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Abstract We develop Bayesian methodologies for constructing and estimating a
stochastic quasi-chemicalmodel (QCM) for bacterial growth. The deterministicQCM,
described as a nonlinear systemofODEs, is treated as a dynamical systemwith random
parameters, and a variational approach is used to approximate their probability distri-
butions and explore the propagation of uncertainty through the model. The approach
consists of approximating the parameters’ posterior distribution by a probability mea-
sure chosen from a parametric family, throughminimization of their Kullback–Leibler
divergence.

Communicated by Charles R. Doering.

B Paul K. Newton
newton@usc.edu

Panagiotis Tsilifis
tsilifis@usc.edu

William J. Browning
wjbrowning@applmath.com

Thomas E. Wood
tewood@applmath.com

Roger G. Ghanem
ghanem@usc.edu

1 Department of Civil Engineering, University of Southern California, Los Angeles, CA 90089,
USA

2 Applied Mathematics Inc., 1622 Route 12, Gales Ferry, CT 06335, USA

3 Department of Aerospace and Mechanical Engineering and Mathematics, University of Southern
California, Los Angeles, CA 90089, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00332-017-9411-4&domain=pdf


372 J Nonlinear Sci (2018) 28:371–393

Keywords Bayes rule · Kullback–Leibler divergence · Evidence lower bound ·
Quasi-chemical model · Gradient-based optimization

1 Introduction

The mathematical modeling of bacterial growth has been an important analytical tool
for the food microbiology community due to its potential for achieving cost savings in
food product development as well as food safety and hazard analysis. Its mathemat-
ical characterization has generally dealt with coarse-scale observables of population
growth rate (Gompertz 1825; Schnute 1981; Baranyi et al. 1993; Baranyi and Roberts
1994; Ricker 1979; Buchanan 1922; Buchanan et al. 1997; Whiting 1993; McMeekin
et al. 1997). This approach is natural, but has two essential limitations. First, it is
primarily suitable for describing the growth kinetics of a population until an asymp-
totic maximum is reached and is not equipped to describe the decline and death of
bacteria. As a result, isolating growth from inactivation kinetics and using an addi-
tional distinct model for the death phase (Whiting et al. 1996) become a necessary
additional step. Second, these models are not typically informed by underlying chem-
ical reactions and cannot, therefore, provide insight into the chemical mechanisms
involved in the dynamic processes under investigation. This is important for under-
standing andmitigating safety hazards and associated risks. The quasi-chemicalmodel
(QCM) (Doona et al. 2005; Taub et al. 2003) that was developed initially for the study
of the growth/death kinetics of Staphylococcus aureus in bread (Taub et al. 2000)
manages to fully address the first drawback mentioned above by considering that the
bacteria concentrations satisfy an autonomous nonlinear dynamical system that can
successfully capture the death dynamics of the population for certain parameter values
and partially addresses the second issue by introducing an intermediate antagonistic
metabolite that acts as an intercellular signaling molecule, referred to as quorum sens-
ing (Goldbeter 1997). The model has shown promising potential in fitting microbial
data obtained from cultures grown in a wide range of environmental conditions of
water activity (Aw), pH and temperature and adapts well to several variations of these
intrinsic parameters as well as to additional pathogenic microorganisms apart from S.
aureus.

Typically the model calibration process of the QCM (and other bacteria models)
is performed using ordinary nonlinear least squares. Despite the reasonable results
obtained by point estimation, it can be argued that the deterministic setting has certain
limitations. Although the usual t- and F-tests have been used in nonlinear models for
hypothesis testing and construction of confidence intervals (Zwietering et al. 1990),
their accuracy is limited as they are theoretically valid only for the linear case. It is
clear that such prediction intervals for the model parameters and the bacteria popu-
lation would greatly benefit from a fully stochastic setting that allows exploring the
probability distributions of the parameters eitherwithin a frequentist (Banks andBihari
2001) or Bayesian framework (Tarantola 2005). Another benefit of the probabilistic
approach is that it allows for various interpretations of the induced model uncertainty
in ways that can uncover non-obvious dependencies between the parameters or even
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a hierarchical structure between the model parameters and possible hidden variables
that can be thought of as hyper-parameters.

This is the approach followed in this paper. Thefirst step is to treat themodel parame-
ters as randomvariables and identify their probability distributions, taking into account
available observations of the system solution. We consider a Bayesian formalism of
the calibration problem on the QCM that allows exploration of the posterior distribu-
tion of the parameters conditioned on observations of the population concentrations
at discrete time instances. We apply a variational approach that was first introduced in
Gershman et al. (2012) that provides efficient exploration of the posterior distribution
by approximating it with a distribution from a previously defined parametric family
and using gradient information of the system solution. Similar approaches have been
developed also in the context of stochastic differential equations (SDEs) (Vrettas et al.
2011) and more generally on arbitrary stochastic processes in discrete and continu-
ous time (Ye et al. 2015) where it is of interest to estimate posterior distribution over
possible states given discrete panel data. One of the main advantages of the method
is that, unlike Markov chain Monte Carlo methods (MCMC) (Robert and Casella
2013) or other variational approaches (Pinski et al. 2015), the number of forward
evaluations required to solve the proposed optimization problem is significantly lower
(see also Tsilifis et al. 2016 for a comparison with MCMC). In addition, unlike the
above-mentioned works on variational approaches for SDEs, our method consists of
developing schemes particularly for approximating the posterior with a Gaussian mix-
ture, thus providing the freedom to choose a suitable number of components in order to
capture complex distributions with possible multimodal structure, and has been shown
to perform effectively on such cases (Chen et al. 2015). This essentially addresses the
issue of ill-posedness of the inverse problem and the non-uniqueness of its solution
which is present in our case where several datasets either consist of only a small num-
ber of observations or exhibit significant fluctuations (see Stuart 2010 for a detailed
review of advantages of the Bayesian approach). Our Bayesian approach differs from
previous probabilistic methods that have been applied to the QCM (Doona et al. 2012)
where deterministic calibration was performed using as data Monte Carlo samples
synthesized as model outputs with additive noise in order to investigate the corre-
sponding sensitivity of the parameter estimates. Thus in contradistinction to this latter
approach where a probability is imposed on the observed data, Bayesian approaches,
including ours, postulate a prior model on the parameters, which is then shaped by
the inference procedure. The next step is to enrich the complexity of the model by
incorporating time-dependent white noise in the model parameters. We think of this
new representation as a way to capture possible fluctuations in the observations that
cannot be explained through additive measurement noise. This formulation results in
deriving the stochastic differential equation (SDE) analogue of the QCM which is
presented in a separate publication.

