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ABSTRACT
◥

Anew ecologically inspired paradigm in cancer treatment known
as “adaptive therapy” capitalizes on competitive interactions
between drug-sensitive and drug-resistant subclones. The goal of
adaptive therapy is to maintain a controllable stable tumor burden
by allowing a significant population of treatment-sensitive cells to
survive. These, in turn, suppress proliferation of the less-fit resistant
populations. However, there remain several open challenges in
designing adaptive therapies, particularly in extending these ther-
apeutic concepts to multiple treatments. We present a cancer
treatment case study (metastatic castrate-resistant prostate cancer)
as a point of departure to illustrate three novel concepts to aid the

design of multidrug adaptive therapies. First, frequency-dependent
“cycles” of tumor evolution can trap tumor evolution in a periodic,
controllable loop. Second, the availability and selection of treat-
ments may limit the evolutionary “absorbing region” reachable by
the tumor. Third, the velocity of evolution significantly influences
the optimal timing of drug sequences. These three conceptual
advances provide a path forward for multidrug adaptive therapy.

Significance: Driving tumor evolution into periodic, repeatable
treatment cycles provides a path forward for multidrug adaptive
therapy.

Introduction
Dobzhansky's now-famous quote that “nothing in biology makes

sense except in the light of evolution” succinctly explains a worldview
that has been widely adopted by the cancer biology community (1).
Taken one step further, others have claimed that “nothing in evolution
makes sense except in the light of ecology,” which provided the basis
for designing adaptive cancer therapies centered on principles from
evolution and ecology (2, 3, 4).

Cancer is an evolutionary and ecological process (5, 6) driven by
random mutations (7, 8) responsible for the genetic diversity and
heterogeneity that typically arises via waves of clonal and subclonal
expansions (9, 10). Clones and subclones compete and Darwinian
selection favors highly proliferative cell phenotypes, which in turn
drive rapid tumor growth (5, 6).

Recent emphasis on personalized medicine has largely focused on
the development of therapies that target specific mutations. These
targeted therapies do extend patient lives but cancer cells tend to evolve
resistancewithinmonths or years (11, 12). Prior to therapy, preexisting

resistant cell types are suppressed and kept in check by competitively
superior, therapy-sensitive cell types. There is some evidence of “cost”
to incurring resistant mutations. In one study, cells sensitive (MCF7)
and resistant (MCF7Dox) to doxorubicin cocultured in vitro showed
that sensitiveMCF7 cells rapidly outcompeted the resistantMCF7Dox
line after only a few generations, illustrating the “cost” of resistance cell
lines cocultured with drug-sensitive cell lines (13).

With a targeted therapy suppressing sensitive cells, these resistant
cell types may experience release from competition (14). If total
eradication of all cancer cells is not accomplished, the tumor will
relapse derived fromresistant cells that survived initial therapy (15, 16).
Upon relapse, a second drug may be administered. Yet continuous use
of this subsequent targeted therapy may inevitably result in the
emergence of the corresponding resistant clones (Fig. 1A). This
approach ignores considerations of heterogeneity and therapy as a
selection event in somatic evolution (17, 18, 9).

Historically, the problem of drug resistance has often enlisted the
help of mathematical modeling in designing optimal therapy sche-
dules. For example, Goldie and Coldman were the first to propose a
mathematical model relating drug sensitivity of tumors to their
mutation rates (19). The model had two clinical implications: first,
smaller tumors are more likely to be curable (without preexisting
resistance) and second, as many effective drugs as possible should be
applied as soon as possible. In this article, we will explore sequential
and concomitant therapy, with the goal of designing patient-specific
therapeutic schedules, which drive tumor evolution into cycles,
explained below.

Enlightenment via evolution
Eradicating most disseminated cancers may be impossible, under-

mining the typical treatment goal of killing as many tumor cells as
possible (20). Previous schools of thought saw maximum cell-kill as
either leading to a cure or, at worst, maximizing life extension.
Attempting to kill as many cancer cells as quickly as possible may
be evolutionarily unsound and facilitate resistance evolution and loss
of therapy efficacy. Evolution matters. A recent (2012) systematic
literature analysis of cancer relapse and therapeutic research showed
that while evolutionary terms rarely appeared in articles studying
therapeutic relapse before 1980 (< 1%), the use of evolutionary terms

1Department of IntegratedMathematical Oncology, H. LeeMoffitt Cancer Center
& Research Institute, Tampa, Florida. 2Department of Data Science and Knowl-
edge Engineering, Maastricht University, Maastricht, the Netherlands. 3Depart-
ment of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research
Institute, Tampa, Florida. 4Cancer Biology and Evolution Program, H. Lee Moffitt
Cancer Center & Research Institute, Tampa, Florida. 5Department of Aerospace
& Mechanical Engineering and Mathematics, Norris Comprehensive Cancer
Center, University of Southern California, Los Angeles, California.

Note: Supplementary data for this article are available at Cancer Research
Online (http://cancerres.aacrjournals.org/).

R.A. Gatenby, J.S. Brown, P.K. Newton, and A.R.A. Anderson are the co-senior
authors of this article.

CorrespondingAuthors:Alexander R.A. Anderson, Moffitt Cancer Center, 12902
Magnolia Drive, SRB 24000E, Tampa, FL 33612. Phone: 813-745-6119; Fax: 813-
745-6497; E-mail: alexander.anderson@moffitt.org; and Jeffrey West,
jeffrey.west@moffitt.org

Cancer Res 2020;80:1578–89

doi: 10.1158/0008-5472.CAN-19-2669

�2020 American Association for Cancer Research.

AACRJournals.org | 1578

on April 24, 2020. © 2020 American Association for Cancer Research. cancerres.aacrjournals.org Downloaded from 

Published OnlineFirst January 16, 2020; DOI: 10.1158/0008-5472.CAN-19-2669 

http://crossmark.crossref.org/dialog/?doi=10.1158/0008-5472.CAN-19-2669&domain=pdf&date_stamp=2020-3-18
http://crossmark.crossref.org/dialog/?doi=10.1158/0008-5472.CAN-19-2669&domain=pdf&date_stamp=2020-3-18
http://cancerres.aacrjournals.org/


has steadily increased more recently, due to the potential benefits of
studying therapeutic relapse from an evolutionary perspective (21).

A new paradigm in the war on cancer replaces the “treatment-for-
cure” strategy with “treatment-for-contain”—receiving cues from
agriculturists who have similarly abandoned the goal of complete
eradication of pests in favor of more limited and strategic application
of insecticides for control (22). This ecoevolutionary inspired para-
digm for cancer treatment known as “adaptive therapy” capitalizes on
subclonal competitive interactions. Resistancemay confer somefitness
costs due to increased rates of DNA repair or other costly activities
required to pump toxic drugs across cell membranes. Cancer cell

resistance mechanisms, whether mitigation, detoxification, or re-
routing metabolic pathways, divert finite resources that would other-
wise be available for cell proliferation or other avenues for cell
survival (20, 23, 14).

