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Abstract We investigate the nonlinear stability of the icosahedral relative equilib-
rium configuration of point vortices on a sphere. The relative equilibrium problem is
formulated as a problem of finding the nullspace of the configuration matrix that
encodes the geometry of the icosahedron, as in Jamaloodeen and Newton (Proc.
Royal Soc. A, Math. Phys. Eng. Sci. 462(2075):3277, 2006). The seven-dimensional
nullspace of the configuration matrix, A, associated with the icosahedral geometry
gives rise to a basis set of vortex strengths for which the icosahedron stays in relative
formation, and we use these values to form the augmented Hamiltonian governing the
stability. We choose the basis set made up of (i) one element with equal strength vor-
tices on every vertex of the icosahedron (the uniform icosahedron); (ii) six elements
made up of equal and opposite antipodal pairs. We start by proving nonlinear stability
of the antipodal vortex pair (by direct methods). Following the methods laid out in
Simo et al. (Arch. Ration. Mech. Anal. 115(1):15–59, 1991) and Pekarsky and Mars-
den (J. Math. Phys. 39(11):5894–5907, 1998) and more generally in Marsden and
Ratiu (Introduction to Mechanics and Symmetry, 1999), we then combine our knowl-
edge of the nullspace structure of A with the structure of the underlying Hamiltonian,
and analyze the stability of the icosahedron using the energy-momentum method. Be-
cause the parameter space is large, we focus on the physically motivated and impor-
tant case obtained by combining the basis elements into (i) the uniform icosahedron;
(ii) a von Kármán vortex street configuration of equal and opposite staggered, evenly
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spaced latitudinal rows equidistant from the equator (Chamoun et al. in Phys. Fluids
21:116603, 2009), and (iii) the North Pole–South Pole equal and opposite vortex pair.
Stability boundaries in a three-parameter space are calculated for linear combinations
of these grouped basis configurations.
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1 Introduction to the Equations of Motion

Consider the system of N point vortices on a spherical shell of ideal incompressible
fluid. Each point vortex can occupy any position on the sphere except positions of
the other point vortices. Thus, the phase space of the system can be described as N

copies of 2-spheres without points xi = xj ,1 ≤ i < j ≤ N :

P = {
(x1, x2, . . . , xN) ∈ S2 × S2 × · · · × S2

∣
∣xi �= xj , i �= j

}
.

The equations of motion of N point vortices take the following form (see Bogo-
molov 1977; Kimura and Okamoto 1987; Newton 2001):

sin θi φ̇i = − 1

4πr2

N∑

j=1,i �=j

Γj

κij

1 − cosγij

,

θ̇i = − 1

4πr2

N∑

j=1,i �=j

Γj

sin θj sin(φi − φj )

1 − cosγij

,

(1.1)

where (φi, θi) are the spherical coordinates of the ith point vortex, r is the radius
of a sphere, γij is the central angle between point vortices (cosγij = cos θi cos θ ′

j +
sin θi sin θj cos(φi − φj )), and κij = cos θi sin θj cos (φi − φj ) − sin θi cos θj .

The Hamiltonian structure behind (1.1) is given by

Hs = − 1

4πr2

∑

i<j

ΓiΓj ln lij ,

pi = √|Γi | cos θi, qi = sign(Γi)
√|Γi |φi,

ṗi = −∂Hs

∂qi

, q̇i = ∂Hs

∂pi

,

(1.2)

where l2
ij = (xi − xj )

2 = 2r2(1 − cosγij ).
As we can see from the form of canonical variables, it is useful to rewrite the

Hamiltonian in cylindrical coordinates z = r cos θ,φ = φ:

Hs = − 1

4πr2

∑

i<j

ΓiΓj ln
[
2
(

1 − zizj −
√

r2 − z2
i

√
r2 − z2

j cos(φi − φj )
)]

. (1.3)
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Since both spherical and cylindrical coordinates are singular at the poles, the mo-
tion in their vicinity is best described using cartesian coordinates. The Hamiltonian
in this mixed chart can be represented as

Hm = − 1

4πr2

(
∑

1≤i<j≤N

ΓiΓj ln
[
2
(

1 − zizj −
√

r2 − z2
i

√
r2 − z2

j cos(φi − φj )
)]