The paper is structured as follows. First we introduce the QCM and its main charac-
teristics.We then present the variational approach used for the Bayesian inversion. The
method is then demonstrated on various datasets previously presented in Taub et al.
(2003) that consist of bacteria counts grown under different environmental conditions.
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2 The Quasi-chemical Model

The quasi-chemicalmodel Doona et al. (2005) and Taub et al. (2003)was introduced in
order to describe growth of bacterial populations in food and is based on a hypothetical
four-step kinetic reaction scheme deriving the following system of nonlinear ordinary
differential equations,

d[M]
dt

= −k1[M]
d[M∗]
dt

= k1[M] + (k2 − k4)[M∗] − hk3[M∗][A]
d[A]
dt

= k2[M∗] − hk3[M∗][A]
d[D]
dt

= k4[M∗] + hk3[M∗][A], (1)

where [M], [M∗], [A] and [D] are the concentrations of lag-phase cells, exponential
growth phase cells, an antagonistic metabolite chemical and dead cells, respectively,
k1, . . . , k4 are nonnegative parameters and h is a scaling factor, here taken as h = 10−9.
In bacterial growth simulations, the initial conditions (t = 0) always admit a value I
(≈ 103 − 104) for [M] which is the inoculum level, while the rest are 0.

The main mathematical properties of (1) can be found in Ross et al. (2005). Specifi-
cally, under the parameter constraints ki ≥ 0 and the initial conditions that we consider
here to be always (I, 0, 0, 0), the system has only one critical point at [M] = [M∗] = 0
which is attained only as t → ∞. Taking also into account the relationship

d[A]
dt

= k2[M∗]e−φ(t), (2)

where φ(t) = hk3
∫ t
0 [M∗](s)ds, the critical point values of [M], [M∗] imply that

[A] = 0 and subsequently [D] = 0. Equation (2) also suggests that d[A]
dt ≥ 0 and

therefore [A] never decreases. Moreover, we have

[A] = k2
hk3

[
1 − e−φ(t)

]
≤ k2

hk3
, (3)

which gives an upper bound for the concentration [A] of the antagonist.

3 Variational Bayesian Inference

3.1 Bayesian Inference

We are interested in inferring the unknown parameters κ = (k1, . . . , k4) of system (1)
given experimental data that consist of discrete observations of the logarithm of the
number of living cells of the population
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U (t) = [M](t) + [M∗](t). (4)

The true values are subject to additional randommeasurement noise εi at time ti ; thus,
we assume that our observations are the realizations

yi = log10U (ti , κ) + εi , i = 1, . . . , N (5)

where we highlight the dependence of log10U (t) on the uncertain parameters κ and
we denote with y = (y1, . . . , yN )T and ε = (ε1, . . . , εN )T the set of all observations
and the additive noises, respectively, in vector form. The additive noise εi for each
observation will be taken here to be independent and identically distributed Gaussian
random variables that are independent of the parameters κ , that is, εi ∼ N (0, σ ) or
in vector form ε ∼ N (0, σ IN ) and p(κ, σ ) = p(κ)p(σ ). Throughout our numerical
examples below, itwill be convenient to allow the parameters takingvalues over the real
line and for that we will further use the parameterization ξ = log κ and ω = 1

2 log σ

and (with no loss of generality) rewrite in compact form

y = G(ξ) + ε, (6)

where
G(ξ) = (

log10U (t1, ξ), . . . , log10U (tN , ξ)
)T

. (7)

The Bayesian paradigm consists of considering that ξ follows a prior distribution
p(ξ) which after collecting the observations y is updated using Bayes’ rule to

p(ξ |y) = p(y|ξ)p(ξ)

p(y)
= p(y|ξ)p(ξ)

∫
p(y|ξ)p(ξ)dξ

. (8)

To allow for inference on the Gaussian measurement noise, we can also write

p(ξ , ω|y) = p(y|ξ , ω)p(ξ)p(ω)

p(y)
= p(y|ξ , ω)p(ξ)p(ω)

∫ ∫
p(y|ξ , ω)p(ξ)p(ω)dξdω

, (9)

and denote with θ ∈ R
k the augmented set of parameters θ = (ξ , ω).

Typically, the posterior distribution p(θ |y) is explored via Markov chain Monte
Carlo (MCMC) techniques (Robert and Casella 2013) which enable sampling from a
Markov chain that has p(θ |y) as its invariant distribution, and therefore, the generated
samples can be thought of as (asymptotically) drawn from that distribution. In order
for that assumption to be accurate, it is often required to draw thousands of samples
until the generated chain approaches its invariant density. The speed of convergence
of the chain depends on the nature of the true posterior and on the generating proce-
dure adapted. For instance, several variations of the Metropolis–Hastings (Metropolis
et al. 1953; Hastings 1970; Haario et al. 2001; Roberts and Rosenthal 1998) or even
Metropolis-within-Gibbs (Chaspari et al. 2016) algorithm exist in the literature which
provide different acceptance rates and eventually faster or slower convergence. How-
ever, in all but the simplest cases, several thousands of samples are required, which
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means that the forward model must run equally many times, resulting in large or even
unaffordable computational costs. In order to avoid excessive simulations and reduce
the computational cost of exploring the posterior distribution, we consider here a vari-
ational formulation of the problem that has previously appeared in Gershman et al.
(2012) and Tsilifis et al. (2016) and is based on approximating p(θ |y) by a known
probability distribution chosen from a known family.

