
Volume 5, Issue 3 2009 Article 7

Journal of Quantitative Analysis in
Sports

Monte Carlo Tennis: A Stochastic Markov
Chain Model

Paul K. Newton, University of Southern California
Kamran Aslam, University of Southern California

Recommended Citation:
Newton, Paul K. and Aslam, Kamran (2009) "Monte Carlo Tennis: A Stochastic Markov Chain
Model," Journal of Quantitative Analysis in Sports: Vol. 5: Iss. 3, Article 7.

DOI: 10.2202/1559-0410.1169

©2009 American Statistical Association. All rights reserved.



Monte Carlo Tennis: A Stochastic Markov
Chain Model

Paul K. Newton and Kamran Aslam

Abstract

We develop a stochastic Markov chain model to obtain the probability density function (pdf)
for a player to win a match in tennis. By analyzing both individual player and 'field' data (all
players lumped together) obtained from the 2007 Men's Association of Tennis Professionals
(ATP) circuit, we show that a player's probability of winning a point on serve and while receiving
serve varies from match to match and can be modeled as Gaussian distributed random variables.
Hence, our model uses four input parameters for each player. The first two are the sample means
associated with each player's probability of winning a point on serve and while receiving serve.
The third and fourth parameter for each player are the standard deviations around the mean, which
measure a player's consistency from match to match and from one surface to another (e.g. grass,
hard courts, clay). Based on these Gaussian distributed input variables, we use Monte Carlo
simulations to determine the probability density functions for each of the players to win a match.
By using input data for each of the players vs. the entire field, we describe the outcome of
simulations based on head-to-head matches focusing on four top players currently on the men's
ATP circuit. We also run full tournament simulations of the four Grand Slam events and gather
statistics for each of these four player's frequency of winning each of the events and we describe
how to use the results as the basis for ranking methods with natural probabilistic interpretations.
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1 Introduction

A Markov chain model for tennis was developed in Newton and Keller (2005).
As in previous models of Carter and Crews (1974) and G.H. Pollard (1983), it
was based on a single input parameter for each player — the player’s probabil-
ity of winning a point on serve. This parameter was chosen as the total number
of points won on serve divided by total points served for a player taken over
many matches against a field of opponents. By solving a hierarchical system
of recursion equations which links points to games, games to sets, and sets to
matches, analytical formulas were worked out for each player’s probability of
winning a game, set, match, and tournament under all of the various scoring
systems currently used on the men’s (ATP) and women’s (WTA) professional
circuits. Because the input parameter is held constant throughout each match
(interpreted as an assumption that points in tennis are independent, identi-
cally distributed random variables), the results, in a sense, model the way
the scoring system in tennis effects outcomes as much as modeling individual
player characteristics. More recently, Newton and Aslam (2006) explored non-
iid effects by analyzing ensembles of Monte Carlo simulations of tournaments,
with player parameters varying from point to point based on the notion of the
point’s ‘importance’, as introduced in Morris (1977). There have been several
recent attempts at predicting outcomes of tennis matches based on player data.
For example, the work of Barnett and Clarke (2005) combines player data in
an attempt to predict outcomes, while earlier work of Clarke and Dyte (2000)
uses the official rating system as input towards a simulation of tournaments.
Walker and Wooders (2001) use minimax theory from econometrics to analyze
tournament data. Most recently, the work of O’Malley (2008) builds on that
of Newton and Keller (2005).1

In this paper, we develop a stochastic Markov chain model (see an in-
troduction to these techniques in Asmussen and Glynn (2007)) based on the
realization that a player’s probability of winning a point on serve is not con-
stant throughout a tournament, but varies from match to match and is better
modeled as a random variable whose probability density function closely re-
sembles a Gaussian (around the sample mean). Part of the reason a player’s
probability of winning a point on serve varies from match to match is because
it depends on his opponent’s probability of winning a point on receiving serve
(the two must sum to one), and return of serve ability varies from player to
player. Thus, we develop a new model, which uses four input parameters for