The goal of adaptive therapy is to maintain a controllable stable
tumor burden by allowing a significant population of treatment-
sensitive cells to survive (see Fig. 1B, blue). These readily treatable
sensitive cells serve to suppress the proliferation of the less-fit resistant
populations (see Fig. 1B, red). Adaptive therapies have been tested
experimentally (24, 24, 25) and are currently being applied across
multiple clinical trials (NCT02415621; NCT03511196;NCT03543969;
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Schematic of cancer clonal evolution under therapy. A, Conventional sequential therapy of two treatments selects for a clone resistant to treatment one (red) upon
tumor relapse and subsequently a clone resistant to treatment two (green).B,Adaptive therapymaintains a stable tumor volume by introducing treatment holidays.
Drug-sensitive clones (blue) suppress the growth of less-fit resistant clones (red). However, resistance still eventually occurs. C, One proposed adaptive multidrug
strategy is to alternately switch between drugs during each on-off cycle of tumor burden. D, An alternative multidrug adaptive strategy is to administer both drugs
simultaneously during each on-off cycle, leading to a doubly resistant clone (yellow).
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NCT03630120) at the Moffitt Cancer Center (Tampa, FL; ref. 26).
These adaptive therapies capitalize on competition for space and
resources between drug-sensitive and slow-growing drug-resistant
populations (27, 13, 28). These trials have shown initial promise in
prostate cancer comparedwith contemporaneous patient cohorts (26),
but it should be noted that evolutionary modeling-based dosing
schedule did not improve progression-free survival in anticancer TKI
regimens for patients with EGFR-mutant lung cancers (29).

Steering patient-specific evolution
This adaptive approach means that each patient's treatment is truly

personalized on the basis of the tumor's state and response rather than
a one-size-fits-all fixed treatment regime (30). There remain several
open challenges in designing adaptive therapies. First, treatments can
aim to steer and control the ecoevolutionary dynamics to where the
tumor finds itself in an evolutionary dead end (31), an evolutionary
double-bind (32, 33, 34), or evolutionarily stable control (13, 35). Yet,
for clinical practice, how to design such therapies remains difficult (36).
Second, it is not yet clear how to extend these evolutionarily enlight-
ened therapeutic concepts to multiple treatments. Two schematic
examples are illustrated in Fig. 1C and D. Is it evolutionarily optimal
to reproduce the single-drug adaptive therapy in a sequential (Fig. 1C)
setting or in a concomitant setting (Fig. 1D)? Synergizing treatments
such that evolving resistance to one drug makes cells more susceptible
to another requires mathematical modeling as well as improved
monitoring methods (37, 38).

Figure 2 provides a schematic of steering the tumor into “cycles” of
tumor evolution. A cycle is defined as a treatment regimen that steers
the tumor into periodic and repeatable temporal dynamics of tumor
composition. As seen in Fig. 2, a weekly biopsy shows the frequencies
(pie charts) of four phenotypes (blue, green, red, and yellow) in the
evolving tumor over time. At each time step, the state of the tumor is
given by a vector, x, indicating the frequency of each cell type
composing the tumor. In this example, the fifth week produces a
tumor composition, which is approximately equivalent to the tumor
composition at the start of therapy (x5¼ x1). Theoretically, such cycles
could be repeated ad infinitum to steer and trap tumor evolution in a
repeatable (and controllable) cycle.

A trial may use sequences of n available drugs either alone or in
combination (shown for n¼ 2 in Fig. 2). We employ the terminology
“treatment” to indicate the 2n possible combinations: no drug, single
drug, or combination therapy. These treatments can be administered
in any arbitrary sequence with the goal of controllingm cell types. An
adaptive trial for metastatic castrate-resistant prostate cancer
(NCT02415621) uses only two treatments: (i) Lupron and (ii) Lupron
þ abiraterone. Likewise, an adaptive trial for advanced BRAF-mutant
melanoma (NCT03543969) administers vemurafenib and cobimetinib
in combination, followed by no treatment. Both trials use only two
treatments out of the four (22) combinations possible with two drugs
(no treatment; first drug only; second drug only; first and second drug
in combination therapy). Opening up trial design to include the full
range of complexity (i.e., 2n) may allow for greater tumor control, but
the treatment administered at each clinical decision time pointmust be
chosen with care and forethought, to steer the tumor into a desirable
evolutionary state. To that end, the purpose of this study is to introduce
the following three concepts to consider in the pursuit of designing
multidrug adaptive therapies:

1 Frequency-dependent “cycles” of tumor evolution
2 Treatment-dependent evolutionary “absorbing region”
3 Frequency-dependent evolutionary velocities

In the next sections, we will illustrate these three concepts through a
case study of 4 patients with metastatic castrate-resistant prostate
cancer. This case study develops these generalizable concepts for
designing multidrug adaptive therapy treatment schedules for three
cell types (m¼ 3 phenotypes; Fig. 2) under two drug treatments (n¼ 2
drugs; Fig. 2).

Materials and Methods
Frequency dynamics

Evolutionary game theory is a mathematical framework that models
frequency-dependent selection for strategies (phenotypes) among com-
peting individuals. Competition between individuals is typically char-
acterized by a “payoff matrix,”which defines the fitness of an individual
based upon interactions with another individual or the population at
large (39, 40). As a game, the payoff to an individual depends both on its
strategy and the strategies of others in the population.As an evolutionary
game, the payoffs to individuals possessing a particular strategy influ-
ences the changes in that strategy's frequency. A strategy that receives a
higher than population-wide average payoff will increase in frequency at
the expense of strategies with lower than average payoffs. Such frequen-
cy-dependent mathematical models have shown success in modeling
competitive release in cancer treatment (14), designing optimal cancer
treatment (41, 42), evolutionary double binds (33), glioblastoma pro-
gression (43), the emergence of invasiveness in cancer (44) as well as in
cocultures of alectinib-sensitive and alectinib-resistant non–small cell
lung cancer (45).

In principle, there exist many frequency-dependent models of cell–
cell competition, which could adequately characterize this system:
replicator dynamics models, stochastic Moran process models, spa-
tially explicit game theoretic representations, even normalized pop-
ulation dynamics models. Here, we simply require a model that
analyzes trajectories of relative population sizes rather than absolute
population sizes ofm cell types under treatment from combinations of
n drugs. For details on the specific implementation and parameter-
ization of the model used in Fig. 3A–D, see Supplementary Informa-
tion and refs. 26, 46.

The model presented below is a simplified frequency-dependent
dynamics mathematical model (a qualitative extension of the model
behind the first adaptive therapy clinical trial in metastatic prostate
cancer; see ref 26). Using the simplifying assumption of a (relatively)
constant tumor volume allows us to focus on the frequency dynamics
within the tumor, ignoring population dynamics. Tracking frequency
dynamics that are themselves frequency dependent allows us to use a
game theoretic modeling framework.