Let Q be a family of probability densities, parameterized by λ, that is, Q =
{q(θ |λ), λ ∈ R

d}.We are interested in identifying the element ofQ that is as “close” as
possible to the true posterior p(θ |y) defined above. To quantify the “distance” between
two probability distributions or their densities, we employ the Kullback–Leibler (KL)
divergence Kullback and Leibler (1951)

KL
[
q(θ |λ)||p(θ |y)] =

∫

Rk
log

[
q(θ |λ)

p(θ |y)
]

q(θ |λ)dθ . (10)

The KL divergence does not define a metric since it does not satisfy the triangular
inequality; however, it is often used in related context since it is always nonnegative
and KL [q||p] = 0 ⇐⇒ q = p a.s. In addition, KL [q||p] → 0 implies that
q → p in total variation, a result that guarantees proximity between two probability
measures. Intuitively here, the KL divergence can be thought of as the “information
loss” of approximating the true posterior p(θ |y) by q(θ |λ). Similarly, a KL divergence
between the prior and the posterior distributions can be thought of as the “information
gain” of collecting data y and has been used extensively for experimental design
purposes (Chaloner and Verdinelli 1995; Tsilifis et al. 2017). It is clear from the above
that minimizing the KL divergence provides a constraint on approximations of the true
posterior, and therefore, we can state the optimization problem of finding λ∗ such that

q(θ |λ∗) = arg min
λ∈Rd

KL
[
q(θ |λ)||p(θ |y)] . (11)

Trivially, if the true posterior p(θ |y) is in Q then one should expect the result of the
optimization to be 0; otherwise, it will be a strictly positive value. In practice, it is
not possible to evaluate the above expression since p(θ |y) is not known. For that, we
formulate in the next subsection an equivalent optimization problem that is possible
to solve, by deriving a lower bound of the evidence p(y).

3.2 The Evidence Lower Bound (ELBO)

First we observe that by substituting Bayes’ rule (9) in (10) we can write the relation

log p(y) = F[q] + KL
[
q(θ |λ)||p(θ |y)] , (12)

where

F[q] = ∫
log

[
p(y,θ)
q(θ |λ)

]
q(θ |λ)dθ

= H[q] + ∫
log p(y, θ)q(θ |λ)dθ ,

(13)

123



J Nonlinear Sci (2018) 28:371–393 377

with

H[q] = −
∫

q(θ |λ) log q(θ |λ)dθ (14)

being the entropy of q(θ |λ). Observing that the left-hand side of (12) is independent
of q(θ |λ), we see that minimizing K L[q||p] is equivalent to maximizing the quantity
F[q] which due to positivity of K L[q||p] always satisfies

F[q] ≤ log p(y). (15)

We refer F[q] as evidence lower bound (ELBO). Maximization of F[q] is a feasible
task since it does not depend on the posterior or the evidence distributions but only on
the joint distribution p(y, θ) = p(y|θ)p(θ) which in general is known.

3.3 Approximating Schemes

In order to evaluate the integrals in (13), we need to employ some numerical method.
While numerical integration or Monte Carlo sampling provides accurate sampling
strategies, when usedwithin an optimization algorithm, however, they quickly become
computationally prohibitive. To address this issue, we develop approximating schemes
for (13) that are valid when the approximating family of distributionsQ is the family
of Gaussian mixtures. Specifically, we assume that

QL =
{

q(θ |λ)

∣
∣
∣
∣ q(θ |λ) = 1

L

∑

i=1

N (θ |μi ,�i )

}

. (16)

Here the optimization problem needs to be solved with respect to the parameters λ =
{μi }Li=1∪{�i }Li=1,where L , the number ofGaussian components,will be assumed to be
fixed and of course�i must be restricted to be positive definite. In fact, for the purpose
of inferring the parameters of the QCM in our numerical implementations below, �
will also be assumed to be diagonal which will further simplify the calculations. The
latter implies that the parameters will be a posteriori independent, which is not always
the case, but we put this constraint here for the sake of simplicity.

First we derive a lower bound forH by using Jensen’s inequality (see Huber et al.
2008 for details) to obtain

H[q] ≥ H0[q] (17)

where

H0[q] = − 1

L

L∑

i=1

ln qi (18)

with

qi = 1

L

L∑

j=1

N (μi |μ j ,�i + � j ) (19)
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and by replacingH[q] withH0[q] in Eq. (13) we derive a lower bound for the ELBO.
Next, we define L[q] to be the second term in (13),

L[q] =
∫

log p(y, θ)q(θ |λ)dθ (20)

which by substituting q(θ |λ) = 1
L

∑L
i=1N (θ |μi ,�i ) gives

L[q] = 1

L

L∑

i=1

∫
log p(y, θ)N (θ |μi ,�i )dθ (21)

and each integral term can be approximated by taking a second-order Taylor expansion
of log p(y, θ) about θ = μi . This gives

log p(y, θ) ≈ log p(y,μi ) + ∇θ log p(y,μi )(θ − μi )

+1

2
(θ − μi )