+
i=N∑

i=1

ΓiΓs ln
[
2
(

1 −
√

r2 − z2
i (xs cosφi + ys sinφi) − zszi

)]

+
i=N∑

i=1

ΓiΓn ln
[
2
(

1 −
√

r2 − z2
i (xn cosφi + yn sinφi) − znzi

)]

+ ΓsΓn ln
[
2(1 − xsxn − ysyn − zszn)

]
)

, (1.4)

where (xs, ys, zs), (xn, yn, zn) are coordinates of point vortices in the vicinity of the
South and North poles, respectively, and Γs,Γn their intensities. Then, the equations
of motion of the point vortices near the poles can be written as

ẋs = − zs

Γs

∂Hm

∂ys

, ẏs = zs

Γs

∂Hm

∂xs

,

ẋn = − zn

Γn

∂Hm

∂yn

, ẏn = zn

Γn

∂Hm

∂xn

.

Notice that zn and zs are not independent variables; they are functions of xs, ys, xn, yn:

zs = −
√

r2 − x2
s − y2

s ,

zn =
√

r2 − x2
n − y2

n.

If we embed the sphere into R
3 and use vectors xi ,1 ≤ i ≤ N to represent the

positions of the point vortices, the equations of motion become (see Newton 2001):

ẋi =
N∑

j=1,j �=i

Γj

2πr

xj × xi

(xi − xj )2
,

‖xi‖2 = r2, ∀0 ≤ i ≤ N.

(1.5)

It is shown in Jamaloodeen and Newton (2006) that the equations of motion can be
reduced to equations for the inter-vortical distances lij = |xi − xj |2,1 ≤ i < j ≤ N .
To obtain this form of the equations, subtract the equation of motion of the ith from
the j th vortex, and dot multiply the difference by (xi − xj ). This gives
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(ẋi − ẋj ) · (xi − xj )

=
N∑

k=1,k �=i,k �=j

Γk

2πr

[
(xk × xi ) · (xi − xj )

(xi − xk)2
− (xk × xj ) · (xi − xj )

(xj − xk)2

]

+ Γj

2πr

(xj × xi ) · (xi − xj )

(xi − xj )2
− Γi

2πr

(xi × xj ) · (xi − xj )

(xj − xi )2

=
N∑

k=1,k �=i,k �=j

Γk

2πr

[
xi · xj × xk

(xj − xk)2
− xi · xj × xk

(xi − xk)2

]

=
N∑

k=1,k �=i,k �=j

Γk

2πr

[
xi · xj × xk

(xj − xk)2
− xi · xj × xk

(xi − xk)2

]
.

Since
dl2ij
dt

= 2(ẋi − ẋj ) · (xi − xj ), then

dl2
ij

dt
=

N∑

k=1,k �=i,k �=j

ΓkVijk

πr

(
1

l2
jk

− 1

l2
ik

)
, (1.6)

where Vijk = xi ·xj ×xk . These equations depend only on l2
ij and describe the relative

motion of point vortices on a sphere.
Since the Hamiltonian depends only on quantities invariant under spherical rota-

tions (l2
ij ), it is invariant under action of the group SO(3). According to Noether’s

theorem (Marsden and Ratiu 1999), because of this symmetry, the system has
dim(SO(3)) = 3 conserved scalar quantities. Following Marsden and Ratiu (1999)
and Pekarsky and Marsden (1998), we can find these quantities as components of the
momentum map J:

J1 = 1

r

N∑

i=1

Γixi =
N∑

i=1

Γi sin θi cosφi = const.,

J2 = 1

r

N∑

i=1

Γiyi =
N∑

i=1

Γi sin θi sinφi = const.,

J3 = 1

r

N∑

i=1

Γizi =
N∑

i=1

Γi cos θi = const.

(1.7)

The vector J = (J1, J2, J3) is sometimes called the center of vorticity, and it is shown
in Newton (2001) to be a conserved quantity. It is a key quantity used in the analysis
of Kidambi and Newton (1998) in their solution of the three-vortex problem on the
sphere.