We can use the 3 by 3 payoff matrix that describes the outcomes of
interactions between the different cell types. The expected payoff to an
individual of a given cell type is influenced by the frequency of cell
types in the population (Eq. A). This can be thought of as the “inner
game” (47). The replicator equation from game theory, then translates
these strategy-specific payoffs into the evolutionary dynamics
described by changes in the frequencies of each cell type within the
tumor (Eq. B). This is the “outer game” where payoffs become
translated into fitness.

_xi ¼ ðfi � hf ixiÞ ðAÞ

fi ¼ wiðB~xÞi ðBÞ

where B ¼ 1 - A, noted in Supplementary Information (26). The
variables x1, x2, x3 are the corresponding frequency of dependent (T

þ),
producers (TP) and independent (T�) cells, respectively, such that

P
i
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xi ¼ 1. The prevalence of each cell type changes over time according to
the changing payoffs, fi, compared with the average payoff of all three
populations <f> ¼ P

ifixi. Unless otherwise noted parameters for
untreated dynamics are: b1,2 ¼ 0.2; b1,3 ¼ 0.6; b2,1 ¼ 0.3;
b2,3 ¼ 0.5; b3,1 ¼ 0.4; b3,2 ¼ 0.1, for Lupron only are: b1,2 ¼ 0.4;
b1,3¼ 0.3; b2,1¼ 0.6; b2,3¼ 0.5; b3,1¼ 0.2; b3,2¼ 0.1, and for Lupronþ
abiraterone are: b1,2 ¼ 0.5; b1,3 ¼ 0.1; b2,1 ¼ 0.6; b2,3 ¼ 0.2; b3,1 ¼ 0.4;
b3,2 ¼ 0.3.

The expected payoff to a cell type is calculated as the product of
the payoff entries and prevalence of each population (Eq. B).
Treatments are assumed to alter the carrying capacity for each cell
type. Under Lupron, each producer cell is assumed to support 1.5
dependent cells, limiting the Tþ to rely on producers in the absence
of systemic testosterone. During Lupron þ abiraterone treatment,
each producer is capable of supporting 0.5 Tþ cells and the carrying
capacity of TP cells significantly drops due to local antiandrogen
effects.

To simulate therapy, we introduced a weighting term, wi. The
weighting term adjusts payoffs to a cell type by its carrying capacity
(capacity of the tumor environment to support a given cell type). each
cell type's weighting term equals a given cell type's carrying capacity,
Ki, normalized by a maximum carrying capacity (wi ¼ Ki/Kmax). The
following parameters are used: no treatment:K1¼ 1.5� 104,K2¼ 104,
K3 ¼ 102; Lupron: K1 ¼ 1.5 � 104; K2 ¼ 104; K3 ¼ 104; Lupron þ
abiraterone: K1 ¼ 0.5 � 104; K2 ¼ 102; K3 ¼ 104; Kmax ¼ 1.5 �104

cells (26).

Patient data model fitting
Each subpopulation is assumed to contribute to changes in prostate-

specific-antigen (PSA) levels, as follows:

PSAðtÞ ¼
P3

i¼1 yiðtÞ
y1ð0Þ þ y2ð0Þ þ y3ð0Þ ðCÞ

The PSA is normalized over time to show changes relative to
treatment initialization (see Fig. 3). Data was obtained via the clinical
trial protocol (NCT02415621), which was approved by central
Institutional Review Board and monitored by Moffitt Cancer Center's
protocol monitoring committee. Written informed consent was
obtained from all patients prior to enrollment in the trial. Best fits
were performed using lsqcurvefit function in MATLAB 2018a. All
parameters were held constant between patients (see Supplementary
information) except for the initial conditions.

Results
Case study: metastatic castrate-resistant prostate cancer

In progressive prostate cancer, continuous or intermittent
androgen deprivation are common treatments that generally lead
to a substantial decline in tumor burden. Eventually, tumor burden
rebounds as a result of the rise of castrate-resistant cells (48). Upon
castrate resistance, adaptive therapy using abiraterone has shown
considerable treatment success.
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A single evolutionary cycle. Two drugs
(purple, orange) are administered either
in combination (e.g., week 1), monother-
apy (week 2, 5), or no treatment (week
4). A tumor biopsy indicates the tumor
composition at the end of each week,
showing the evolution of four pheno-
types (pie charts: blue, green, red, yellow
phenotypes) over time. The goal of
adaptive therapy is to maintain a stable
tumor volumewhile controlling the com-
position of the tumor with respect to cell
type frequencies (stored in the state
vector, x). A frequency-dependent “cycle”
is a paradigm of tumor control, which
employs a succession of treatments that
returns the stateof the tumor composition
back to the initial state. A cycle of 5 weeks
is shown here. In this example, it is
assumed that a single unvarying course
of action would result in an unacceptable
tumor composition of resistant cell types.
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In Fig. 3, we present data of castrate-resistant patients from
NCT02415621. The 4 patients (Fig. 3, panels A–D) were selected
who have undergone at least five adaptive doses of treatment at the
time data was acquired (26, 36). The adaptive protocol is as follows:
Lupron is administered continuously (limiting systemic testosterone
production) while abiraterone (antiandrogen) is administered only
until the PSA blood biomarker declines to 50% of the pretreatment
value. abiraterone treatment is resumed after the PSA climbs to the
original pretreatment value.

Previous studies on controlling resistance in cancer therapy have
emphasized the value of continuous monitoring of evolving popula-
tions (37) and the importance of developing a resistance management
plan (49, 50, 51). Here, we perform an “after-action analysis” on all
patients who progress due to resistance (52, 53). This after-action
reporting aids understanding of the mechanisms of treatment failure,
as well as identifies improved resistance management strategies.

To facilitate this after-action analysis, we parameterize a previously
published Lotka–Volterra model of treatment dynamics by fitting to
PSA data from all patients (Fig. 3, dashed red lines). This population

dynamicsmodel has three cell types: those that require testosterone for
growth, Tþ, cells that require testosterone but produce their own, TP,
or cells that are independent of testosterone (and thus are resistant to
abiraterone), T� (26, 46, 36). Mathematical modeling allows for
continuous prediction of tumor subpopulations (Fig. 3, pie charts).

While the ongoing adaptive trial (NCT02415621) has shown prom-
ise in extendingmedian time to progression of patients withmetastatic
prostate cancer, resistance is still expected to inevitably occur. The
retrospective, after-action analysis presented in Fig. 3 indicates the
emergence of resistance for all 4 patients shown (see Fig. 3 embedded
pie charts; see also detailed analysis shown for each patient in
Supplementary Fig. S1, panels A, B, C, D).