T∇2
θ log p(y,μi )(θ − μi ), (22)

where∇θ and∇2
θ denotes the Jacobian andHessianwith respect to θ . Upon substitution

of (22) into (20) and observing that the expectation of the first-order term (Jacobian)
vanishes, we take the approximation

L2[q] = L0[q] + 1

2L

L∑

i=1

Tr
[
�i∇2

θ log p(y,μi )
]
, (23)

where L0[q] is the term resulting from the zeroth-order approximation in (22)

L0[q] = 1

L

L∑

i=1

log p(y,μi ). (24)

This approximation is also referred to as the multivariate delta method for moments
(Bickel and Doksum 2015). At last, Eqs. (18) and (23), when combined, give us an
approximation of the ELBO

F2[q] = H0[q] + L2[q] (25)

that can be used in the optimization algorithm to compute a local maximum of (13).
The quality of the above approximation can be intuitively assessed by observing

first that the L0[q] term essentially encourages placing the components of the mix-
ture distribution in areas where data were observed, thereby making the observations
“highly probable”, while the entropy term H0[q] penalizes those locations. At last,
the second term of L2[q] captures the local curvature (Hessian) of the posterior that
attempts to maximize the volume (broaden the variance�i ) around samples with high
probability by extending the tails (areas with high curvature—highly concave density
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function). Overall, assuming that a proper number of components in the Gaussian
mixture posterior are chosen, such that a possibly broad and multimodal posterior can
be accurately described, the Taylor approximation on the log-joint density function
contains all the information we typically need: the centers of high probably data and
the curvature (tail) behavior.

Before using F2[q] in our optimization algorithm, it is necessary to clarify some
computational details. First, L2[q] requires knowledge of the Hessian of log p(y,μi ).
Therefore, whenF2[q] is being optimized with respect toμi by using a gradient-based
optimization algorithm, at least the third-order derivatives of log p(y,μi ) will need
to be known, or in other words, the third-order derivatives of G(κ) defined in (6).
To avoid the computational burden of computing third-order derivatives, which in a
general setting might not even be feasible, we only use the approximationL0[q]when
optimizing with respect to μi . This way only the first-order derivatives of our forward
model are used. Although this might seem as a poor approximation, in practice it
achieves the main goal which is to place the mixture components at areas of high
probability. On the other hand, when optimizing with respect to �i , as indicated by
the form of (23), the dependence on �i is only through the second term. That requires
the second-order derivatives of G(κ) which, although non-trivial, is comparable to
computing the gradient (taking into account that the trace of the product of twomatrices
in the expression requires only the diagonal elements); therefore, it is typically feasible
and the full approximation L2[q] can be used. Taking this into account, we adopt an
optimization algorithm that interchanges the use ofL0[q] andL2[q]when successively
optimizing with respect to μi and �i , respectively, until a certain tolerance level is
achieved. Computation of H0[q] and its derivatives is straightforward. Details of
the computation of log p(y, θ) along with its first- and second-order derivatives are
provided in “Appendix A.”

At last, we note that we have restricted ourselves in estimating the posterior with
mixtures of equally weighted Gaussian kernels. One could easily extend the above
derivations to Gaussian mixtures with arbitrary weights, that is,

q(θ |λ) =
∑

i=1

wiN (θ |μi ,�i ) (26)

with
∑L

i=1 wi = 1. Although such a generalization would seemingly allow for further
flexibility on successfully capturing the true posterior, similar results can be achieved
with our current setting after observing that any weightwi can be estimated by a ratio-
nal numberwi ≈ li/L = ∑li

j=1 1/L; therefore, the corresponding weighted Gaussian
term in the mixture in fact corresponds to a sum of equally weighted Gaussians. This
resembles the core idea behind Gaussian kernel density estimators (Silverman 1986).
A trade-off in terms of computational efficiency is also present here as in our setting, a
larger number L will be required for the posterior approximation which will result in
a high-dimensional optimization problem. On the other hand, the arbitrarily weighted
mixtures require additional computation of gradients of the ELBO with respect to the
weights. Detailed comparison of the performance of the two parametric families falls
beyond the scope of our work.

123



380 J Nonlinear Sci (2018) 28:371–393

4 Numerical Results

In our numerical simulations below,we are interested in inferring θ = (log κ, ω) based
on available experimental data that consist of the kinetics profile U (t) (CFU/mL)
as a function of time over intervals ranging from [0–7days] up to [0–70days]. The
various datasets correspond to combinations of different water activity (Aw), pH and
temperature T as well as small variations in the initial conditions which result in
different growth curves and therefore different sets of parameter values. First we
consider the case where the posterior is approximated by single Gaussians. That is, we
choose L = 1 as the number of components in the elements of the family of Gaussian
mixtures and later we explore the case where L > 1 for a particular reference dataset
at T = 25 ◦C. Furthermore, in order to reduce the dimensionality of the objective
function to be optimized, we also take � to be diagonal and the total dimension of
the optimization problem becomes d = L(#μ + # diag�) = 10L . Each optimization
step is carried out using the L-BFGS-B algorithm (Byrd et al. 1995) that can perform
bound constrained optimization.

4.1 The Role of the Prior

At this point, it is important to mention that the solution of the optimization problem
described above or in other words, the variational solution of the inverse problem
depends on the choice of the prior p(θ). This can be seen directly by expanding the
term p(y, θ) = p(y|θ)p(θ) in F[q]. Intuitively, the prior must be “wide” enough so
that the mean of the posterior can be detected within the support of the prior with a rel-
atively high probability. In all our computations, we assume a priori that all parameters

are independent; therefore, the prior can be factorized as p(θ) =
(∏4

i=1 p(ξi )
)
p(ω).

