence of high-order dispersion inside resonators [26,36,42]. We confirm
this hypothesis by applying to our current case the phase-matching condition which has shown
to accurately predict the features of dispersive waves emitted by cavity solitons in anomalous-
GVD resonators [26,42]. Specifically, we utilize the phase-matching condition as derived in [26]
which uses the same variable definitions and conventions as those used in Eq. (1).

The phase-matching condition yields two complex frequencies whose real and imaginary
parts describe, respectively the asymptotic frequencies and decay rates of the two oscillatory
tails. This phase-matching condition includes a term that describes the drift rate of the structure
which in our case is estimated from the simulation. As seen in Fig. 3(b), the real parts of these
complex frequencies predict the positions of the secondary spectral peaks remarkably well. In
addition, using the amplitudes of the oscillatory tails as fit parameters along with the derived
complex frequencies, we have fitted the asymptotic power response away from the center of the
pulse, again showing excellent agreement with the simulation results (red and blue circles in
Fig. 4). Although included for completeness, it is confirmed that high-order dispersion makes a
negligible contribution to the dynamics and the phase-matching condition. These results provide
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Fig. 4. The numerical temporal power profile (black) corresponding to Fig. 3(b). The red
and blue circles display the theoretical asymptotic traces of the decaying oscillatory tails.

concrete evidence that mode coupling can manifest itself as effective high-order dispersion
that breaks symmetry, leading to qualitatively similar features to those that were originally
attributed to dispersive wave emission in anomalous-GVD resonators and demonstrating that
the analogy between high-order dispersion and mode coupling can be generalized to the normal
GVD regime.

In addition, we apply our results to several past studies where comb formation was explored
under similar conditions. For specificity, we examine simulated comb-like structures referred
to as platicons [43]. Using parameters presented in [43], we have numerically reproduced
a platicon whose optical spectral and temporal power profiles are displayed in Figs. 5(a)
and 5(b) respectively. As seen in Fig. 5, our analysis allows accurate predictions of all the
relevant features. This is expected since both our combs and platicons are produced due
to mode-coupling-induced shift of the pumped resonance mode, and hence their formation
can be attributed to the same underlying mechanism. The only difference is that in [43],
only the pumped resonance was arbitrarily shifted while our analysis and results are based
on the realistic scenario where the effect of mode coupling is asymmetric and occurs over
several adjacent resonance modes, consistent with theoretical predictions [35] and experimental
observations [33, 34] of mode coupling. Our system thus provides an ideal testbed where the
physics of mode-coupling-triggered comb generation can be examined under more general and
realistic conditions. Note that the structure of Fig. 5(b) has much higher intracavity power
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Fig. 5. (a) The numerical optical spectral and (b) temporal profiles of an example of
platicons numerically studied in [43]. The insets of (b) display the close-ups of the decaying
oscillatory tails which have been fitted (red and blue circles) based on our analysis.

                                                                                                 Vol. 24, No. 25 | 12 Dec 2016 | OPTICS EXPRESS 28801



0 100 200 300

Pump shift (MHz)

50

60

70

80

C
om

b 
ba

nd
w

id
th

 (
nm

) (a)

1400 1500 1600 1700

Wavelength (nm)

-60

-40

-20

0

S
pe

ct
ru

m
 (

dB
)

(b)

Fig. 6. (a) Numerically estimated correlation between the coupling strength and the comb
bandwidth. The solid circle corresponds to our experimental case. (b) Simulated broadband
comb with a bandwidth of over 300 nm.

than our result since the pump power is higher and the platform under consideration is a
crystalline microresonator which is known to have higher quality factors in comparison to on-
chip Si3N4 ring resonators. Finally, it should be pointed out that our system may also have
connections to dark pulse structures [44] whose origin and existence were explained in terms
of interlocked switching waves [45, 46]. These switching waves exhibit decaying oscillatory
asymptotic profiles like those shown in Figs. 4 and 5(b), and can hence be analyzed by similar
means [44]. Such a connection suggests an alternative interpretation of the temporal profile
shown in Fig. 4 consisting of a dark structure with a broad width. From these results, we
conclude that our analysis is generally applicable under a wide range of conditions and the
exact parameter values or details of geometries are not significant.

5. Broadband microresonator comb generation in normal GVD

We numerically explore the possibility of generating broadband normal GVD comb under
similar conditions. Increasing the pump power to 50 mW while keeping all other parameters
the same, we first investigate correlation between the coupling strength and the bandwidth of
the resulting comb. The result is summarized in Fig. 6(a), and there is clearly an approximately
linear relationship. This trend can be understood as follows. Under the influence of purely
normal GVD, the resonator FSR decreases monotonically with the optical frequency and
resonances progressively deviate from their equidistant positions (defined in the absence of
GVD). The further we move away from the pump, the larger the deviations. As a consequence,
in order to phase-match the MI process involving modes that are further away from the pump,
the pump mode itself must be shifted by a larger amount, such that equivalent anomalous GVD
is achieved among the pump and the sideband modes [9, 18]. Another important issue we must
consider is the GVD, as it is known that the comb bandwidth follows a scaling law in the
form of ∝ 1/

√| β2 | [47], i.e. the second-order GVD parameter | β2 | must be small. We therefore
reduce our β2 to 1.8 ps2/km and double the coupling strength which corresponds to the last
point in Fig. 6(a), still an experimentally feasible value (shift of � 260 MHz). These conditions
enable generation of a broadband comb spanning over 300 nm, as plotted in Fig. 6(b), which
is comparable to dark-pulse frequency combs examined in [18]. Note that efficiency (comb-to-
pump power ratio) appears low since this comb corresponds to the output of the resonator at
the through-port. This issue can be circumvented by operating in the over-coupled regime [1] or
by extracting the comb from a drop port [24]. Filtering and amplification followed by external
broadening may lead to even broader combs.
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6. Conclusion

In conclusion, we examine the dynamics of comb operation in the normal GVD regime enabled
by mode coupling in a resonator under several scenarios. We explore a previously unidentified
regime outside the Kerr-bistability where mode coupling triggers intracavity MI and also
propose a modified phase-matching condition that describes the features of the MI spectrum. It
is demonstrated that mode coupling can overcome the MI power threshold requirement. We also
observe and theoretically analyze the transition of the intracavity light from the MI spectrum to
a low-noise comb, establishing connections between our results and several past studies carried
out under similar conditions. Our results therefore provide invaluable insight into the dynamics
that underlie microresonator comb generation influenced by mode coupling under normal GVD
conditions.
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