Resistance management plan
On the basis of the model predictions developed in the after-action

analysis, all 4 patients eventually fail due to resistance. This indicates
that a secondary resistance management plan is still necessary to
mitigate this emergence of resistance. The resistancemanagement plan
introduced here is additional periods of no treatment to mitigate the

A
Proposed treatment (adaptive cycles)

(off study due to bone scan progression)

Patient received treatment

PS
A

PS
A

PS
A

500 1,000

Time

Time

Time

1,500 2,000 2,5000

8

6

4

2

0

Proposed treatment (adaptive cycles)

Patient received treatment

500 1,000 1,500 2,000 3,000 3,5002,5000

8

6

4

2

0

Proposed treatment (adaptive cycles)

Patient received treatment

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800

8

6

4

2

0

PS
A

Time

Proposed treatment (adaptive cycles)

Patient received treatment

0 200 1,000 1,500 2,000 2,500 3,000 4,0003,500

8

6

4

2

0

PSA Data

30 Days
No treatment
Lupron + abiraterone

Lupron
30 Days
16 Days

15 Days
No treatment
Lupron + abiraterone

Lupron
18 Days
18 Days

1 Day
No treatment
Lupron + abiraterone

Lupron
4 Days
90 Days

30 Days Lupron + abiraterone

Lupron
42 Days No treatment
70 Days

PSA Model fit
Adaptive cycles

PSA Data
PSA Model fit
Adaptive cycles

PSA Data
PSA Model fit
Adaptive cycles

PSA Data
PSA Model fit
Adaptive cycles

Pa
tie

nt
10

0
1

Pa
tie

nt
10

03
Pa

tie
nt

10
0

6
Pa

tie
nt

10
12

B

D

C

Figure 3.

Patient-specific evolutionary cycles delay emergence of resistance. A–D, Model fit to PSA data from clinical trial NCT02415621 for four patients: 1001 (A), 1003 (B),
1006 (C), and 1012 (D). This trial administers continuous Lupronwith adaptively administered abiraterone, is shown (black circles). A previously publishedmodel is fit
to each patient data (see refs. 26, 36; red dashed line). Timing of treatment received under clinical protocol is indicated (top) alongside a proposed treatment of
“adaptive cycles” (blue, model-predicted PSA). This adaptive cycling approach is able to control the tumor (shown for twenty cycles).
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emergence of the abiraterone-resistant testosterone-independent (T�)
subpopulation. The timing of these off-treatment periods are con-
structed such that the tumor subpopulations return to the original
proportion and thus complete a cycle, as proposed in the above Fig. 2.

This goal of this after-action analysis is to utilize retrospective
patient data to parameterize a model to test the efficacy of this
evolutionary cycle design to mitigate resistance. Importantly, our
after-action analysis predicts that evolutionary cycling prolongs the
relapse of the resistant T� subpopulation while maintaining a con-
trollable tumor volume, for each patient (Fig. 3, blue lines; see also
Supplementary Fig. S1). The three-pronged approach of continuous
monitoring, after-action reporting, and resistance management plan-
ning provide a key step forward to implementing this evolutionary
cycling concept in the clinic.

Searching for cycles
To help elucidate the nature of such cycles, we simplify our model

system by ignoring (for the moment) population dynamics to leverage
several mathematical conveniences of a frequency-dependent game
theoretic modelling framework, explained below. Frequency-
dependent models of tumor evolution are particularly suited for
studying tumor control (i.e., “cycles” of tumor evolution), determining
the set of possible evolutionary dynamics (i.e., evolutionary absorbing
region), and timing of evolution (i.e., evolutionary velocity).

To track the state vector of the tumor, x, we set the variables x1, x2, x3,
to the frequency of dependent (Tþ), producers (TP), and independent
(T�) cells, respectively. The temporal dynamics of these different
populations under treatment can be characterized inside a trilinear
coordinate simplex (Fig. 4A), which gives a representation of every
possible value of x, on a triangle. The corners represent a tumor
consisting of 100% of either Tþ (top corner), TP (left corner), and T�

(right corner). Figure 4 shows the temporal dynamics under each
treatment.

Every treatment scenario has an associated long-time equilibrium
state: the tumor composition where all temporal dynamics eventually
converge. For example, continuous treatment of Lupron leads to
roughly equal fraction of Tþ and TP (blue circle, Fig. 4B). Continuous
treatment of Lupronþ abiraterone leads to full saturation of T� (blue
circle, Fig. 4C). Similarly, administering no treatment leads to an
equilibrium ofmostly Tþ and roughly equal (but small) proportions of
T� and TP (purple circle Fig. 4D).

This leads us to a key insight. We are able to ignore the tumor
volume information (for the moment) because of one convenient fact:
an optimal treatment schedule will necessarily be a schedule, which
successfully avoids all equilibria. Equilibria associated with “no treat-
ment” will lead to tumor saturation and presumably, death. Equilibria
associated with any treatment will lead to a fully resistant tumor (and
also presumably, death).

The goal of adaptive therapy in prostate cancer is to delay the onset
of the resistant T� population by well-timed switching between each
treatment. This is equivalent to switching between each triangular
phase portrait in Fig. 4 before reaching the resistant equilibrium state
of any given treatment. In theory, a periodic (closed) cycle can be
constructed by switching between treatments at carefully chosen times
to design schedules that are superior to continuous MTD (54).

Figure 5A details the process by which an evolutionary cycle is
constructed. Each patient in Fig. 3 has an associated initial condition
within the triangle. A sequence of treatments is constructed for each
patient, which arrives back at the same initial condition: an evolu-
tionary cycle. This treatment sequence can be repeated, controlling the
tumor. The dashed lines on Fig. 5A show dynamics under continuous

treatment, which lead to respective equilibrium states, spiraling out of
the evolutionary cycle. The identical evolutionary cycle paradigm is
shownwith cell fraction over time inFig. 5B. By appropriate treatment
switching, the three cell types remain in competition with each other,
and no cell type is able to dominate but instead are balanced indef-
initely in closed periodic cycles thereby avoiding the emergence of
resistance. The tumor undergoes three such evolutionary cycles, where
the tumor “resets” back the initial state before treatment (pie
charts, Fig. 5).

Many such cycles may exist in the state space shown in Fig. 4D: for
example, traveling down any Lupron trajectory (blue), switching to a
no treatment trajectory (purple) and so on, repeated ad infinitum.
Which cycles are preferable? To answer this question, the next section
introduces concepts of evolutionary absorbing region and evolution-
ary velocity.

Evolutionary absorbing region
Phase portraits can be drawn for each pairwise treatment combi-

nation (Fig. 6). Each treatment has an associated equilibrium (solid
circles), which can be connected by a single evolutionary trajectory.
These two connecting trajectories represent a bounding region of state
space where a periodic cycle resulting from sequential administration
of the two treatments is guaranteed on the outer rim of this region
(directionality shown with black arrows). As can be seen in Fig. 6, all
external trajectories tend toward either treatment's equilibrium, or
toward the inside of the bounding domain. The implications are clear:
sequential treatment between any two drugs for a sufficiently long time
results in limiting the “evolutionary absorbing region” of the tumor
composition.