In all datasets, we have chosen all components of the prior to be Gaussian distribu-
tions. Table 1 summarizes the choice of the Gaussian for each parameter and each
dataset. The mean values of ξi , i = 1, . . . , 4 for Aw = 0.79 and 0.84 are in fact the
estimates obtained by fitting the model using nonlinear least squares. The main rea-
son that motivates this choice is that, as was demonstrated in Banks et al. (2016)
and observed in our own analysis, these datasets do not sufficiently inform on all
parameters. The implications within the present Bayesian formulation is that, for
objective functions exhibiting multiple local maxima, a wide prior reflecting limited
prior knowledge would steer the algorithm toward one of these local maxima. Intu-
itively, the prior can be strengthened through deterministic parameter estimation (e.g.,
least squares), concentrating the prior around a smaller area which biased toward the
Bayesian posterior. Specifically, in the case Aw = 0.79 it was also observed that a
small discrepancy from the mean provided poor estimates of the posterior and it was
necessary to further decrease the variance of the prior. In fact, the posterior variances
(Table 2) converge to zero and the posteriors become essentially Dirac (point) distri-
butions. The situation for the datasets Aw = 0.87 and 0.91 has been less challenging,
and a choice of standard normal was proved to be sufficient for all parameters of the
model.
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Table 1 Prior distributions for each parameter and each dataset

log κ1 log κ2 log κ3 log κ4 log σ

Dataset 1

Aw = 0.79 N (0.039, 0.05) N (5.47, 0.05) N (5.75, 0.05) N (5.47, 0.05) N (−1, 0.05)

Aw = 0.84 N (−0.99, 1) N (3.70, 1) N (5.23, 1) N (3.69, 1) N (−1, 1)

Aw = 0.87 N (0, 1) N (0, 1) N (0, 1) N (0, 1) N (−1, 1)

Aw = 0.91 N (0, 1) N (0, 1) N (0, 1) N (0, 1) N (−1, 1)

Dataset 2

T = 15 N (0, 1) N (0, 1) N (0, 1) N (0, 1) N (−1, 1)

T = 20 N (0, 1) N (0, 1) N (0, 1) N (0, 1) N (−1, 1)

T = 25 N (0, 1) N (0, 1) N (0, 1) N (0, 1) N (−1, 1)

T = 30 N (0, 1) N (0, 1) N (0, 1) N (0, 1) N (−1, 1)

T = 35 N (0, 1) N (0, 1) N (0, 1) N (0, 1) N (−1, 1)

T = 40 N (0, 1) N (0, 1) N (0, 1) N (0, 1) N (−1, 1)

Table 2 Dataset 1 (pH = 5.4, T = 35 ◦C)

log κ1 log κ2 log κ3 log κ4 SSR

Aw = 0.79 0.0420 ± 0.00 5.4587 ± 0.00 5.7588 ± 0.00 5.4563 ± 0.00 0.0385

(NLS) 0.4762 ± 2.5748 5.7278 ± 13.2534 5.3447 ± 12.8739 5.7260 ± 13.2534 0.0388

Aw = 0.84 −0.9908 ± 0.2219 3.7172 ± 0.0025 5.2166 ± 0.2249 3.7071 ± 0.0025 1.0103

(NLS) 0.9942 ± 0.00 4.5824 ± 9.6803 4.3445 ± 9.4727 4.5773 ± 9.6803 1.0102

Aw = 0.87 −0.6269 ± 0.5471 0.8939 ± 0.0254 1.4446 ± 0.6360 0.3671 ± 0.0421 2.2046

(NLS) −1.4696 ± 0.00 0.5709 ± 1.1756 2.2721 ± 3.3506 −0.4308 ± 1.2208 2.0800

Aw = 0.91 0.2032 ± 0.6332 1.5118 ± 0.0565 1.2220 ± 0.1977 −0.3174 ± 0.0441 0.6566

(NLS) 0.2390 ± 0.2231 1.5085 ± 0.00 1.2669 ± 0.00 −0.3285 ± 0.00 0.6550

Estimated means and std’s of the Gaussian variational posteriors. Right column: sum of squared residuals

4.2 Inversion Using a Single Gaussian

The results of the optimization including the estimated values of the posterior param-
eters and the squared sum of residuals (SSR) are summarized in Table2 for the case
of varying Aw (and fixed pH = 5.4 and T = 35 ◦C), referred to as Dataset 1 and in
Table3 for the case of varying temperature T (and fixed Aw = 0.9 and pH = 5.23),
referred to as Dataset 2. To allow comparison with a deterministic approach, we also
display the parameter values computedusing a nonlinear least squares approach (NLS),
found in Browning (2016). One can see that in several cases the parameter estimates
found for each method have very small discrepancy, while in other cases the values
are completely different. However, the SSR values agree for all cases, indicating that
the fit is more or less equally good. The disagreement in the parameter values there-
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Table 3 Dataset 2 (Aw = 0.9, pH = 5.23)