1Current state-of-the-art will be highlighted in the upcoming 2nd International Con-
ference on Mathematics in Sport IMA Sport 2009 (Groningen, June 17–19, 2009
http://www.ima.org.uk/Conferences/maths sport/index.html ).
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each player. The first two are the sample means associated with each player’s
probability of winning a point on serve and while receiving serve. The third
and fourth parameter for each player are the standard deviations around the
mean, which measure the player’s consistency on serve and on return of serve
from match to match and on various surfaces, such as grass (Wimbledon),
hard courts (Australian Open, US Open) and clay (French Open). Physical
characteristics of these surfaces are discussed in Cross (2008). Suffice it to
say that it is widely believed (and supported by the data shown in figures 2
- 5) that the fastest surface (grass) favors dominant servers (offensive play),
whereas the slowest surface (clay) favors receivers and consistency (defensive
play). Using the analytical formulas obtained by solving the Markov chain sys-
tem, in conjunction with Monte Carlo simulations using Gaussian distributed
inputs, we obtain the probability density function (pdf) for a player to win a
game on serve which, in the parameter range of interest, has an approximate
normal distribution. We then run targeted Monte Carlo simulations of head-
to-head player matches to obtain the pdf’s for a player to win a match. A nice
introduction to the properties and use of probability density functions can be
found in Bendat and Piersol (1986). We also run full tournament simulations,
using Gaussian distributed input data for the 128 players in the tournament, to
obtain the statistical frequency of each player winning each of the four Grand
Slam events, as well as their statistical frequency of winning n rounds. Then,
the sample means obtained from these simulations are used as entries to a
preference matrix (see Keener (1993)) whose dominant eigenvector (eigenvec-
tor corresponding to largest eigenvalue) provides a ranking of the players. To
our knowledge, this is the first stochastic player based model for tennis that
has the ability to yield rankings with a natural probabilistic interpretation.

Section §2 describes our model in detail. First, we analyze data obtained
from the 2007 men’s Association of Tennis Professionals (ATP) circuit for the
‘field’ (all player data lumped together), the four Grand Slam events, and four
top players in the Men’s ATP circuit: Roger Federer, Rafael Nadal, Andy Rod-
dick, and James Blake. This sets the stage for viewing a player’s probability
of winning a point on serve or while receiving serve as (truncated) Gaussian
distributed random variables. We describe the Markov chain equations whose
solution links our Gaussian distributed inputs to the probability density func-
tion (pdf) for each player winning a match. We detail in this section how a
player’s return of serve ability is used in the model, and how the outputs de-
pend on each player’s standard deviation around the mean. Section §3 details
the results of Monte Carlo simulations based on the full stochastic Markov
chain model. We focus on individual player match-ups between four top play-
ers currently on the ATP tour and the results of full Grand Slam simulations
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using extensive player data from the 2007 ATP season. We also describe how
to use the results of the Monte Carlo simulations as inputs to a matrix based
ranking system.

2 The model

The starting point for our model are the probability density functions (pdf’s)
for each player to win a point on serve, denoted ps

A(x) (for player A), and
for each to win a point while receiving serve, denoted pr

A(x). We interpret
these variables as the player’s probability as measured against the ‘field’ of
players, as opposed to his probability as measured against any one particular
opponent. When we refer later to player A’s probability of winning a point
on serve against a specific opponent, say player B, we will use the notation
ps

A|B(x) and pr
A|B(x) to indicate conditional probabilities. We show in this

section that the pdf’s can be taken as truncated Gaussian distributions, with
support in the interval [0, 1] (their tails are sufficiently far from 0 and 1), which
are completely characterized by their respective means, µs

A, µr
A, and standard

deviations σs
A, σr

A.

2.1 Data

For each match played on the men’s ATP circuit in the 2007 season, we obtain
the percentage of points won on serve for each player and the percentage of
points won while receiving serve. Figure 1 shows all of the combined player
data, which we call ‘the field’, obtained by lumping together the data for 330
players over 59 tournaments, on all three surfaces (grass, clay, hard courts)
over the full 2007 season. We denote the pdf’s associated with ‘field’ data by
ps

f (x) (pdf for the field to win a point on serve), and pr
f (x) (pdf for the field

to win a point receiving serve). The corresponding means are denoted µs
f , µr

f ,
with standard deviations denoted σs

f , σr
f . The figure shows histogramed data

for points won on serve, and points won while receiving serve (scaled to have
unit area), together with the associated truncated Gaussian distributions with
sample mean µs

f = 0.63316 and sample standard deviation σs
f = 0.094779, and

µr
f = 0.36684 and σr

f = 0.094779. Note that µs
f + µr

f = 1, and σs
f = σr

f . We
performed a chi-square goodness-of-fit test for normality with a sample size
N = 5245, and found χ2 = 11.45, using values χ2 ≤ χ2