The general literature on point vortex dynamics is large (see Newton 2001, for an
entry), but the more targeted work focusing on the sphere is much smaller (although
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growing) and more recent, motivated mostly by atmospheric and geophysical appli-
cations where the spherical geometry plays a central role (see, for example, Polvani
and Dritschel 1993; Humphreys and Marcus 2008; Lim et al. 2009). When the rel-
evant atmospheric/geophysical length scales are sufficiently large, both the planar
and β-plane approximations break down, and it is necessary to take into account the
spherical geometry of the earth/planet. This is discussed in more detail in Newton
(2009). The review paper of Aref et al. (2003) highlights the state-of-the-art issues
related to equilibrium configurations at the time of publication, before we developed
the linear algebra approach for the sphere used in this paper, and in Jamaloodeen and
Newton (2006), Newton and Sakajo (2009, 2011). The only paper we know of that
investigated relative equilibrium configurations for general (heterogeneous) vortex
strengths before that time (aside from the equal and opposite vortex strength configu-
rations produced in vortex street configurations) was that of Lewis and Ratiu (1996).
More general vortex distributions on the sphere have also been studied in Crowdy
(2004), and also for complex domains on the sphere (Kidambi and Newton 2000;
Surana and Crowdy 2008). Stability investigations of configurations on the sphere
were initiated by Hally (1980), followed by Borisov and Kilin (2000), Lim et al.
(2001), Laurent-Polz (2002), Cabral and Schmidt (1999), Cabral et al. (2003), Boatto
and Cabral (2003), and Sakajo (2004).

Our goal in this paper is to combine the linear algebraic techniques initiated in
Jamaloodeen and Newton (2006) for the identification of relative equilibria, with
nonlinear stability techniques developed by J.E. Marsden and his co-workers over
the span of his long and distinguished career.

2 The Icosahedral Configuration as Relative Equilibrium

For definiteness, we focus on the icosahedral configuration shown in Fig. 1, with
vortex strengths � = (Γ1,Γ2, . . . ,Γ12) ∈ R

12 placed at the 12 numbered vertices of
the icosahedron. Each relative equilibrium configuration of point vortices is a fixed
point of (1.6). Thus, they are solutions of a system of equations that can be rewritten
in the following form:

N∑

k=1,k �=i,k �=j

ΓkVijk

π

(
1

l2
jk

− 1

l2
ik

)
= 0. (2.1)

Since these equations are linear in the vortex strength vector, they are best repre-
sented as

A� = 0, (2.2)

where A is an N(N−1)
2 × N matrix with entries Alk = Vijk

π
( 1
l2jk

− 1
l2ik

), l = i + j ,

(i, j, k = 1, . . . ,N) and � = (Γ1, . . . ,Γ12), the vector of vortex strengths. From this
representation, we immediately see that a given configuration of point vortices on a
sphere is a relative equilibrium only if the matrix A has a nontrivial nullspace.
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Fig. 1 The numbering convention of the N = 12 vertices of the icosahedron at which the point vortices
of strength Γi (i = 1, . . . ,12) are placed. Vertices 1 and 2 represent the North–South pair, vertices 3–7
represent a Northern latitudinal ring of five evenly spaced vertices, and vertices 8–12 represent a Southern
latitudinal ring of five evenly spaced vertices, staggered with respect to the Northern ring. Together, the
configuration can be thought of as a special von Kármán vortex street configuration with pole vortices

As was shown in Jamaloodeen and Newton (2006), all the Platonic solids are rel-
ative equilibrium configurations for special vortex strength vectors that lie in the ap-
propriate nullspace of the configuration matrix for the given Platonic solid. Thus, if
we place vortices at the vertices of an icosahedron, we will get a matrix A with a
nontrivial nullspace. For our purposes in this paper, we choose as the basis set for the
nullspace the vectors depicted in Fig. 2. Here, the vector b1 = (1,1,1, . . . ,1,1) ∈ R

12

represents the uniform icosahedral configuration, where all point vortex strengths are
equal. The other 6 elements bi ∈ R

12 (i = 2, . . . ,7) represent equal and opposite
strength antipodal vortex pairs placed respectively at vertices 1,2, vertices 3,11, ver-
tices 4,12, vertices 5,8, vertices 6,9, and vertices 7,10.

