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Abstract—Human mobility has been studied extensively in
various biomedical contexts with applications in clinical reha-
bilitation, disease diagnosis, health risk prognosis, and general
performance assessments. In this paper, we present ATOM-
HP (Analytical Technologies to Objectively Measure Human
Performance) Kinect: a system to objectively quantify human
performance using the Microsoft Kinect as a single camera sensor
to capture human mobility. We explore the viability of this non-
invasive performance assessment system by studying a cohort
of cancer patients undergoing various therapy regimens who
are assigned a performance score based on a qualitative clinical
test. The ATOM-HP Kinect is a clinically usable system which
consists of tools for Kinect, clinical data collection, data quality
validation, and mobility feature extraction, which can be used for
downstream analysis of performance. Preliminary results based
on the clinical case study indicate that ATOM-HP Kinect can
quantify changes in kinematic parameters, and that these features
are correlated with clinically measured risk factors which could
be used for early prediction of diseases, or making decision on
treatment modification.

Index Terms—Human mobililty, feature extraction, human
performance, motion capture, Microsoft Kinect, healthcare, can-
cer

I. INTRODUCTION

Assessment of human mobility performance is necessary in

many real-world contexts, such as sports analytics, physical

therapy, early diagnosis of disease, and military preparedness.

Observing human locomotion can provide various important

insights about: the process of aging [1], [2], evolution in

musculo-skeletal disorders [3], personal lifestyle [4], sports

performance [5], [6], rehabilitation [7], prediction and corre-

lation with diseases risk [2], [8], [9], and treatment decisions

[3], [10].

In practice, human mobility is usually assessed based on

observation of experts (e.g. physicians, coaches, etc.) directly,

or specialized equipment providing kinematic or kinetic mea-

surements. However, these methods may be limited in some

cases due to human bias, or high cost. For instance, in the

practice of oncology, cancer patients’ performance is assessed

by physicians, using standardized scoring systems. Limitations

of these scoring scales have been discussed in [11]–[13], and

include lack of reproducibility, difficulty to audit and biases,

and can lead to increased risks of death as reported by [14].

∗† The first two authors contributed equally to this work.

In this paper, we present ATOM-HP (Analytical Technolo-

gies to Objectively Measure Human Performance) Kinect -

a system to objectively quantify human performance. The

ATOM-HP Kinect is a clinically viable system which uses

a Microsoft Kinect camera sensor to: i. capture a person’s

mobility, ii. visualize the human skeletal movement, iii. au-

tomatically extract kinematic features from mobility data.

The data extracted and pre-processed by ATOM-HP Kinect

is suitable for downstream analysis of human performance.

Microsoft Kinect’s usability has been evaluated in various

motion capture (MoCap) systems for different computer vision

applications, such as object detection [15], human pose, and

motion analysis to perform action recognition [16]. Although

the limitations of Kinect based biomechanical assessments

have been well documented in gait analysis [17], the cost-

benefit ratio of the non-invasive, albeit less accurate, Kinect

motion data is still promising. Here, we demonstrate ATOM-

HP Kinect in a clinical case study where the system has

been setup in four medical centers to analyze the effect of

therapy (e.g. chemotherapy, radiotherapy, imunotherapy) on

cancer patients’ fitness.

The remainder of this paper is organized as follows: in Sec-

tion II, we present the ATOM-HP Kinect system design, and

description of the system components’ functionality, Section

III provides details of how ATOM-HP Kinect is employed, and

used in a clinical setting case study with preliminary analysis

results.

II. ATOM-HP KINECT OVERVIEW

The ATOM-HP Kinect system (Figure. 1) includes 4 com-

ponents: (1) the Microsoft (MS) Kinect camera sensor and

Skeleton verification tool, (2) Klog tool connected to a secured

server with secured File Transfer Protocol (FTP) connection,

(3) data export, and (4) feature extraction and visualization.

The workflow of ATOM-HP Kinect is described as follows.

A single MS Kinect camera sensor is setup to capture the

locomotion of a target subject’s entire body. The camera sensor

is connected to a laptop that runs the skeleton verification tool.