log κ1 log κ2 log κ3 log κ4 SSR

T = 15 −1.5244 ± 0.4055 −0.0384 ± 0.0092 0.0029 ± 1.9714 0.0449 ± 0.008552 0.2536

(NLS) −1.8325 ± 3.2756 3.6227 ± 13.4559 −0.4155 ± 9.4254 3.6256 ± 13.4559 0.4610

T = 20 −1.9141 ± 0.3840 −0.1968 ± 0.0111 −1.0193 ± 0.3859 −0.4592 ± 0.0145 1.1327

(NLS) −2.2072 ± 0.00 1.7137 ± 5.4467 −2.9957 ± 0.6729 1.6789 ± 5.4467 0.0115

T = 25 −0.4976 ± 0.1344 0.3189 ± 0.0086 0.4005 ± 0.1063 −0.7676 ± 0.0254 0.5371

(NLS) −0.5447 ± 0.00 0.3001 ± 0.00 0.4574 ± 0.00 −0.8209 ± 0.00 0.4790

T = 30 0.0589 ± 0.3456 1.1051 ± 0.0455 0.3679 ± 0.2787 −0.2323 ± 0.1458 1.9249

(NLS) −0.5621 ± 0.00 1.0919 ± 0.00 1.2029 ± 0.00 −0.6539 ± 0.00 1.34

T = 35 0.0989 ± 0.3871 1.4900 ± 0.0755 0.6457 ± 0.3032 −0.0113 ± 0.1348 6.4204

(NLS) −1.1394 ± 0.00 1.5971 ± 0.00 2.6071 ± 0.00 −0.5447 ± 0.00 1.9100

T = 40 −0.3912 ± 0.5439 1.5802 ± 0.0461 2.6079 ± 0.3978 0.6162 ± 0.1344 1.7290

(NLS) −1.0788 ± 0.00 1.4951 ± 0.00 3.3854 ± 2.8558 0.1133 ± 0.00 1.55

Estimated means and std’s of the Gaussian variational posteriors. Right column: sum of squared residuals

fore indicates the existence of multiple solutions which in fact supports the value of
a probabilistic approach, that is, to impose a probability distribution on the set of
admissible parameter values. Furthermore, as observed in several cases, the standard
deviation computed with the NLS method is significantly larger than what is found
using the Bayesian approach, especially in the datasets with lower Aw or temperature
values that consist of fewer data points and describe essentially only death dynamics
(see for instance Aw = 0.79,Aw = 0.84 for Dataset 1 and T = 15 ◦C from Dataset
2). Figures 1 and 2, corresponding to Dataset 1 and Dataset 2, respectively, show the
uncertainty in the concentrations as a function of time t depicted with 95% credible
intervals and confirm the very good (from at least a qualitative perspective) agreement
with the experimental measurements in all cases. The sensitivities and the residuals
evaluated at the posterior means of the parameter values are shown in the middle col-
umn and are used below for parameter ranking. One interesting characteristic to note
here is the fact that some of the estimated values exhibit a relatively large standard
deviation, for instance in Dataset 1 log κ1 for Aw = 0.91, log κ3 for Aw = 0.87 and
again log κ3 in several cases for Dataset 2. At first, the wide posterior might indicate
that the particular parameter’s value does not measurably affect the model prediction.
This can be verified by inspecting the corresponding sensitivity plot and noting that
the curve decays quickly to zero, and therefore, the model output is constant with
respect to that particular parameter. The same conclusion of course can be drawn by
observing that the confidence bands that we obtain after propagating the uncertainty
through the model are still relatively tight in most cases. This feature here serves also
as our motivation for exploring posterior approximations withmore than one Gaussian
component as we see below for a specific dataset. More complex structures of the true
posterior are thus revealed. A more detailed analysis of each case separately is beyond
the scope of this work.
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Fig. 1 Dataset 1 (pH = 5.4, T = 35 ◦C). Left column model calibration for each dataset. Fit of the
predictive mean and confidence bands.Middle column plots of sensitivities evaluated at the posterior mean.
Right column plot of the residuals

4.3 Parameter Ranking

We next perform a model comparison between the cases where 1, 2, 3 or all 4 parame-
ters are estimated where in each case the remaining parameters are considered known,
assuming a fixed value. As was motivated by Banks et al. (2016), we first perform a
parameter ranking via a rank-revealing Q-R decomposition of the sensitivity matrix
F(κ), and then, we proceed by estimating the parameters of each model. We perform
this procedure specifically for the datasets Aw = 0.79 and 0.84 where it was seen that
our variational method required very specific prior knowledge to achieve convergence,
indicating that the available dataset does not support accurate parameter estimation.
For a comparison of the models, we use two criteria. First, the Bayesian information
criterion (BIC) (see Bishop 2006 Ch. 4.4.1), defined as

BIC = log p(y|κ∗) − 1

2
d log N (27)
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Fig. 2 Dataset 2 (Aw = 0.9, pH = 5.23). Left columnmodel calibration for each dataset. Fit of the predictive
mean and confidence bands. Middle column plots of sensitivities evaluated at the posterior mean. Right
column plot of the residuals
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Table 4 Aw = 0.79

log κ1 (log κ1, log κ4) (log κ1,log κ4,log κ2) (log κ1,log κ4,log κ2,log κ3)

Value 0.0639 (0.0410, 5.4564) (0.0683,5.4435,5.4457) (0.0420,5.4563,5.4587,5.7588)

F [q] −3.5387 −27.4319 −36.6993 −45.9994

BIC 1.0226 0.1850 −0.8449 −2.0355

Table 5 Aw = 0.84

log κ2 (log κ2, log κ1) (log κ2,log κ1,log κ4) (log κ2,log κ1,log κ4,log κ3)

Value 4.9359 (3.7172,−0.9908) (3.7176,−0.9912,3.7074) (0.1284,−0.8726,−0.1018, 0.0001)

F [q] −29.3267 −16.6511 −26.6623 −30.0136

BIC −25.1637 −4.3785 −5.7933 −7.2117

where p(y|κ) is the log likelihood evaluated at the maximum a posteriori (MAP)
estimate κ∗, d is the number of estimated parameters and N is the number of obser-
vations. Here we clarify that the value for κ∗ we use in our evaluations is the mean
of the variational posterior q(κ) which is Gaussian; therefore, it is the MAP estimate
if we assume that q is the true posterior (or at least a very good approximation). The
BIC is known to be valid in cases where N >> d. In our case, this is not true since we
only have very few observations. In addition to BIC, we present the values of F[q]
as a second criterion for model comparison. This is motivated by the fact that the
BIC was essentially proposed as a criterion that serves as an estimate of the evidence
p(y). Recall that in our optimization problem, F[q] is a lower bound of the evidence
so it can give us an additional idea about the true value of the evidence. In general,
highest values of BIC tend to suggest a preferable model and the sharpest the increase
in its value, the strongest the evidence that the model with the largest value is closest
to the truth. The computed values are shown in Tables 4 and 5. For the case Aw =
0.79, we observe that the values of both F[q] and BIC are decreasing as we keep
adding parameters in the model and the sharpest decrease occurs between the one- or
two-parameter models, thus indicating that the dataset supports accurate estimation of
only 1 parameter. For the case where Aw = 0.84, the two-parameter model achieves
the largest values for BIC and F[q], followed by the three-parameter model.