3 Stability of the Antipodal Basis Elements

The basis vectors bi (2 ≤ i ≤ 7) represent configurations of vortex pairs located at
opposite sides of the sphere (antipodal points) with equal and opposite strengths. The
motion of a vortex pair on the sphere is an integrable problem (Newton 2001). To find
the solution, consider the equations of motion in vector form:

ẋi = Γj

2πr

xj × xi

(xi − xj )2
= 1

2πrl2
12

(Γ1x1 + Γ2x2) × xi = 1

2πrl2
12

J × xi ,

i = 1,2, j = 1,2, j �= i,

‖xi‖2 = r2, i = 1,2.

(3.1)

From (1.6) we have

dl2
12

dt
= 0.
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Fig. 2 Nullspace basis set of the configuration matrix for the icosahedron. b1 represents the uniform
icosahedron, while b2–b7 represent antipodal equal and opposite strength pairs

Thus l2
12 = const. and (3.1) describe rotations of xi , i = 1,2 around the constant

vector 1
2πrl212

J. From this, we have the theorem:

Theorem 3.1 The antipodal vortex pair configuration (x1 = −x2, Γ1 = −Γ2) is a
stable equilibrium configuration.

Proof By adding small perturbations δx1 and δx2 to the given configuration (see
Fig. 3 for details), we get a configuration that will rotate around fixed vector J̃ =
Γ1(x1 + δx1) + Γ2(x2 + δx2) and thus will stay within a spherical cap centered at
x1,x2 with angular radius α equal to

α = cos−1
(

J̃ · J

‖J̃‖‖J‖
)

+ max

{
cos−1

(
J̃ · (xi + δxi )

‖J̃‖‖xi + δxi‖
)∣∣∣∣i = 1,2

}
.

Notice that for any two perturbations δx1, δx2, from a spherical cap with radius α,
vectors J̃,J will stay inside one cap with radius α. Thus, for any ε > 0, there exists
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Fig. 3 Antipodal vortex pair
(x1,x2) under perturbation
(x1 + δx1,x2 + δx2). The
perturbed pair will oscillate
around J′ , making the antipodal
pair nonlinearly stable

α = ε/3 > 0, such that for any perturbations δx1, δx2 from spherical caps centered
at x1,x2 with angular radius α, the perturbed system will stay within spherical caps
centered at x1,x2 with radius ε. �

4 Stability Regions for the General Icosahedron

The classical definition of stability is due to Routh and is described in detail in Mars-
den and Ratiu (1999). A relative equilibrium is stable if it is Lyapunov stable on a re-
duced space in which the relative equilibrium is a fixed point. The energy-momentum
method is designed to prove stability of relative equilibria on the unreduced space (see
Simo et al. 1991). According to the method, in order to conclude stability, one has
to consider a subspace P1 of a tangent space to the level set of the momentum map
at the equilibrium, where the neutrally stable directions have been eliminated. In the
context of point vortex dynamics, a relative equilibrium is stable in the Routh sense
if the energy-momentum functional (relative Hamiltonian in terms of Kurakin 2004)

Hμe(z, ξ) = H(z) − (
J(z) − μe

) · ω,

μe = J(ze), (4.1)

attains its strict minimum (or maximum) on the space P1. According to Patrick’s the-
orem (see Patrick 1992), if the second variation of the energy-momentum functional
is positive (or negative) definite, and the action of the isotropy subgroup is proper,
and the Lie algebra admits an inner product invariant under the adjoint action of the
isotropy subgroup, then the relative equilibrium is stable modulo the isotropy sub-
group. Note that in our case the isotropy subgroup is a compact group SO(3); thus all
of the assumptions of Patrick’s theorem are automatically satisfied.

If J is aligned with the z-axis, the energy-momentum functional in the mixed chart
introduced in the previous sections can be written as

Hμe = Hm − ω

(
N∑

i=1

Γizi − Γs

√
r2 − x2

1,s − y2
1,s + Γn

√
r2 − x2

1,n − y2
1,n

)

. (4.2)
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Notice that, by plugging in Hμe in Hamilton’s equations instead of H , we will get the
equations of motion in a coordinate system which rotates about axis z with angular
velocity ω. In this coordinate system, the relative equilibrium becomes a stationary
equilibrium.

To get an instability result, we use the Lyapunov instability criterion. According
to this criterion, the system is nonlinearly unstable if it is linearly unstable. For this,
consider the general Hamiltonian system in canonical variables

ṗ = ∂H

∂q
,

q̇ = −∂H

∂p
.