The skeleton verification tool checks whether the captured

movement follows the prescribed task standards. For instance,

for the timed Get-up-and-go test [18] which is widely used in

clinical settings to quantify functional mobility over time, the

tool is able to validate if a patient starts the task sitting, then
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Fig. 1: The ATOM-HP Kinect System consists of four main components: (1) MS Kinect camera sensor and skeleton verification

tool, (2) Kinect data log (Klog) tool, and a secured server with secured FTP connection, (3) data extraction, and (4) analysis:

feature extraction, and visualization components.

gets up, moves forward towards the camera, and returns to

the sitting position. After verification, the recorded movement

is saved as a binary file which is uploaded to the ATOM-

HP server using a secured FTP connection. ATOM-HP Kinect

also includes a Klog tool that allows users to add descriptive

information of the recorded movement, such as: subject’s

information, date and time, notes on the recording files, etc.

The Klog information is stored in a secured database on the

ATOM-HP server. Additionally, the recorded binary file is

then exported into a comma-separate values (CSV) format that

contains the time series of 25 human joints’ movement data.

For the data exploitation, we perform feature extraction, and

also, visualize the skeleton data. The details of each ATOM-

HP Kinect component are provided in the following sections.

A. System Setup & Deployment

The MS Kinect is a motion sensing device primarily used

for gaming, and is adapted for clinical use here by a hardware

solution which secures the Kinect to a tripod which in turn

is mounted on a wheeled cart. The cart is further used to

support the laptop, and external hard drives (HDs) which are

required to operate the Kinect Studio, and other software used.

To maintain reliability of experiments, clinical coordinators

performing the experiments are given a tape measure and

painter’s tape to verify the distance between the patient’s

starting position and the camera. Furthermore, instructions are

documented in a manual which is also provided to the clinical

coordinators and other ATOM-HP Kinect operators.

B. Data Quality Verification & Storage

Raw Kinect files are large binary proprietary format files

containing Kinect raw sensor data. We provide external HD

for backup, and set up a secure File Transfer Protocol (FTP)

to allow study coordinators to upload the files at the end of

day as the files are too large for immediate upload during,

or immediately after acquisition. Two tools are provided

for data acquisition and monitoring. The first tool, ”Kinect

Verifier” (Figure 2a), allows the study coordinator or operator

to visually monitor the quality of the recording, and generates

(a) Kinect Verifier tool

(b) Klog tool

Fig. 2: Software developed for clinics in ATOM-HP KINECT

a summary of the recording quality (e.g., whether the subject

is at the correct start/end location). The second tool ”Klog”

(Figure 2b), is used to manage metadata (e.g., subject id, raw

Kinect filename, size, checksum, document recording issues)

that is written on the data collection server and made available

on a dashboard to monitor data acquisition.
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Fig. 3: 25 joints of MS Kinect human skeleton. The left, and

right side of skeleton are swapped as the same with how MS

Kinect proceeds with human bodies.

C. Data Export

In order to employ downstream machine learning algorithms

and data analysis,the raw data has to be extracted and con-

verted to a usable format. The MS Kinect raw files are large

binary format files containing a variety of sensors streaming

data (depth, RGB, Infrared). We use the MS Kinect software

development kit (SDK) to extract skeletal movement data

for further analysis. The extracted data is a set of 25 three-

dimensional time series corresponding to the displacements of

25 body joints shown in Figure 3. We build the Kinect Skeleton

Extractor tools, and use it in conjunction with the metadata

from Klog to automatically generate comma-separated values

(CSV) format files of exported data containing human skeletal

movement of patients, and corresponding filenames following

a standard naming convention. Note that this is needed to

avoid clerical naming errors between MS Kinect recordings,

and Klog metadata. Additionally, tools to visualize these data

are also developed to facilitate post-processing, and analysis.

D. Feature Extraction & Visualization

Biomechanical characterization of motion is imperative for

understanding health and performance status, and the Kinect

system has been used to perform gait analysis using rotational

displacements [17], joint movement analysis for rehabilitation

applications [19], and upper extremity analysis using joint

positions and angles [20]. Consequently, we focus on ex-

tracting a comprehensive list of kinematic features to obtain

a complete signal of the biomechanical performance, and to

allow unbiased downstream mining. After three-dimensional

displacement time series of 25 skeletal joints are extracted

from the MS recordings, these raw displacements (�xi, �yi, �zi)
are used to extract further dynamical features.