Herein lies a second key advantage of frequency-dependent game
theoretic models: parameterization robustness. Shown in the inset of
each subfigure (Fig. 6), are 36 random parameterizations (subject to
the inequalities in Supplementary Tables S1 and S2), overlaid in
transparent shading. Absorbing regions overlap significantly due to
the fact that model dynamics are more sensitive to relative parameter
values (i.e., the inequalities in Supplementary Tables S1 and S2) than
absolute values chosen.

At least one cycle exists for each pairwise treatment scenario: the
outer rim of the absorbing state. There may be other cycles, existing
only in the interior of the region. For some pairwise combinations,
the bounding region is quite large (see Fig. 6A: Lupron, Lupron þ
abiraterone); for others quite small (see Fig. 6B: no treatment,
Lupron or C: no treatment, Lupron þ abiraterone). Once treatment
drives the tumor composition into one of these bounding regions, it
is impossible to traverse outside without the addition of a third
treatment.

Considering the three treatment scenarios together (see Fig. 6D: no
treatment, Lupron, Lupron þ abiraterone) expands the evolutionary
absorbing region. Arbitrary cycles can be constructed by clever
sequences of treatment inside this expanded evolutionary absorbing
region. To illustrate which regions in which cycles may be preferable,
the next section will describe evolutionary velocity.

Evolutionary velocity
The evolutionary “velocity” (and each of its velocity components) of

each treatment scenario can be viewed on the same trilinear simplex,
shown for total velocitymagnitude (Fig. 7A–C), Tþ velocity (Fig. 7D–
F), TP velocity (Fig. 7G–I), and T� velocity (Fig. 7J–L). It is useful to
compare no treatment (7, left column), Lupron (7, middle column),
and Lupronþ abiraterone (7, right column). A low velocity indicates a
slow change to the tumor composition (calculated as the magnitude of
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the resultant vector of all components in Eq. A (see Supplementary
Information). Several recent studies have indicated the importance of
studying temporal effects of drug administration. Using human breast
cancer explants, in vitro cells, mouse in vivo studies combined with
mathematical modeling, one study showed that a temporary exposure
to a taxane induces phenotypic cell state transition toward a favored
transient chemotherapy-tolerant state, which disappears when the
drugs are administered concomitantly (55). A separate study noted the
appearance of weakly proliferative, resistant cells under high-dose
therapy is transient and controllable by nongenetic, stem-like (revers-
ible) characteristics that depend on timing and length of drug
administration (56).

In short: timing matters. Introduction of concomitant therapy or
altering the timing of sequential therapy changes the evolutionary
velocity of the underlying tumor composition. One can imagine
scenarios where a fast or slow evolutionary velocity is desired. A
tumor with a high composition of resistant cells may need to navigate
to a fast dynamics region to rapidly decrease the resistant subpopu-
lation. Alternatively, an adaptive regime may capitalize on slow
velocities regions that ensure slow evolutionary dynamics on treat-
ment holidays.

Frequency dynamicsmodels allow formonitoring and control of the
velocity of a single-cell type (see Fig. 7D–L). For example, under
continuous Lupron þ abiraterone treatment, the velocity of the T�

population is positive for most of the state space (see Fig. 7L). To
control the T� population, it is necessary to switch to a new
treatment: Fig. 7J or Fig. 7K. Depending on the current tumor
composition, no treatment or Lupron may be desirable for negative
T� velocity (blue). For example, while certain adaptive evolutionary
cycles may be technically feasible, clinical considerations of fast
evolutionary velocities may preclude certain schedules requiring high
frequency hospital visits or impractically slow wash-out times of
particular treatments.

Discussion
In the design of multidrug adaptive therapy, the optimal method of

combining therapies in an additive or sequential manner is unclear. A
key observation is that the goal of adaptive therapy is to maintain a
stable tumor volume in favor of designing therapies that alter tumor
composition. We advocate for the use of frequency-dependent com-
petitionmodels (and in particular evolutionary game theory) to design
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novel multidrug adaptive therapy regimens. This is a promising
modeling approach, and more work must be done combining pop-
ulation models of changing tumor volume with frequency-dependent
models of changing tumor fraction to eliminate clinically unfeasible
treatment schedules from consideration.

While it is clear that tumors evolve in response to treatment, it
has proved difficult to exploit evolutionary principles to steer
tumor evolution in an ideal direction. One limitation of current
adaptive therapy clinical trials is the limited selection of drugs
and limited monitoring methods. Even despite the lack of mon-
itoring the exact state of the tumor composition, the technique of
maintaining a substantial drug-sensitive population for extended
tumor control has shown promise in mathematical models as well
as preclinical and clinical trials. However, each of the on-going or
planned adaptive therapy clinical trial utilizes less than the full
range of treatment options available. For example, prostate cancer
adaptive therapy sequentially administers Lupron and both
Lupron þ abiraterone, while ignoring no treatment or abiraterone
monotherapy. Similarly, the planned melanoma trial administers
no treatment alternating with both vemurafenib and cobimetinib.
The conceptual paradigms introduced here (cycles of tumor
evolution, evolutionary absorbing region, and evolutionary veloc-
ity) provide a path forward to reducing the complexity of
selecting between 2n treatment choices at every clinical decision
point.

Another trial, currently accruing patients with castrate-sensitive
prostate cancer (NCT03511196), attempts to infer underlying dynam-
ics of tumor subpopulations by comparing two clinical biomarkers
over time: PSA and testosterone levels. Patients with rising PSA levels
without a respective rise in testosterone may indicate an emergent
castrate-resistant population (TP). When this occurs, abiraterone is
administered to counter this resistant population while leaving the
serum testosterone unchanged to bolster the Tþ population. Even

without precise monitoring of underlying subpopulations, changes
may be inferred using evolutionary principles.

Especially when developed in collaboration with clinicians, evolu-
tionary models of cellular competition can provide clarity and power
despite their simplicity. As a first step, we have illustrated these three
adaptive paradigms in a specific case study (prostate cancer) for n¼ 2
drugs controlling m ¼ 3 phenotypes (testosterone producers, testos-
terone-dependent, testosterone-independent cells). These techniques
can be extended to any multidrug adaptive therapy setting. The first
step is to carefully choose competition parameters (i.e., the payoff
matrix) of each cell phenotype under consideration and draw the
dynamical phase portraits of possible evolutionary trajectories implies
by the set of competition parameters. The power of evolutionary game
theory is that the relative fitness of each phenotype is often easy to
determine, allowing for straightforward construction and analysis of
the model.

Each treatment will eventually fail due to resistance. The resistant
state is the absorbing stable state of tumor phenotypic composition
associated with continuous treatment. Example trajectories for a
given treatment can be plotted, predicting the timing to reach this
absorbing resistant state. When adding a second treatment in
sequence, an absorbing bounded region of phenotype space (Fig. 6)
can be drawn, which we term the evolutionary “absorbing region”
reachable with two or more treatments. This absorbing state space is
bounded by the evolutionary cycle that connects the stable state
points from each treatment (note: we consider points in the interior
of the simplex and the global equilibrium only). The absorbing
region may be a small region (i.e., Fig. 6B) or large (i.e., Fig. 6A).
Upon combining all treatments, the state space is expanded, also
leading to more options for cycles in new regions of the state space.
Intuition would indicate that new drugs should be introduced that
have “orthogonal” stable states—stable equilibria far from the
equilibria of existing drugs. These orthogonal drugs open up the
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treatment space, allowing for more options in choosing cycles
(Fig. 6D). The closeness of two stable states from two distinct
treatments will give an idea of the “orthogonality” of two treat-
ments, aiding treatment selection, the sequential ordering of treat-
ments, and the timing of switching between treatments.