Its linearization about an equilibrium (pe, qe) can be written as

δ̇p = ∂2H

∂q∂p

∣∣∣∣
(pe,qe)

δp + ∂2H

∂q2

∣∣∣∣
(pe,qe)

δq,

δ̇q = −∂2H

∂p2

∣∣∣∣
(pe,qe)

δp − ∂2H

∂p∂q

∣∣∣∣
(pe,qe)

δq,

where p = pe + δp,q = qe + δq . The previous equations can be rewritten in the
following matrix form:

d

dt

(
δp

δq

)
=

(
0 I

−I 0

)
⎛

⎝
∂2H

∂p2
∂2H
∂p∂q

∂2H
∂q∂p

∂2H

∂q2

⎞

⎠
(

δp

δq

)
= �D2H

(
δp

δq

)
. (4.3)

To conclude instability, we have to show that �D2Hμe has eigenvalues with positive
real parts.

To simplify the computations (i.e., reduce the parameter space) and to visualize the
regions of stability, we study the stability of the superposition of the three key con-
figurations shown in Fig. 4, namely the (i) uniform icosahedron, (ii) the von Kármán
street configuration, and (iii) the North–South vortex pair. Since the configurations
are axisymmetric, we use cylindrical coordinates aligned with vector J. If we choose
our coordinates of the vertices of the icosahedron in the form

x1 = (0,0,1), x2 = (0,0,−1),

xi+3 =
(

2√
5

cos
2πi

5
,

2√
5

sin
2π

5
,

1√
5

)
, i = 0, . . . ,4,

xi+8 =
(

2√
5

cos
π + 2πi

5
,

2√
5

sin
π + 2π

5
,− 1√

5

)
, i = 0, . . . ,4,

(4.4)
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Fig. 4 Creation of the general icosahedron via superposition using the three parameters: (Γ,Γα,Γβ).
(i) (1,0,0) the uniform icosahedron; (ii) (0,1,0) a von Kármán vortex street; (iii) (0,0,1) a North–South
polar pair. Stability is analyzed as a function of these three parameters

and then use a symmetry induced basis1 for the space P1 (see Serre 1977), we get the
following matrix of second variation:

D2Hμe

∣∣
P1

=

⎛

⎜⎜
⎝

−8(Γ 2 − Γ 2
α ) 0 0 0

0 − 25
2 (Γ 2 − Γ 2

α )(10Γ 2 − Γα(4Γα + √
5Γβ)) 0 0

0 0 C 0
0 0 0 D

⎞

⎟⎟
⎠ ,

(4.5)
where C is an 8 × 8 matrix and D is a 10 × 10 matrix whose entries can be found in
the Appendix.

Since matrix D2Hμe |P1 has to be definite, using the Sylvester criterion (Meyer
2000) we get

(
10Γ 2 − Γα(4Γα + √

5Γβ)
)
> 0,

−8
(
Γ 2 − Γ 2

α

)
C1,1 > 0,

−8
(
Γ 2 − Γ 2

α

)
D1,1 > 0,

C1,1C2i−1,2i−1 > 0,

C2i,2i > 0, i = 1, . . . ,4,

D1,1D2i−1,2i−1 > 0,

D2i,2i > 0, i = 1, . . . ,5,

where Ci,i is the ith principal minor of C. Visualizations of these conditions are given
in the plots shown in Figs. 5 and 6.

1A symmetry induced basis is a basis of the invariant subspaces of the dihedral group D5 (symmetry group
of regular 5-gon). As such, it is the biggest symmetry subgroup of the configuration under investigation;
i.e., the configuration will not change if we do cyclic rotations by an angle 2π

5 about the z-axis or flip
about any plane which goes through the z-axis and any vertex.
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Fig. 5 Regions of stability for
icosahedral configurations.
Individual grouped component
points are marked as
A : (Γ,Γα,Γβ) = (1,0,0),
B : (Γ,Γα,Γβ) = (0,1,0),
C : (Γ,Γα,Γβ) = (0,0,1)

Fig. 6 Plane Γ = 1. Shaded
region is the stable region.
Point A corresponds to the
uniform icosahedron