4.4 Inversion Using a Mixture of Gaussians

As mentioned previously, the posterior approximations we have obtained so far are
the optimal solutions of our optimization taking into account the constraint we have
imposed by fixing the approximating family to be the one consisting of singleGaussian
distributions. We are now exploring the case of employing Gaussian mixtures with
L > 1 components as the approximating family and compare our results with the
L = 1 case. Recall that we are solving the optimization problem defined in (11) or
equivalently
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Fig. 3 Empirical marginal and pairwise joint densities corresponding to the MCMC posterior samples

q∗ = arg min
q∈QL

KL [q||p] , (28)

where we took L = 1. By denoting the above solution q∗
L to indicate that is found in

QL and observing that QL ⊂ QL+1 for L ≥ 1, it is obvious that

min
q∈QL

KL [q||p] ≥ min
q∈QL+1

KL [q||p] (29)

which indicates that the solution that can be found in QL+1 should be preferable
over the one in QL if it achieves a smaller KL value (or a larger F[q∗

L+1] value).
We solve the optimization problem for L > 1 in order to investigate whether a better
solution can be found inwider families of Gaussianmixtures andwe present the results
below. For simplicity, we perform our simulations only on one set of observations,
namely the case Aw = 0.9, pH = 5.23 and T = 25 ◦C and for L = 2, 3, 4. Note
that the dimensionality of the optimization problem is 10L and therefore increases
arithmetically as we increase L . To allow further judgement of the obtained posterior
distribution, we have also computed an empirical posterior approximation based on
MCMC samples generated using the adaptive Metropolis–Hastings algorithm (Haario
et al. 2001). In particular, we generated 1.2 ·105 samples with a 20000-sample burn-in
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(a) (b)

(c) (d)

L = 1 L = 2

L = 4L = 3

Fig. 4 Empirical marginal densities of the ξi ’s and the empirical 2-d joint densities for L = 1, 2, 3, 4

period and a thinning strategy that keeps 1 out of 5 samples resulting in 2 ·104 samples.
The implementation was carried out using the python package PyMC1.

The empirical marginal and pairwise joint posteriors for MCMC are shown in
Fig. 3 while Fig. 4 shows the densities of the approximating posteriors found using
the variational approach with L > 1 along with the one that was found in the previous
subsection (L = 1). One can observe that by increasing the components of themixture,
the structure of the true posterior is slowly revealed, verifying that the L = 1 case,
even though satisfactory, might not by an accurate approximation inmany of the cases.
Overall we observe that the MCMC posteriors appear to be broader than the Gaussian
mixtures. This can indicated that more Gaussian terms are necessary to accurately

1 https://github.com/pymc-devs/pymc.
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Fig. 5 Posterior uncertainty propagation for L = 1, 2, 3, 4 (first two rows) and MCMC (bottom)

approximate the posterior. The joint densities of (ξ2, ξ3), (ξ2, ξ4) and (ξ3, ξ4) confirm
our previous guess that the Gaussian components are placed at the right locations that
reveal the true shape of the posterior as we keep increasing their number. In general,
however, the MCMC posterior should not be necessarily taken as the reference point
in our case. That means that the qualitative disagreement in the joint densities of
(ξ1, ξi ), ı = 2, 3, 4 might not indicate that our Gaussian mixture approximation is
poor. This is due to the fact that even MCMC algorithms can typically fail to detect
possible multimodal structure. In practice, once the chain visits one of the modes
it is unlikely that it will ever escape from it. To deal with such effects, one needs
to employ more sophisticated MCMC algorithms such as the Metropolis-adjusted
Langevin algorithm (MALA) (Roberts and Rosenthal 1998) which falls beyond the
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Table 6 F [q∗] values as a
function of L

L F [q∗]
1 −11.8953

2 −12.1081

3 −11.1929

4 −9.8656

scope of our analysis. The propagation results are shown in Fig. 5 and as we can see the
confidence bands slowly become narrower as the number of component increases and
are in excellent agreement with those obtained by MCMC. Overall we conclude that
the variational approach tends to slightly underestimate the uncertainty. Finally the
F[q∗] values obtained are shown in Table 6 where indeed it is verified that the L = 4
case achieves the largest value (that is the lowest KL value), suggesting a preferable
solution over the rest.

5 Conclusions

We have thus far presented a novel Bayesian approach for calibrating the stochastic
quasi-chemicalmodel for bacterial growth. The approach consists of treating themodel
parameters as random variables admitting a prior probability density which is updated
to its posterior using Bayes’ rule. Estimation of the posterior, or more precisely its
approximation, was performed using a variational method that finds the Gaussian
(mixture) density that is closest to the true posterior by minimizing their KL distance.

Experimental data associated with the QCM are sparse both in quantity and in its
parameter coverage. Credible model-based predictions both within and outside the
observed parameter range is facilitated by rationally constructed probabilistic models
of the parameters, and the ability to push these models forward through computa-
tional models. While the adopted Bayesian approach provided a rational formalism
for describing probabilistic content, our proposed variational procedurewas critical for
enabling efficient sampling from the posterior and thus for integrating the probabilistic
calibration step within a credible predictive engine.