TABLE I: Extracted Features

Feature Formula
Displacement (�xi, �yi, �zi) , i ∈ [1, 25]

Translational velocity
(
�̇xi, �̇yi, �̇zi

)
, i ∈ [1, 25]

Translational acceleration
(
�̈xi, �̈yi, �̈zi

)
, i ∈ [1, 25]

Rotational displacement �θij = tan−1(‖�ai ×�bj‖/�ai ·�bj)
Rotational velocity �̇θij

Rotational acceleration �̈θij
Specific potential energy gΔ�zi,Δ�zi = �zi − �zi(t = t1)

, i ∈ [1, 25]

Specific kinetic energy 1
2
�vi · �vi, �vi =

√
�xT
i �xi + �yTi �yi + �zTi �zi

, i ∈ [1, 25]

The extracted features (Table I) include: translational kine-

matics, rotational kinematics, potential energies, kinetic en-

ergies, flexion-extension angles, and anatomical plane angles

(e.g. angle between torso, and sagittal axis). Velocities, and

accelerations are calculated using the mean-value theorem,

and angles are computed using directional vectors, and the

inverse tangent formula (θ = tan−1(‖�a × �b‖/�a · �b)). For

example, to compute sagittal angle, the directional vector �a
points from spine base to the forward horizontal direction,

and the directional vector �b originates at the spine base and

points to the spine shoulder joint. While the features in Table

I are time series features, general statistical properties of

each time series (e.g. min, max, standard deviation, etc.),

and task completion times can also be extracted. The ATOM-

HP Kinect supplements displacement features with additional

biomechanical variables which can then be studied using

machine learning and statistical methods. We hypothesize that

these biomechanical features can explain qualitative perfor-

mance assessments, and explore the ability of the ATOM-HP

Kinect system to test this assumption in a preliminary clinical

case study.

III. DEMONSTRATION

A. Case Study

The ATOM-HP initiative consists of two experimental arms:

a clinical cohort comprised of 60 prospective patients from

four medical centers (Los Angeles County + University of

Southern California Medical Center, USC Norris Comprehen-

sive Cancer Center, and Hoag Hospital Newport Beach), and

a prospective military cohort of 60 war-fighters. The ATOM-

HP Kinect has been developed to analyze the effect of therapy

(e.g. chemotherapy, radiotherapy, immunotherapy) on cancer

patient fitness in the clinical setting, and to detect performance

changes of war-fighters over the course of physically demand-

ing tasks.

We focus our demonstration on the preliminary results

from the clinical application of ATOM-HP Kinect where

oncologists assign treatment regimens based, in part, on their

qualitative assessment of a patient’s fitness during supervised

tasks performed at the clinic. Each patient is assigned an
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Eastern Cooperative Oncology Group (ECOG) score( [21],

[22]), which categorizes patients into 6 fitness groups (0:

fully active, 1: ambulatory, 2: no work activities, 3: partially

confined to bed, 4: totally confined to bed, 5: deceased). Due

to the qualitative nature of ECOG score assignment (Table

II) in current medical practice, the ATOM-HP Kinect has

been designed to quantify the performance of the clinically

supervised tasks, with the ultimate goal of linking task perfor-

mance to quantitative measures of fatigue, and fitness. Here,

we demonstrate ATOM-HP Kinect being employed in the

clinical setting to track the performance of patients performing

a walking task. Specifically, the video demonstration 1 shows a

patient performing a task which consists of the patient walking

towards a target approximately 8 ft from the starting point

before returning back to the original position. Two examples

of extracted features are plotted alongside the animated patient

skeletal data.

TABLE II: ECOG scale [22]

Grade Performance Status
0 Fully active, able to carry on all predisease activities

without restriction
1 Restricted in physically strenuous activity but am-

bulatory and able to carry out work of a light
or sedentary nature. For example, light housework,
office work.

2 Ambulatory and capable of all self care but unable
to carry out any work activities. Up and about more
than 50% of waking hours.

3 Capable of only limited self-care, confined to bed or
chair 50% or more of waking hours.

4 Completely disabled. Cannot carry on any self-care.
Totally confined to bed or chair.

5 Dead

B. Post-processing

The system is able to capture the movement of 25 anatomi-

cal joints over the course of the task, and the corresponding 3-

dimensional (x,y,z) time series are de-identified, and stored in

the database for downstream analysis. The mean frame-rate of

the Kinect motion captures is 24.1 fps (σ = 5.99), calculated

from 56 motion recordings of 28 patients performing the

walking task. Task recordings are segmented manually to

capture only the active walking portion of the task, and

alterations in the Kinect camera orientation due to human error

are overcome by performing a coordinate transformation such

that each repetition is performed on a level plane.