Notice that the uniform icosahedral configuration (point A) (Γ,Γα,Γβ) = (1,0,0)

is a stable relative equilibrium configuration, as first derived in Kurakin (2004). Also
note that because of (2.2), we can scale all the vortex strengths equally, and we re-
tain the equilibrium. This implies that the shaded stable regions for each slice of Γ

(shown in Fig. 6 for Γ = 1), all have the same shape, modulo rescaling. So, as Γ

increases, the region of stability opens up, which indicates that the stability of the
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uniform icosahedron can be used to stabilize the relative equilibrium, if we choose Γ

sufficiently large.
The configuration (Γ,Γα,Γβ) = (0,0,1) (point C) is a polar vortex pair and, as

we have proven above, it is a stable configuration. Notice that we proved this by
direct methods. The energy-momentum method used for this configuration gives no
conclusive information on stability, as the second variation on the space P1 has zero
eigenvalues (i.e., the configuration is degenerate). That is why point C does not lie
in a shaded region of the figure, despite the fact that it is stable. The von Kármán
configuration (Γ,Γα,Γβ) = (0,1,0) (point B), as shown below, is unstable.

Theorem 4.1 The von Kármán relative equilibrium configuration (Γ,Γα,Γβ) =
(0,1,0) is linearly unstable.

Proof If we multiply the matrix of second variation of the Hamiltonian by the inverse
of the symplectic form, then we can find the eigenvalues of linearized system,

−1.98083,1.98083,1.98083,−1.98083,1.86933i,−1.86933i,1.86933i,

−1.86933i,1.43418,−1.43418,−1.43418,1.43418,1.32288i,−1.32288i,

−0.513637,0.513637,0.513637,−0.513637,0,0.

As we can see, there are six of them with positive real part. Thus, the configuration
is linearly unstable. �

5 Discussion

The results in this paper describe the stability and instability of the icosahedral
point vortex relative equilibrium configuration for general vortex strengths when the
strengths are grouped according to the groupings shown in Fig. 4, namely the uni-
form icosahedron, a special von Kármán vortex street, and the North–South antipodal
pairing of equal and opposite vortices. These groupings are chosen because of their
physical relevance, but the fact that, when linearly combined, they remain in relative
equilibrium follows from the nullspace structure of the configuration matrix A. The
stability of each of these configurations can be treated separately using the augmented
Hamiltonian, as described in the text, but this does not provide any insight into their
stability when they are linearly combined.

Some key points are worth emphasizing. The regions of stability are shown in
Fig. 5 for the three parameters (Γ,Γα,Γβ), and a special slice of this space (Γ = 1)
is shown in Fig. 6. One can see that, because the region of stability opens up for
increasing Γ (Fig. 5), in some sense, the uniform icosahedron acts as a stabilizing
influence on the system. For any given values of (Γα , Γβ ), for large enough Γ , the
point (Γ , Γα , Γβ ) will lie in the stable region. Whether or not the special equal
strength choice stabilizes the other Platonic solid relative equilibria is not known
at this point (see Jamaloodeen and Newton 2006).

We finish by mentioning that icosahedral configurations of interacting “particle”
systems, and more complex configurations that possess icosahedral symmetry, have
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been investigated extensively in the literature associated with the structure of virus
molecules (a relatively recent contribution is that of Zandi et al. 2004). We believe
the general nullspace decomposition and stability approach described in this paper
could be applied in that context as well.
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Appendix

Matrix C can be written as

C =

⎛

⎜⎜
⎝

C1 C2 C3 C4
C2 C5 C6 C7
C3 C6 C8 C9
C4 C8 C9 C10

⎞

⎟⎟
⎠ ,

where Ci, i = 1, . . . ,10 are 2 × 2 matrices:

C1 =
(

− 1
8 (Γ + Γα)(203Γ + 37Γα + 25

√
5Γβ) 0

0 − 1
8 (Γ + Γα)(203Γ + 37Γα + 25

√
5Γβ)

)

,

C2 =
⎛

⎝
27

128 (−1 + √
5)(Γ 2 − Γ 2

α ) 1
128

√
2643290 + 922258

√
5(Γ 2

α − Γ 2)

1
128

√
1659290 − 61742

√
5(Γ 2

α − Γ 2) 27
128 (−1 + √

5)(Γ 2 − Γ 2
α )