It is also important to note that not treating still allows the tumor to
evolve. This no treatment case is often associated with slow evolution
due to low selection. During treatment holidays used to avoid resis-
tance to a first treatment, it may be wise to choose a faster (high
selection) second treatment that gives a similar resultant tumor
composition over the slow evolution of no treatment. Adaptive therapy
is a promising step toward ecologically inspired personalized medi-
cine. Optimizing multidrug adaptive therapy is not a straightforward
task, but mathematical models are a powerful abstraction of clinical

intuition, enabling the generation of new treatment schedules and
comparisons with standard of care.

As indicated above, continuous monitoring of evolving popula-
tions is important when designing treatment schedules to mitigate
the emergence of resistance. This monitoring is facilitated by
mathematical models of treatment response combined with puta-
tive biomarkers of tumor burden. Adaptive therapy has been
attempted clinically using proxy measurements for tumor volume
such as PSA for prostate, lactate dehydrogenase for melanoma,
thyroglobulin for differentiated thyroid cancer, or calcitonin in
patients with medullary thyroid cancer.

Parameterizing a mathematical model using a tumor burden bio-
marker is a cost-effective method of implementing multidrug adaptive
therapies in the clinic, as serial measurements of PSA and lactate
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dehydrogenase are relatively inexpensive. Monitoring burden biomar-
kers over time will indicate the efficacy of adaptive therapy, but it will
not necessarily elucidate the mechanism, and tumor biopsies may be
needed to directly measure tumor response to therapy. These blood
biomarkers are crude measurements of tumor burden, but there have
been many recent advances in reliable methods of monitoring tumor
evolution using circulating tumor DNA as an informative, inherently
specific, and highly sensitive biomarker of metastatic cancers (see
ref. 57). The concepts introduced in thismanuscript can also be applied
via more sophisticated methods of measuring or inferring tumor
subpopulations, as they become available.

Asmonitoringmethodsmature, somust methods of prediction and
quantification of evolution (26, 58, 59, 60). After-action reporting

utilizing mathematical models parameterized using retrospective
clinical data provides a clear opportunity to continuously update
resistance management strategies. This after-action reporting betters
understanding of the mechanisms of treatment failure, as well as
identifies improved strategies. These data demonstrate the feasibility of
evolutionary cycles (based on patient-specific parameterization),
which control the relapse of resistance. Without this cycling, patients
eventually relapse due to the emergence of resistance.

Disclosure of Potential Conflicts of Interest
J. Zhang is an employee/paid consultant for Bayer, Dendreon, Clovis Oncology,

AstraZeneca and has received speakers bureau honoraria from Sanofi and Merck. No
potential conflicts of interest were disclosed by the other authors.

A
No treatment Lupron Lupron + abiraterone

H
igh

Low
N

egative
P

ositive
0

B C

D E F

G H I

J K L

T+

T+ Velocity T+ Velocity T+ Velocity

TP Velocity

T− Velocity T− VelocityT− Velocity

TP Velocity

x
.Px

. +

x
. −

||x
.
||

TP Velocity

TP T−

T+

TP T−

T+

TP T−

T+

TP T−

T+

TP T−

T+

TP T−

T+

TP T−

T+

TP T−

T+

TP T−

T+

TP T−

T+

TP T−

T+

TP T−

Figure 7.

Evolutionary velocity before and during therapy. Columns show evolutionary velocity of simulations identical to Fig. 4 for no treatment, Lupron, and Lupron þ
abiraterone. A–C, Note that no treatment is characterized by mostly slow velocities (blue), while adding treatments increases velocities, except when approaching
evolutionary stable points (circles).D–L, Rows show subpopulation relative velocity for Tþ (D–F), TP (G–I), and T� (J–L). Adaptive therapy relies on the suppression
of the resistant population (T�) by the sensitive populations (Tþ, TP) during treatment holidays (first column). This is only possible in a certain subset of the state
space (blue, where T� velocity < 0). Velocities calculated by Eq. A (see Supplementary Information).

Towards Multidrug Adaptive Therapy

AACRJournals.org Cancer Res; 80(7) April 1, 2020 1587

on April 24, 2020. © 2020 American Association for Cancer Research. cancerres.aacrjournals.org Downloaded from 

Published OnlineFirst January 16, 2020; DOI: 10.1158/0008-5472.CAN-19-2669 

http://cancerres.aacrjournals.org/


Authors’ Contributions
Conception and design: J. West, R.A. Gatenby, J.S. Brown, A.R.A. Anderson
Development of methodology: J. West, J.S. Brown, P.K. Newton, A.R.A. Anderson
Acquisition of data (provided animals, acquired and managed patients, provided
facilities, etc.): J. Zhang
Analysis and interpretation of data (e.g., statistical analysis, biostatistics,
computational analysis): J. West, L. You, P.K. Newton, A.R.A. Anderson
Writing, review, and/or revision of themanuscript: J.West, J. Zhang, R.A. Gatenby,
J.S. Brown, P.K. Newton, A.R.A. Anderson
Administrative, technical, or material support (i.e., reporting or organizing data,
constructing databases): A.R.A. Anderson
Study supervision: A.R.A. Anderson

Acknowledgments
The authors gratefully acknowledge funding from the Physical Sciences Oncology

Network (PSON) at the NCI, U54CA193489 (to J. West, J.S. Brown, and A.R.A.

Anderson), the European Union's Horizon 2020 research and innovation program,
under the Marie Sklodowska-Curie grant agreement No. 690817 (L. You), and the
Jayne Koskinas Ted Giovanis (JKTG) Foundation for Health and Policy and the
Breast Cancer Research Foundation, private foundations committed to critical
funding of cancer research (to P.K. Newton).

The costs of publication of this article were defrayed in part by the
payment of page charges. This article must therefore be hereby marked
advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate
this fact.

Received August 29, 2019; revised December 11, 2019; accepted January 9, 2020;
published first January 16, 2020.

References
1. Dobzhansky T. Nothing in biology makes sense except in the light of evolution.

The American Biology Teacher 2013;75:87–91.
2. PortnerHO,Giomi F.Nothing in experimental biologymakes sense except in the

light of ecology and evolution – correspondence on J. Exp. Biol. 216, 2771-2782.
J Exp Biol 2013;216:4494–95.