9;0.10 = 14.68 from Table
A.3 in Bendat and Piersol (1986) that the hypothesis of normality is accepted
at the α = 0.10 level of significance. Our conclusion is that the probability
density functions for the field can effectively be viewed as truncated normally
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Figure 1: The ‘field’ data are obtained by lumping together 330 players over 59 tournaments
in the 2007 season. Plots show the histograms and Gaussian fits of the probability of winning
a point on serve and receiving serve. Sample mean µsf = 0.63316. Sample standard deviation
σsf = 0.094779. Sample mean µrf = 0.36684. Sample standard deviation σrf = 0.094779.

distributed random variables, where :

p̃s
f (x) = (σs

f

√
2π)−1 exp −

(x− µs
f )2

2(σs
f )2

)
, (−∞ < x <∞) (1)

ps
f (x) = Cp̃s

f (x), (0 ≤ x ≤ 1), otherwise 0 (2)∫ ∞
−∞

ps
f (x)dx = C

∫ 1

0

p̃s
f (x)dx = 1,
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p̃r
f (x) = (σr

f

√
2π)−1 exp −

(x− µr
f )2

2(σr
f )2

)
, (−∞ < x <∞) (3)

pr
f (x) = Cp̃r

f (x), (0 ≤ x ≤ 1), otherwise 0 (4)∫ ∞
−∞

pr
f (x)dx = C

∫ 1

0

p̃r
f (x)dx = 1.

The four defining parameters for the probability density functions associated
with the field are µs

f , µ
r
f , σ

s
f , σ

r
f .

Figure 2: Field data for the 2007 Australian Open (hard court) obtained by lumping together
128 players. Shown are histograms and Gaussian fits to data using sample means and
standard deviations.

Breaking the data down further, we show in figures 2 - 5 the field data
for each of the four Grand Slam tournaments in the order in which they are
played. Figure 2 shows data from the 2007 Australian Open (hard courts),
histogramed together with the Gaussian fit, figure 3 shows data from the 2007
French Open (clay), figure 4 shows data from the 2007 Wimbledon (grass), and
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Figure 3: Field data for the 2007 French Open (clay court) obtained by lumping together 128
players. Shown are histograms and Gaussian fits to data using sample means and standard
deviations.

figure 5 shows data from the 2007 US Open (hard courts). Because the data for
each tournament is much more sparse than for the full season, the histograms
are not as filled out as those in figure 1, yet the Gaussian distributions still
model the density functions quite accurately. More specifically, for figures 2 -
5, using the chi-square goodness-of-fit test for normality, we found acceptance
at the α = 0.10 level of significance.

The data for the four Grand Slam events are summarized in Table 1.
The sample mean for points won on serve (receiving serve) are highest (lowest)
on grass, which is the fastest surface and favors players with dominant serves.
The opposite is true for the slowest surface (clay). These statistical conclusions
corroborate the physical characteristics of the respective surfaces with respect
to the way the ball bounces, as discussed in a recent article by Cross (2008).
Figures 6 - 9 show the individual player data taken over the full 2007 season for
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Figure 4: Field data for the 2007 Wimbledon tournament (grass) obtained by lumping to-
gether 128 players. Shown are histograms and Gaussian fits to data using sample means
and standard deviations.

four top players of interest: Roger Federer (#1 2007 year end ranking), Rafael
Nadal (#2 2007 year end ranking), Andy Roddick (#6 2007 year end ranking),
and James Blake (#13 2007 year end ranking). Our notation is to underscore
the variable using the initials of the player, hence Roger Federer’s mean value
for points won on serve is denoted µs

RF (as measured against the ‘field’). Once
again, although the data is much more sparse than that used in figure 1, we
still conclude that the histograms would fill out Gaussian distributions if more
data were available. Specifically, for these figures, we performed a chi-square
goodness-of-fit test for normality, and found that the hypothesis of normality
is accepted at (at least) the α = 0.10 level of significance. For figure 7 (receive)
and figure 9 (serve), acceptance was at the α = 0.05 level of significance, while
for figure 9 (receive) acceptance was at the α = 0.01 level of significance.
We note that Andy Roddick has the highest sample mean for points won on

7

Newton and Aslam: Monte Carlo Tennis



Figure 5: Field data for the 2007 US Open (hard court) obtained by lumping together 128
players. Shown are histograms and Gaussian fits to data using sample means and standard
deviations.

serve of the four players, with value µs
AR = 0.73089 (significantly higher than

the field value µs
f = 0.63316), while Roger Federer’s sample mean for serve is

lower, with value µs
RF = 0.70714. This fact alone would lead to a prediction

that Roddick would win 63% of his matches against Federer using the theory
developed in Newton & Keller (2005) and Pollard (1983) all of whom use the
percentage of points won on serve as the single input parameter. However,
Federer won all three of their head-to-head matches in 2007, has a career
record of 15 − 2 against Roddick, and ended the year with the #1 ranking.
There are two main reasons for this. First, although Roddick had the highest
sample mean for points won on serve, his standard deviation for serve is also
the highest, with value σs