⎞

⎠ ,

C3 =
(

1
8 (Γ + Γα)(53Γ + 187Γα − 25

√
5Γβ) 0

0 − 1
8 (Γ + Γα)(53Γ + 187Γα − 25

√
5Γβ)

)

,

C4 =
⎛

⎝
1

128 (877 − 77
√

5)(Γ 2 − Γ 2
α ) 27

64

√
1
2 (5 + √

5)(Γ 2 − Γ 2
α )

27
64

√
1
2 (5 + √

5)(Γ 2 − Γ 2
α ) 1

128 (1123 − 323
√

5)(Γ 2 − Γ 2
α )

⎞

⎠ ,

C5 =
(

− 1
8 (Γ − Γα)(203Γ − 37Γα − 25

√
5Γβ) 0

0 − 1
8 (Γ − Γα)(203Γ − 37Γα − 25

√
5Γβ)

)

,

C6 =
⎛

⎝
1

128 (−1123 + 323
√

5)(Γ 2 − Γ 2
α ) − 27

64

√
1
2 (5 + √

5)(Γ 2 − Γ 2
α )

− 27
64

√
1
2 (5 + √

5)(Γ 2 − Γ 2
α ) 1

128 (−877 + 77
√

5)(Γ 2 − Γ 2
α )

⎞

⎠ ,

C7 =
(

1
8 (Γ − Γα)(53Γ − 187Γα + 25

√
5Γβ) 0

0 − 1
8 (Γ − Γα)(53Γ − 187Γα + 25

√
5Γβ)

)

,

C8 =
(

− 1
8 (Γ + Γα)(203Γ + 37Γα + 25

√
5Γβ) 0

0 − 1
8 (Γ + Γα)(203Γ + 37Γα + 25

√
5Γβ)

)

,

C9 =
⎛

⎝
27
128 (−1 + √

5)(Γ 2 − Γ 2
α ) 1

128

√
1659290 − 61742

√
5(Γ 2

α − Γ 2)

1
128

√
2643290 + 922258

√
5(Γ 2

α − Γ 2) 27
128 (−1 + √

5)(Γ 2 − Γ 2
α )

⎞

⎠ ,
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C10 =
(

− 1
8 (Γ − Γα)(203Γ − 37Γα − 25

√
5Γβ) 0

0 − 1
8 (Γ − Γα)(203Γ − 37Γα − 25

√
5Γβ)

)

.

Matrix D can be written as

D =

⎛

⎜⎜⎜
⎜
⎝

D1 D2 D3 D4 D5
D2 D6 D7 D8 D9
D3 D7 D10 D11 D12
D4 D8 D11 D13 D14
D5 D9 D12 D14 D15

⎞

⎟⎟⎟
⎟
⎠

,

where Di, i = 1, . . . ,15 are 2 × 2 matrices:

D1 =
(

− 5
8 (Γ + Γα)(33Γ + 2Γα + 5

√
5Γβ) 0

0 − 5
8 (Γ + Γα)(33Γ + 2Γα + 5

√
5Γβ)

)

,

D2 =

⎛

⎜⎜⎜
⎝

− 5
16 (1 + √

5)(Γ 2 − Γ 2
α )

5(Γ 2−Γ 2
α )

4
√

2+ 2√
5

5(Γ 2
α −Γ 2)

4
√

2+ 2√
5

− 5
16 (1 + √

5)(Γ 2 − Γ 2
α )

⎞

⎟⎟⎟
⎠

,

D3 =
⎛

⎝
0

− 25(Γ 2−Γ 2
α )(5((5+√

5)Γ +(1+√
5)Γβ)−(5+√

5)Γα)

2(5+√
5)

− 25(Γ 2−Γ 2
α )(5((5+√

5)Γ +(1+√
5)Γβ)−(5+√

5)Γα)

2(5+√
5)

0

⎞

⎠ ,

D4 =
(

c 0
0 d

)
,

c = −5

8
(Γ + Γα)(Γ + Γβ)

(
3(9 + √

5)Γ + 3(1 + √
5)Γα + 4

√
5Γβ

)
,

d = 5(Γ + Γα)(Γ − Γβ)((33 + 9
√

5)Γ − 3(1 + √
5)Γα + 2(5 + 3

√
5)Γβ)

4(3 + √
5)