C. System Reliability

To test the reliability of the ATOM-HP Kinect system, we

compare repetitions of the task performed on the same clinical

visit (before therapy), and repetitions performed across visits

(visit 1: before therapy, visit 2: after therapy). Similarities

between time series extracted from a pair of repetitions is

calculated using the Dynamic Time Warping (DTW) distance

[23]. Figure 4 shows the DTW distances for five types of fea-

tures between repetitions performed on the same visit (green),

1https://www.dropbox.com/s/3dpg1rgyxj55itt/P9 V1 V2 T2.avi?dl=0

and between repetitions performed across visits (red) for a

subset of n = 10 patients. Only the spine base acceleration

(Figure 4A), kinetic energy (Figure 4B), and potential energy

(Figure 4C) have been shown because the spine base time

series are comparatively less noisy due to the stable nature

of this anatomical joint. The standard deviation in the DTW

distances between same day repetitions are less than those

between across visit repetitions, particularly for the average of

all 3D displacements for the 25 anatomical sites (Figure 4E).

This is a validation of the reliability of the ATOM-HP Kinect

because the same day repetitions represent a patient with a

fixed fitness and fatigue level; therefore, the DTW distance

should be lower for repetitions performed during the same

clinical visit.

D. Performance Features

The ATOM-HP Kinect system can be used to extract a

general list of features (Table I); however, the importance of

these features depends on the application. For instance, in the

clinical setting described above, patients undergoing therapy

may experience a change in weight. The change in weight

between visits can be correlated to the DTW distance between

each feature extracted from repetitions performed on the first

(before therapy), and second (after therapy) visit to identify

a subset of most important features. For a set of n = 26
patients, the Pearson correlation coefficient between percent

change in weight, and the five features shown in Figure 4

are r = 0.250, 0.247, 0.1167, 0.365, 0.0513 for spine base

acceleration, spine base kinetic energy, spine base potential

energy, sagittal angle, and average of all 3D displacements re-

spectively. Therefore, ATOM-HP Kinect can be used to explain

existing clinical measurements, and the system also provides

an intuitive feature selection process in the clinical setting due

to the biomechanical nature of the extracted features.

Furthermore, we correlate for n = 25 patients (Figure 5)

the same set of sample features with changes in physician

assigned ECOG scores assigned during visits before and after

therapy. Patients whose ECOG score decreased in the visit

after chemotherapy (ΔECOG = −1, green) have improved

fitness, those whose ECOG scores stay the same across visits

(ΔECOG = 0, gray) have no discernible change in perfor-

mance, and those whose ECOG scores increase across visits

(ΔECOG = −1, red) are considered to have deteriorating

fitness. These three patient performance patterns may be

learned from the extracted features as shown in Figure 5,

as the preliminary results show a relation between change

in performance status and change in biomechanical features

before, and after therapy.

IV. CONCLUSION

We demonstrate ATOM-HP Kinect, an integrative tool based

on a 3-D camera sensor for capturing, visualizing, and extract-

ing kinematic features for the purpose of analyzing human

motion in a clinical environment. A case study based on

preliminary clinical data from the ATOM-HP initiative shows

the ability of the system to extract features, and the potential
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of these features in describing other clinical measurements

to quantify patients’ performance under therapy. The ATOM-

HP Kinect offers a non-invasive method to measure the kine-

matics required for the biomechanical description of motion

and can reliably detect changes in biomechanical features,

therefore it is suitable for a variety of applications. Particularly,

the ATOM-HP Kinect system has been successfully used

by clinical staff without the direct assistance and oversight

of engineers or additional personnel, therefore the system

offers a promising data collection pipeline for quantitative

clinical assessments. Challenges in implementing ATOM-HP

Kinect based clinical performance assessments include: the

lower accuracy of displacements from the Microsoft Kinect

[17], unavailability of appropriate clinical cohorts with labeled

conditions to train models, network limitations in transferring

large raw Kinect recordings from point of collection to storage

databases, and lack of existing work correlating clinical tasks

to existing measures of performance, e.g. ECOG scores. Future

work will focus on further testing the system and analyz-

ing clinical and military cohort data collected using the the

ATOM-HP Kinect system.
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