AR = 0.084164, which we interpret as a measure of
lack of consistency on serve. Also, he had the lowest sample mean for points
won while receiving serve, with value µr

AR = 0.34411 (compared with the field
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Event µs σs µr σr

Australian Open (hard) 0.62358 0.1009 0.37642 0.1009
French Open (clay) 0.61677 0.081244 0.38323 0.081244
Wimbledon (grass) 0.6599 0.076545 0.3401 0.076545
US Open (hard) 0.63676 0.090448 0.36324 0.090448

Table 1: Summary of field data (all 128 player data lumped together over all rounds) broken
down for each of the four 2007 Grand Slam events.

value µr
f = 0.36684). Both of these additional parameters play an important

role in our model.

2.2 The Markov system

The equation which links player A’s probability of winning a point on serve,
denoted pA, to his probability of winning a game on serve, pG

A, is the formula
(first obtained by Carter & Crews (1974)):

pG
A = (pA)4[1 + 4qA + 10(qA)2] + 20(pAqA)3(pA)2[1− 2pAqA]−1; (5)

qA = 1− pA.

In the original non-stochastic model developed in Newton and Keller (2005),
pA ∈ [0, 1] is taken as a constant and was taken to be the sample mean of
points won on serve divided by the total points served over a sufficiently large
number of matches.

To obtain corresponding formulas for the probability of winning a set
and a match, let pS

A denote the probability that player A wins a set against
player B, qS

A = 1−pS
A. To calculate pS

A in terms of pG
A and pG

B, we define pS
A(i, j)

as the probability that in a set, the score becomes i games for A, j games for
B, with A serving initially. Then

pS
A =

4∑
j=0

pS
A(6, j) + pS

A(7, 5) + pS
A(6, 6)pT

A. (6)

Here, pT
A is the probability that A wins a 13-point tiebreaker with A serving

initially, and qT
A = 1− pT

A.
To calculate the terms pS

A(i, j) needed in (6), we solve the following
system of recursion equations:
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Figure 6: Data for Roger Federer on serve and receive of serve for full 2007 season. Shown
are histograms and Gaussian distributions using sample means and standard deviations.

For 0 ≤ i, j ≤ 6 :

if i− 1 + j is even: pS
A(i, j) = pS

A(i− 1, j)pG
A + pS

A(i, j − 1)qG
A (7)

omit i− 1 term if j = 6, i ≤ 5;

omit j − 1 term if i = 6, j ≤ 5

if i− 1 + j is odd: pS
A(i, j) = pS

A(i− 1, j)qG
B + pS

A(i, j − 1)pG
B (8)

omit i− 1 term if j = 6, i ≤ 5;

omit j − 1 term if i = 6, j ≤ 5

along with the initial conditions:

pS
A(0, 0) = 1; pS

A(i, j) = 0 if i < 0, or j < 0. (9)
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Figure 7: Data for Raphael Nadal on serve and receive of serve for full 2007 season. Shown
are histograms and Gaussian distributions using sample means and standard deviations.

In terms of pS
A(6, 5) and pS

A(5, 6), we have

pS
A(7, 5) = pS

A(6, 5)qG
B ; pS

A(5, 7) = pS
A(5, 6)pG

B. (10)

To calculate the probability of winning a tiebreaker, pT
A, in terms of pA

and pB, we define pT
A(i, j) to be the probability that the score becomes i for

A, j for B in a tiebreaker with A serving initially. Then

pT
A =

5∑
j=0

pT
A(7, j) + pT

A(6, 6)
∞∑

n=0

pT
A(n+ 2, n)

=
5∑

j=0

pT
A(7, j) + pT

A(6, 6)pAqB [1− pApB − qAqB]−1 (11)

To calculate pT
A(i, j), we solve:
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Figure 8: Data for Andy Roddick on serve and receive of serve for full 2007 season. Shown
are histograms and Gaussian distributions using sample means and standard deviations.