3. Brown JS.WhyDarwinwould have loved evolutionary game theory. Proc. R. Soc.
B 2016;283:20160847.

4. Pienta KJ, McGregor N, Axelrod R, Axelrod DE. Ecological therapy for cancer:
defining tumors using an ecosystem paradigm suggests new opportunities for
novel cancer treatments. Transl Oncol 2008;1:158–64.

5. Merlo LM, Pepper JW, Reid BJ, Maley CC. Cancer as an evolutionary and
ecological process. Nat Rev Cancer 2006; 6:924.

6. Attolini CSO, Michor F. Evolutionary theory of cancer. Ann N YAcad Sci 2009;
1168:23–51.

7. Vogelstein B, Kinzler KW. The genetic basis of human cancer. New York, NY:
McGraw-Hill; 2002.

8. Tomlinson IPM, Novelli MR, Bodmer WF. The mutation rate and cancer.
Proc Natl Acad Sci U S A 1996;93:14800–03.

9. Greaves M, Maley CC. Clonal evolution in cancer. Nature 2012;481:306.
10. Nowell PC. The clonal evolution of tumor cell populations. Science 1976;194:

23–28.
11. Bozic I, Reiter JG, Allen B, Antal T, Chatterjee K, Shah P, et al. Evolutionary

dynamics of cancer in response to targeted combination therapy. Elife 2013;2:
e00747.

12. Bozic I, Nowak MA. Resisting resistance. Ann Rev Cancer Biol 2017;1:203–21.
13. Gallaher JA, Enriquez-Navas PM, LuddyKA,Gatenby RA,AndersonAR. Spatial

heterogeneity and evolutionary dynamics modulate time to recurrence in
continuous and adaptive cancer therapies. Cancer Res 2018;78:2127–39.

14. West J,MaY,Newton PK.Capitalizing on competition: an evolutionarymodel of
competitive release in metastatic castration resistant prostate cancer treatment.
J Theor Biol 2018;455:249–60.

15. Perry MC. The chemotherapy source book. Philadelphia, PA: Lippincott
Williams & Wilkins; 2008.

16. Gillies RJ., Verduzco D, Gatenby RA. Evolutionary dynamics of carcinogenesis
and why targeted therapy does not work. Nat Rev Cancer 2012;12:487.

17. Alfonso JC, Jagiella N, N�u~nez L, Herrero MA, Drasdo D. Estimating dose pain-
ting effects in radiotherapy: a mathematical model. PLoS One 2014;9:e89380.

18. Gerlinger M, Swanton C. How Darwinian models inform therapeutic failure
initiated by clonal heterogeneity in cancer medicine. Br J Cancer 2010;103:1139.

19. Goldie J, Coldman A. A mathematic model for relating the drug sensitivity of
tumors to their spontaneous mutation rate. Cancer Treat Rep 1979;63:1727–33.

20. Gatenby RA, Silva AS, Gillies RJ, Frieden BR.Adaptive therapy. Cancer Res 2009;
69:4894–903.

21. Aktipis CA, Kwan VS, Johnson KA, Neuberg SL, Maley CC. Overlooking
evolution: a systematic analysis of cancer relapse and therapeutic resistance
research. PLoS One 2011;6:e26100.

22. Beckman R, SchemmarmG, Yeang C. Impact of genetic dynamics and single-cell
heterogeneity on the development of personalized non-standard medicine
strategies for cancer. Proc Natl Acad Sci U S A 2012;109:14586–91.

23. Chmielecki J, Foo J, Oxnard GR, Hutchinson K, Ohashi K, Somwar R, et al.
Optimization of dosing for EGFR-mutant non–small cell lung cancer with
evolutionary cancer modeling. Sci Transl Med 2011;3:90ra59.

24. Enriquez-Navas PM,Wojtkowiak JW, Gatenby RA. Application of evolutionary
principles to cancer therapy. Cancer Res 2015;75: 4675–80.

25. KamY,Das T,Minton S, GatenbyRA. Evolutionary strategy for systemic therapy
of metastatic breast cancer: balancing response with suppression of resistance.
Women's Health 2014;10:423–30.

26. Zhang J, Cunningham JJ, Brown JS, Gatenby RA. Integrating evolutionary
dynamics into treatment of metastatic castrate-resistant prostate cancer.
Nat Commun 2017;8:1816.

27. Bacevic K, Noble R, Soffar A, Ammar OW, Boszonyik B, Prieto S, et al. Spatial
competition constrains resistance to targeted cancer therapy. Nat Commun
2017; 8:1995.

28. Hansen E, Woods RJ, Read AF. How to use a chemotherapeutic agent when
resistance to it threatens the patient. PLoS Biol 2017;15:e2001110.

29. Yu H, Sima C, Feldman D, Liu L, Vaitheesvaran B, Cross J, et al. Phase 1
study of twice weekly pulse dose and daily low-dose erlotinib as initial
treatment for patients with egfr-mutant lung cancers. Ann Oncol 2017;28:
278–84.

30. Basanta D, Anderson AR. Homeostasis back and forth: an ecoevolutionary
perspective of cancer. Cold Spring Harb Perspect Med 2017;7. DOI: 10.1101/
cshperspect.a028332.

31. Maley CC, Reid BJ, Forrest S. Cancer prevention strategies that address the
evolutionary dynamics of neoplastic cells: simulating benign cell boosters and
selection for chemosensitivity. Cancer Epidemiol Biomarkers Prev 2004;13:
1375–84.

32. Gatenby RA, Brown J, Vincent T. Lessons from applied ecology: cancer control
using an evolutionary double bind. Cancer Res 2009;69:7499–502.

33. Basanta D, Gatenby RA, Anderson AR. Exploiting evolution to treat drug
resistance: combination therapy and the double bind. Mol Pharm 2012;9:
914–21.

34. Basanta D, Anderson AR. Exploiting ecological principles to better understand
cancer progression and treatment. Interface Focus 2013;3:20130020.

35. Foo J, Michor F. Evolution of resistance to targeted anti-cancer therapies during
continuous and pulsed administration strategies. PLoS Comput Biol 2009;5:
e1000557.

36. West JB, Dinh MN, Brown JS, Zhang J, Anderson AR, Gatenby RA. Multidrug
cancer therapy in metastatic castrate-resistant prostate cancer: an evolution-
based strategy. Clin Cancer Res 2019;25:4413–21.

37. Fischer A, Vazquez-Garcia I, Mustonen V. The value of monitoring to control
evolving populations. Proc Natl Acad Sci U S A 2015;112:1007–12.

38. Maley CC, Aktipis A, Graham TA, Sottoriva A, Boddy AM, Janiszewska M, et al.
Classifying the evolutionary and ecological features of neoplasms. Nat Rev
Cancer 2017;17:605–19.

39. Axelrod R, Axelrod DE, Pienta KJ. Evolution of cooperation among tumor cells.
Proc Natl Acad Sci U S A 2006;103:13474–79.

40. Hummert S, Bohl K, Basanta D, Deutsch A, Werner S, Theißen G, et. al.
Evolutionary game theory: cells as players. Mol Biosyst 2014;10:3044–65.

West et al.