In addition to the sensitivity estimates provided in the paper, a probabilistic char-
acterization permits a rational risk assessment and the development of mitigation
strategies that would not be possible otherwise. The confidence with which our pro-
posed procedure permits the evaluation of the posterior densities lends further credence
to their use in such decision-making.

Acknowledgements The authors gratefully acknowledge support fromUSArmyResearchOfficeContract
W911NF-14-C-0151.

Appendix A: Gradient Computation of the Log-joint Distribution
log p(y, θ)

In order to perform gradient-based optimization of the ELBO approximation F2[q]
with respect to {μ}i , {�i }i , i = 1, . . . , L , we need to compute its gradient vector with
entries
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∂

∂ζ
Fr [q] = ∂

∂ζ
H0[q] + ∂

∂ζ
Lr [q] (A.1)

where ζ = (μi ) j , (�i ) jk , for i = 1, . . . , L , j, k = 1, . . . , d and r = 0, 2. Below we
provide the details in computing the gradient of Lr [q], r = 0, 2.

A.1: Gradient of Lr [q]

For convenience, we set J (θ) := log p(y, θ). Then for r = 0, the derivatives of L0[q]
with respect to ζ = (μi ) j are

∂

∂ζ
L0[q] = 1

L

∂

∂θ j
J (μi ) (A.2)

and with respect to ζ = (�) jk are

∂

∂ζ
L0[q] = 0. (A.3)

For r = 2 and ζ = (�i ) jk , we get

∂

∂ζ
L2[q] = 1

2L

∂2

∂θ j∂θk
J (μi ). (A.4)

As mentioned above, the derivatives of L2[q] with respect to (μi ) j are not used in our
optimization scheme and therefore are not computed here.

A.2: Derivatives of J(θ)

First we rewrite θ = (ξ , ω) and expand

J (θ) = J (ξ , ω) = log p(y|G(ξ), ω) + log p(ξ) + log p(ω). (A.5)

Throughout our numerical examples, we work with an isotropic Gaussian likelihood
(ε ∼ N (0, σ IN )); therefore, we set

L(G(ξ), ω; y) := log p(y|G(ξ), ω) = logN (y|G(ξ), e2ωIN ), (A.6)

and using the chain rule, we have

∂ J

∂ξ j
=

N∑

s=1

∂L

∂Gs
∂Gs
∂ξ j

+ 1

p(ξ)

∂p(ξ)

∂ξ j
(A.7)

∂ J

∂ω
= ∂L

∂ω
+ 1

p(ω)

dp(ω)

dω
(A.8)
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∂2 J

∂ξ j∂ξk
=

N∑

s,t=1

∂2L

∂Gs∂Gt
∂Gs
∂ξ j

∂Gt
∂ξk

+
N∑

s=1

∂L

∂Gs
∂2Gs

∂ξ j∂ξk

+ 1

p(ξ)

∂2 p(ξ)

∂ξ j∂ξk
− 1

p(ξ)2

∂p(ξ)

∂ξ j

∂p(ξ)

∂ξk
(A.9)

∂2 J

∂ω2 = ∂2L

∂ω2 + 1

p(ω)

d2 p(ω)

dω2 − 1

p(ω)2

dp(ω)

dω
(A.10)

∂2 J

∂ξ j∂ω
=

N∑

s=1

∂2L

∂Gs∂ω

∂Gs
∂ξ j

(A.11)

In the above expressions, it becomes clear that the Jacobian andHessian of the forward
model G(ξ) need to be computed. As mentioned in our application, the covariance
matrices of the Gaussian mixtures components are taken to be diagonal which implies
that only the diagonal elements of the Hessian of G(ξ) are necessary.

A.3: Log-Likelihood Derivatives

The derivatives of the log-likelihood function required for the expression in the pre-
vious subsection are given as follows:

∂L

∂Gs = e−2ω(ys − Gs(ξ)) (A.12)

∂L

∂ω
= e−ω

(
||y − G(ξ)||22e−2θ − k + 1

)
(A.13)

∂2L

∂ω2 = e−ω
(
k − 1 − 3||y − G(ξ)||22e−2ω

)
(A.14)

∂2L

∂Gs∂Gt = −e−2ω (A.15)

∂2L

∂Gs∂ω
= −2e−3ω (ys − Gs(ξ)) . (A.16)

A.4: Derivatives of the Quasi-chemical Model

For the sake of generality and due to the presence of a nonlinear term in the quasi-
chemical model, we present the general derivation of the system of ODEs satisfied by
the derivatives of a solution u(t; ξ) of the QCMwith respect to its parameters. Assume
u(t; ξ) satisfies

u̇ = g(u, t; ξ ) (A.17)

u(0) = u0, (A.18)
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where ξ ∈ R
4 are parameters and the initial condition is fixed and independent of ξ .

By simply differentiating the above system of equations, one can derive the following
initial value problem satisfied by vi j = ∂ui/∂ξ j :

v̇i j =
4∑

s=1

∂gi
∂us

vs j + ∂gi
∂ξ j

(A.19)

vi j (0) = 0. (A.20)

Similarly, for the second derivatives wi jk = ∂2ui/(∂ξ j∂ξk) we get

ẇi jk =
4∑

s=1

∂gi
∂us

wi jk +
4∑

s,t=1

∂2g

∂us∂ut
vs jvtk + ∂2gi

∂ξ j∂ξk
(A.21)

wi jk = 0. (A.22)

In practice, during numerical implementation one need to first solve (A.17) and then
solve (A.19) using the solution of the former as forcing. At last, (A.21) can be solved
by using both the QCM solution and its gradient as forcing.
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