For 0 ≤ i, j ≤ 7 :

if i− 1 + j = 0, 3, 4, ..., 4n− 1, 4n, ...

pT
A(i, j) = pT

A(i− 1, j)pA + pT
A(i, j − 1)qA (12)

omit j − 1 term if i = 7, j ≤ 6

omit i− 1 term if j = 7, i ≤ 6

if i− 1 + j = 1, 2, 5, 6, ..., 4n+ 1, 4n+ 2, ...

pT
A(i, j) = pT

A(i− 1, j)qB + pT
A(i, j − 1)pB (13)

omit j − 1 term if i = 7, j ≤ 6

omit i− 1 term if j = 7, i ≤ 6

with the initial conditions:

pT
A(0, 0) = 1; pT

A(i, j) = 0 if i < 0, or j < 0. (14)
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Figure 9: Data for James Blake on serve and receive of serve for full 2007 season. Shown
are histograms and Gaussian distributions using sample means and standard deviations.

We then calculate pT
A by using the solution of (12)–(14) in (11). This

allows us to calculate pS
A by using the solution of (7)–(9), and (10), with the

result for pT
A, in (6). Finally, using the formulas obtained for pS

A and pS
B, we

obtain player A’s probability of winning his match against player B in the
three out of five set format:

pM
A = (pS

A)3 + 3(pS
A)3pS

B + 6(pS
A)3(pS

B)2. (15)

More details along with all the solutions of the recursion formulas can be found
in Newton & Keller (2005).

2.3 Probability density functions

In the context of the current model, pA should be interpreted as the sample
mean µs

A associated with the truncated Gaussian distribution (2) for winning
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−0.2

0

0.2

0.4

0.6

0.8

1

pA

p
G A

Analytical solution

Curve fit y = 2.50x− 0.75

Figure 10: The functional relation pGA (probability of winning a game on serve) vs. pA
(probability of winning a point on serve) as given in formula (5) which links points to games,
together with the tangent line approximation taken at value pA = 0.5.

points on serve, while pG
A should be interpreted as the sample mean associated

with a player’s probability of winning a game on serve. The two are related
to each other via the equation (5) which we plot in figure 10, together with
the tangent line approximation to the curve at the sample mean for the field
pA = 0.50. Note that in this region, the graph is highly linear. Because of
this, the probability density function governing games won on serve must be
linearly related (i.e. proportional) to the pdf governing points won on serve (in
the approximate range 0.3 < pA < 0.7). Since ps

A(x) is taken to be Gaussian
distributed, so must pG

A(x). To obtain the pdf pG
A(x), we run a Monte Carlo

simulation based on an ensemble of 10, 000 matches between two players with
Gaussian distributed input density functions ps

A(x), ps
B(x). Figures 11, 12 and

13 show the results of a Monte Carlo simulation between two players with
Gaussian distributed inputs. Figure 11 shows a typical convergence plot (log-
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log scale) using inputs µs
A = 0.63, σs

A = 0 for player A, and µs
B = 0.65, σs

B = 0
for player B. As is typical for all parameter values we have run, convergence
to the sample mean has power-law form. Figures 12, 13 show the probability
density function pG

A(x) for a player to win a game, using input values for
ps

A(x) to be µs
A = 0.63316, with σ2

A = 0.094779 (figure 12) and µA = 0.8,
with σ2

A = 0.094779 (figure 13). The mean values, in going from points to
games, shifts as predicted by the curve shown in figure 10. In particular, for
µA = 0.63316 = pA, we obtain µ = 0.74367 = pG

A, while for µA = 0.8 = pA, we
obtain µ = 0.92793 = pG

A. Our main conclusion is that the distributions for
pG

A(x) remain (approximately) normally distributed throughout a wide range
of values.

10
2

10
3

10
4

10
−2

10
−1

N

µ
G A

Convergence for µ=0.63 σ=0 vs µ=0.65 σ=0

Monte Carlo

Curve fit: β= -0.49192

Figure 11: Convergence plot (log-log) showing µGA (sample mean associated with player A’s
probability of winning a game on serve) vs. N (number of matches simulated). The input
parameters for the simulation are µA = 0.63, σA = 0, µB = 0.65, σB = 0.06. Data shows
that the convergence is of power-law form (µGA(N)− µGA(∞)) ∼ N−β , β ≈ 0.49192.
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0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

2
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12

14
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18

x

P
G A

PG
A µ=0.74367 σ=0.023639

Figure 12: Probability density function pGA(x) obtained from Monte Carlo simulations of
300, 000 games. Density functions show clear Gaussian form with sample means predicted
by the curve shown in figure 10. µA = 0.63316, with σ2

A = 0.094779.