,

D5 =
(

15
4

√
5(Γ + Γα)(Γ 2 − Γ 2

β ) 0

0 15
4

√
5(Γ + Γα)(Γ 2 − Γ 2

β )

)

,

D6 =
(

− 5
8 (Γ − Γα)(33Γ − 2Γα − 5

√
5Γβ) 0

0 − 5
8 (Γ − Γα)(33Γ − 2Γα − 5

√
5Γβ)

)

,

D7 =
(

e f

f e

)
,

e = −25

8

√
10 − 2

√
5
(
Γ 2 − Γ 2

α

)
(5Γ + Γα − √

5Γβ),

f = −25(Γ 2 − Γ 2
α )(5(5 + 3

√
5)Γ + (5 + 3

√
5)Γα − 5(3 + √

5)Γβ)

4(5 + √
5)

,
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D8 =
⎛

⎝
5
8 (−2 + √

5)(Γ 2 − Γ 2
α )(Γ + Γβ) − 5

16

√
130 + 58

√
5(Γ 2 − Γ 2

α )(Γ − Γβ)

− 5
8

√
85 − 38

√
5(Γ 2 − Γ 2

α )(Γ + Γβ) − 5
16 (11 + 5

√
5)(Γ 2 − Γ 2

α )(Γ − Γβ)

⎞

⎠ ,

D9 =
⎛

⎜
⎝

15
16 (5 + √

5)(Γ − Γα)(Γ 2 − Γ 2
β ) 15

16

√
50 − 10

√
5(Γ − Γα)(Γ 2 − Γ 2

β )

− 75(Γ −Γα)(Γ 2−Γ 2
β )

4
√

2(5+√
5)

15
16 (5 + √

5)(Γ − Γα)(Γ 2 − Γ 2
β )

⎞

⎟
⎠ ,

D10 =
(−25(Γ 2 − Γ 2

α )(15Γ 2 + 9Γ 2
α − 4

√
5ΓαΓβ) 0

0 −25(Γ 2 − Γ 2
α )(15Γ 2 + 9Γ 2

α − 4
√

5ΓαΓβ)

)
,

D11 =
(

0 g

h 0

)
,

g = 10(Γ 2 − Γ 2
α )(Γ − Γβ)(5(−5 + 2

√
5)Γ + (5 + 4

√
5)Γα − 5(−1 + √

5)Γβ)

−5 + √
5

,

h = 5(Γ 2 − Γ 2
α )(Γ + Γβ)((−35 + 17

√
5)Γα + 5((5 + √

5)Γ + 2(−1 + √
5)Γβ))

−5 + √
5

,

D12 =
(

0 25
√

5(Γ 2 − Γ 2
α )(Γ 2 − Γ 2

β )

25
√

5(Γ 2 − Γ 2
α )(Γ 2 − Γ 2

β ) 0

)

,

D13 =
(

k 0
0 l

)
,

k = −1

2
(Γ + Γα)(Γ + Γβ)

(
(38 + 5

√
5)Γ 2

+ (31 + 9
√

5)ΓβΓ + 5
√

5Γ 2
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√
5Γ 2
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√

5)Γα(2Γ + Γβ)
)
,

l = 1

4(3 + √
5)

(Γ + Γα)(Γ − Γβ)
(−2(89 + 23

√
5)Γ 2 + 10(5 + 3

√
5)Γ 2

α

+ 8(1 + 2
√

5)Γα(2Γ − Γβ) + 8Γβ

(
(12 + √

5)Γ + (5 + 3
√

5)Γβ

))
,

D14 =
(

m 0
0 n

)
,

m = −
(Γ + Γα)(5(1 + √

5)Γ + 5(−5 + 3
√

5)Γα + 4(−4 + 3
√

5)Γβ)(Γ 2 − Γ 2
β )

2(−3 + √
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,

n =
(Γ + Γα)(5(−11 + 5

√
5)Γ + 5(−5 + 3

√
5)Γα + 2(17 − 9

√
5)Γβ)(Γ 2 − Γ 2
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2(−3 + √
5)

,

D15 =
(−(10Γ 2 − 3Γ 2

β − 5
√

5ΓαΓβ)(Γ 2 − Γ 2
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0 −(10Γ 2 − 3Γ 2
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√
5ΓαΓβ)(Γ 2 − Γ 2

β )

)
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