Cancer Res; 80(7) April 1, 2020 CANCER RESEARCH1588

on April 24, 2020. © 2020 American Association for Cancer Research. cancerres.aacrjournals.org Downloaded from 

Published OnlineFirst January 16, 2020; DOI: 10.1158/0008-5472.CAN-19-2669 

http://Cancer Epidemiol Biomarkers Prev
http://cancerres.aacrjournals.org/


41. Sta�nkov�a K, Brown JS, Dalton WS, Gatenby RA. Optimizing cancer treatment
using game theory: a review. JAMA Oncol 2019;5:96–103.

42. West J, Robertson-Tessi M, Luddy K, Park DS, Williamson DF, Harmon
C., et al. The immune checkpoint kick start: optimization of neoadjuvant
combination therapy using game theory. JCO Clin Cancer Inform 2019;
3:1–12.

43. Basanta D, Simon M, Hatzikirou H, Deutsch A. Evolutionary game theory
elucidates the role of glycolysis in glioma progression and invasion. Cell Prolif
2008;41:980–7.

44. Basanta D, Hatzikirou H, Deutsch A. Studying the emergence of invasiveness in
tumours using game theory. Eur Phys J B 2008;63:393–7.

45. Kaznatcheev A, Peacock J, Basanta D, Marusyk A, Scott JG. Fibroblasts and
alectinib switch the evolutionary games played by non-small cell lung cancer.
Nat Ecol Evol 2019;3:450.

46. You L, Brown JS, Thuijsman F, Cunningham JJ, Gatenby RA, Zhang J, et al.
Spatial vs. non-spatial eco-evolutionary dynamics in a tumor growth model.
J Theor Biol 2017; 435:78–97.

47. Vincent TL, Brown JS. Evolutionary game theory, natural selection, and
Darwinian dynamics. Cambridge, UK: Cambridge University Press; 2005.

48. Morken JD, Packer A, Everett RA, Nagy JD, Kuang Y. Mechanisms of
resistance to intermittent androgen deprivation in patients with prostate
cancer identified by a novel computational method. Cancer Res 2014;74:
3673–83.

49. Stankova K, Brown JS, Dalton WS, Gatenby RA. Optimizing cancer treatment
using game theory: A review. JAMA Oncol 2019;5:96–103.

50. Hemingway J, Vontas J, Poupardin R, Raman J, Lines J, Schwabe C, et al.
Country-level operational implementation of the global plan for insec-
ticide resistance management. Proc Natl Acad Sci U S A 2013;110:
9397–402.

51. Mnzava AP, Knox TB, Temu EA, Trett A, Fornadel C, Hemingway J, et al.
Implementation of the global plan for insecticide resistance management
in malaria vectors: progress, challenges and the way forward. Malar J 2015;
14:173.

52. Ross MC, Smith KK, Smith A, Ryan R, Webb L, Humphreys S. Analysis of after-
action reporting by deployed nurses. Mil Med 2008;173:210–6.

53. Singleton CM, DeBastiani S, Rose D, Kahn EB. An analysis of root cause
identification and continuous quality improvement in public health h1n1
after-action reports. J Public Health Manag Pract 2014;20:197–204.

54. Newton PK, Ma Y. Nonlinear adaptive control of competitive release and
chemotherapeutic resistance. Physical Review E 2019;9:022404.

55. Goldman A, Majumder B, Dhawan A, Ravi S, Goldman D, Kohandel M, et al.
Temporally sequenced anticancer drugs overcome adaptive resistance by target-
ing a vulnerable chemotherapy-induced phenotypic transition. Nat Commun
2015;6:6139.

56. Chisholm RH, Lorenzi T, Lorz A, Larsen AK, Almeida L, Escargueil A, et al.
Emergence of drug tolerance in cancer cell populations: an evolutionary outcome
of selection, non-genetic instability and stress-induced adaptation. Cancer Res
2015;75:930–9

57. Dawson SJ, Tsui DW,MurtazaM, Biggs H, RuedaOM, Chin SF, et al. Analysis of
circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med 2013;
368:1199–209.

58. Liao D, Estevez-Salmeron L, Tlsty TD. Conceptualizing a tool to optimize
therapy based on dynamic heterogeneity. Phys Biol 2012;9:065005.

59. LassigM,MustonenV,Walczak AM. Predicting evolution. Nat Ecol Evol 2017;1:
0077.

60. Cunningham JJ, Brown JS, Gatenby RA, Stankova K. Optimal control to develop
therapeutic strategies for metastatic castrate resistant prostate cancer. J Theor
Biol 2018;459:67–78.

AACRJournals.org Cancer Res; 80(7) April 1, 2020 1589

Towards Multidrug Adaptive Therapy

on April 24, 2020. © 2020 American Association for Cancer Research. cancerres.aacrjournals.org Downloaded from 

Published OnlineFirst January 16, 2020; DOI: 10.1158/0008-5472.CAN-19-2669 

http://JCO Clin Cancer Inform
http://Nat Ecol Evol
http://cancerres.aacrjournals.org/


2020;80:1578-1589. Published OnlineFirst January 16, 2020.Cancer Res 
  
Jeffrey West, Li You, Jingsong Zhang, et al. 
  
Towards Multidrug Adaptive Therapy

  
Updated version

  
 10.1158/0008-5472.CAN-19-2669doi:

Access the most recent version of this article at:

  
Material

Supplementary

  
 http://cancerres.aacrjournals.org/content/suppl/2020/01/16/0008-5472.CAN-19-2669.DC1

Access the most recent supplemental material at:

  
  

  
  

  
Cited articles

  
 http://cancerres.aacrjournals.org/content/80/7/1578.full#ref-list-1

This article cites 56 articles, 16 of which you can access for free at:

  
  

  
E-mail alerts  related to this article or journal.Sign up to receive free email-alerts

  
Subscriptions

Reprints and 

  
.pubs@aacr.org

To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at

  
Permissions

  
Rightslink site. 
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC)

.http://cancerres.aacrjournals.org/content/80/7/1578
To request permission to re-use all or part of this article, use this link

on April 24, 2020. © 2020 American Association for Cancer Research. cancerres.aacrjournals.org Downloaded from 

Published OnlineFirst January 16, 2020; DOI: 10.1158/0008-5472.CAN-19-2669 

http://cancerres.aacrjournals.org/lookup/doi/10.1158/0008-5472.CAN-19-2669
http://cancerres.aacrjournals.org/content/suppl/2020/01/16/0008-5472.CAN-19-2669.DC1
http://cancerres.aacrjournals.org/content/80/7/1578.full#ref-list-1
http://cancerres.aacrjournals.org/cgi/alerts
mailto:pubs@aacr.org
http://cancerres.aacrjournals.org/content/80/7/1578
http://cancerres.aacrjournals.org/


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings true
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 0
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ([Based on '[High Quality Print]'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames false
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides true
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        18
        18
        18
        18
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 18
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [792.000 1224.000]
>> setpagedevice