2.4 Consistency

A player’s consistency from match to match is measured by his standard devi-
ations on points won on serve and return of serve. To see the effect of varying
this parameter, we show two plots in figures 14 and 15. In figure 14, player A’s
mean value for points won on serve is taken to be µA = 0.71, while his standard
deviation varies 0 ≤ σA ≤ 0.1. Player B is the weaker player, with mean value
for points won on serve taken as µB = 0.68. We take his standard deviation
to be σB = 0, hence he is the more consistent player. The figure shows that as
the standard deviation for player A increases, his probability of winning the
match decreases. Thus, for the better server (i.e. one with higher mean value),
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0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0
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x
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PG
A µ=0.92793 σ=0.015078

Figure 13: Probability density function pGA(x) obtained from Monte Carlo simulations of
300, 000 games. Density functions show clear Gaussian form with sample means predicted
by the curve shown in figure 10. µA = 0.8, with σ2

A = 0.094779.

lack of consistency (higher standard deviation) hurts his chances of winning
the match. In figure 15, we choose parameter values µA = 0.68 for player A as
we vary his standard deviation: 0 ≤ σA ≤ 0.1. For player B, we take values
µB = 0.71 with σB = 0. Here, as player A’s standard deviation increases,
so do his chances of winning the match. Interestingly, for the weaker server
(the one with lower mean value for points won on serve), lack of consistency
actually increases his chance of winning the match. Thus, a player’s standard
deviation for points won on serve certainly effects his chances of winning or
losing a match.

A second important and interesting point regarding a player’s standard
deviation is shown clearly in figures 12 and 13. The standard deviations as-
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sociated with the pdf’s at the point level decrease significantly at the game
level. Thus, a player’s lack of consistency in winning points on serve as mod-
eled by his standard deviation in pA(x) becomes less significant in the pdf
pG

A(x). Finally, we point out the connection between the size of the variance
of an outcome and the length of the contest. It has been pointed out (see
Newton and Keller (2005) and O’Malley (2008)) that upsets occur less often
in best out of five set contests than in best out of three set contests. Shorter
contests have higher variability and thus more chance for upsets. This is also
true in other sports, where upsets are more frequent in individual games than
in playoff series. We mention other recent studies of the effects of stochastic
variances in paired comparison models, such as the work of Glickman (1999,
2001).

0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σA

P
M A

PM
A vs σ for 10000 matches with µA=0.71 µB =0.68 σB =0

Monte Carlo

Curve fit: y=-0.82636x+0.67719

Figure 14: The effect of varying a player’s standard deviation as a measure of his consistency
from match to match. µA = 0.71, 0 ≤ σA ≤ 0.1; µB = 0.68, σB = 0.
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Figure 15: The effect of varying a player’s standard deviation as a measure of his consistency
from match to match. µA = 0.68, 0 ≤ σA ≤ 0.1; µB = 0.71, σB = 0.

2.5 Implementation of the full model

We now describe how the full model is implemented. In particular, we first
describe how each player’s Gaussian distributed probability of winning a point
on receiving serve is used in the context of the Markov model. In a match
between player A and player B, A either wins a point on serve (with probability
ps

A|B), or he loses a point on serve, in which case his opponent wins the point

on return of serve (with probability pr
B|A). Therefore, we have:

ps
A|B + pr

B|A = 1, (16)

pr
A|B + ps

B|A = 1. (17)
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Also, since the ‘field’ effectively plays itself, we have:

ps
f + pr

f = 1. (18)

From these equations it is clear that there is a balance between a player’s prob-
ability of winning a point on serve and his opponents probability of winning a
point on return of serve. An increase in one comes at the expense of the other.
When running a Monte Carlo simulation in a head-to-head matchup between
players A and B, we do not use direct head-to-head match data (as typically
there is not enough available), but we use each of their results measured against
the field. For this, we have:

ps
A|f + pr

f |A = 1, (19)

pr
A|f + ps

f |A = 1, (20)

and

ps
B|f + pr

f |B = 1, (21)

pr
B|f + ps

f |B = 1. (22)

Adding (19) with (22) and (20) with (21) and re-arranging gives:

ps
A|f + pr

B|f = 2− (pr
f |A + ps

f |B), (23)

pr
A|f + ps

B|f = 2− (pr
f |A + ps

f |B). (24)

Then, we subtract off (18) from (23), (24) which gives

ps
A|f + (pr

B|f − pr
f ) = 1− (pr

f |A + ps
f |B − ps

f ) ≡ α, (25)

ps
B|f + (pr

A|f − pr
f ) = 1− (pr

f |A + ps
f |B − ps

f ) ≡ α. (26)

The second terms on the left, (pr
B|f − pr

f ) and (pr
A|f − pr

f ) are called ‘field-
adjusted’ variables. They measure the deviation of a player’s return of serve
ability from that of the field. We will use the ‘tilde’ notation to denote field
adjusted variables. Hence

p̃r
A|f ≡ pr

A|f − pr
f (27)

p̃r
B|f ≡ pr

B|f − pr
f . (28)

Then, eqns (25), (26) become

ps
A|f + p̃r

B|f = α, (29)

ps
B|f + p̃r

A|f = α. (30)
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In a head-to-head simulation between players A and B, eqn (29) tells us
that to include the influence of player B’s ability to receive serve, as measured
by the ‘field adjusted’ term p̃r

B|f , we simply adjust the serve parameter for

player A, ps
A|f , so that the sum, as shown in (29), stays constant. An increase

in one comes at the expense of the other. Likewise, to include the influence
of player A’s ability to receive serve, as measured by the ‘field adjusted’ term
p̃r

A|f , we adjust the serve parameter for player B, ps
B|f , so that the sum (30)

stays constant. In short, we account for a player’s ability to win a point on
return of serve by adjusting his opponent’s probability of winning a point on
serve, either up or down depending on whether the return of serve ability is
better or worse than that of the field.

As an example, in running a simulation between Roger Federer and
Rafael Nadal, Federer’s sample mean (measured against the field) for points
won on serve is µs

RF = 0.70714, while his sample mean for points won on receive
of serve is µr

RF = 0.41289. For Rafael Nadal, those values are µs
RN = 0.6877

and µr
RN = 0.42943. The field mean for return of serve is µr

f = 0.36684. We
first calculate the difference between each players return of serve value with
that of the field (i.e. the ‘field adjusted’ value) which we denote with a ‘tilde’,
hence:

µ̃r
RF ≡ µr

RF − µr
f = 0.41289− 0.36684 = .04605 (31)

µ̃r
RN ≡ µr

RN − µr
f = 0.42943− 0.36684 = .06259. (32)

Then, we use ‘player adjusted’ values for points won on serve by taking:

µ̃s
RF = µs

RF − µ̃r
RN = 0.70714− .06259 = 0.64455 (33)

µ̃s
RN = µs

RN − µ̃r
RF = 0.6877− .04605 = .64165. (34)

It is these ‘player adjusted’ values, µ̃s
RF , µ̃s

RN that we actually use as inputs
to the truncated Gaussian distributions governing each player’s probability
distribution of winning a point on serve. Thus, each player’s mean probability
of winning a point on serve is adjusted depending on how strong his opponents
return of serve ability is. A player will win fewer points on serve playing against
an opponent with a stronger return of serve than one with a weaker return
of serve. In this way, return of serve ability, while playing an important role
in our model, manifests itself only by adjusting each players probability of
winning a point on his own serve.

Based on these player adjusted values as inputs to the truncated Gaus-
sian distributions, one realization of a statistical simulation between player A
and player B proceeds by:
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Player µs σs µr σr

J. Blake (13) 0.67364 0.078341 0.39102 0.073779
R. Federer (1) 0.70714 0.072314 0.41289 0.070689
R. Nadal (2) 0.6877 0.083207 0.42943 0.10075
A. Roddick (6) 0.73089 0.084164 0.34411 0.080516

Table 2: Player data compiled for the full 2007 ATP season. Year end ranking is shown
in parenthesis. Note that Roddick has the highest percentage of points won on serve, while
Nadal has the highest percentage of points won on receive of serve, yet neither ended the
season with the top ranking.

(i) Choosing a value for pA and pB for use in the Markov chain formulas
described in §2(b). This is done by drawing a random number with probability
density function given by the truncated Gaussian distribution appropriate to
each player, with parameters suitably adjusted for the head-to-head encounter;

(ii) Calculating each player’s probability of winning a game, set, and match
by solving the Markov chain formulas to obtain pM

A , and pM
B .

Then, to obtain a statistical ensemble, we:

(iii) Repeat these two steps 30, 000 times (choosing a new random value for
each player, for each simulation) to obtain a statistical ensemble from which
we obtain the probability density functions shown, for example, in figures 16 -
21. Sample means and standard deviations are then calculated for each of the
ensembles. Results from head-to-head simulations between players and full
tournament simulations are described in the next section.

3 Monte Carlo simulations

In this section we describe the results of our Monte Carlo simulations of head-
to-head matches between Roger Federer, Rafael Nadal, Andy Roddick, and
James Blake, using as input, their player data from the 2007 season, as shown
in figures 6 - 9 and summarized in Table 2. We also describe the outcome of
full tournament simulations of each of the four Grand Slam events using two
different methods for obtaining ensembles.

3.1 Head-to-head matches

As shown in Table 2, Federer does not have the highest mean value for points
won on serve, or the highest mean value for points won on receive of serve,
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Figure 16: Histogram and Gaussian distribution of head-to-head match-ups based on 30,000
simulated matches using the Monte Carlo model. Bin size is 300 matches. The sample
mean associated with Federer’s probability of winning vs. Roddick is µRF |AR = 0.60733,
with variance σRF |AR = 0.027796.

but he finished the 2007 season with the best record and the top ranking. We
should point out that his standard deviation both on serve and receiving serve
was the lowest of the four players. These parameters were used in Monte Carlo
simulations of 30, 000 matches between each pair of these four players. The
results are histogramed in figures 16 - 21 and the sample means and standard
deviations are used to define the probability density functions for each player’s
probability of winning a match. The output values are shown in Table 3. The
results yield important information about how close the players are to each
other. For example, in head-to-head matches between Federer and Nadal,
Federer is predicted to win a slim majority of 50.74% of their matches.

Since our head-to-head simulation method relies entirely on data for each
of the players taken against the ‘field’, one might wonder whether using actual
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Figure 17: Histogram and Gaussian distribution of head-to-head match-ups based on 30,000
simulated matches using the Monte Carlo model. Bin size is 300 matches. The sample
mean associated with Federer’s probability of winning vs. Nadal is µRF |RN = 0.5074, with
variance σRF |RN = 0.02764.

head-to-head data might be useful as input to a model. We point out that in
any given year, the number of actual head-to-head matches between any two
players is very small, making it very difficult to use for statistical purposes. For
example, Federer defeated Nadal in three out of their five matches in 2007,
consistent with his slight statistical edge shown in our simulations but not
in enough matches to gather meaningful statistical conclusions. Federer also
defeated Blake in their single 2007 match and he defeated Roddick in all three
of their head-to-head matches. Nadal defeated Roddick in their single 2007
match, while Nadal never played Blake, and Roddick and Blake never played.
All of these outcomes are consistent with our statistical findings, however the
sparsity of head-to-head meetings between any two players on the tour in a
given year makes it difficult to use this as input data to a model. Taking
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Figure 18: Histogram and Gaussian distribution of head-to-head match-ups based on 30,000
simulated matches using the Monte Carlo model. Bin size is 300 matches. The sample mean
associated with Federer’s probability of winning vs. Blake is µRF |JB = 0.6365, with variance
σRF |JB = 0.03043.

data from head-to-head encounters over several years or a full career would
typically increase the amount of data, but would introduce other troublesome
questions. For example, it is doubtful that data from matches between Federer
and Nadal in 2005, or even 2006 would be useful in predicting outcomes in
2007, as Nadal was in the process of rapidly improving (and altering) his game
at that time. Even between two players whose career timelines match, such as
Agassi and Sampras, it is hard to argue that data taken from the early stages
of their career head-to-head encounters would help in predicting who would
win their final encounter at the US Open Finals in 2002. However, it must
also be recognized that our use of individual player data taken against the
field in the evaluation of head-to-head encounters possibly underestimates the
significance of one player having a statistically unusually high (or low) success
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Figure 19: Histogram and Gaussian distribution of head-to-head match-ups based on 30,000
simulated matches using the Monte Carlo model. Bin size is 300 matches. The sample
mean associated with Roddick’s probability of winning vs. Nadal is µAR|RN = 0.4117, with
variance σAR|RN = 0.027895.

rate against another individual player (a ‘bogey’ opponent).

3.2 Tournament simulations

Using the full 2007 tournament data for each of the 128 players in the four
Grand Slam events, we carried out Monte Carlo simulations of each tourna-
ment. The ensembles were gathered in two ways. First, we ran 1000 ficti-
tious tournaments initializing each realization by using the actual first-round
match-ups from the event. We call these ‘fixed’, or ‘actual’ draws. Then, for
comparison, we ran 1000 simulations of each event using random draws chosen
in the first round of each realization. The comparison of the two gives valuable
insights into the effect of the actual tournament (i.e. player seedings) draw on
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Figure 20: Histogram and Gaussian distribution of head-to-head match-ups based on 30,000
simulated matches using the Monte Carlo model. Bin size is 300 matches. The sample mean
associated with Roddick’s probability of winning vs. Blake is µAR|JB = 0.5206, with variance
σAR|JB = 0.027607.

outcomes.
The results from the simulations were histogramed for each tournament,

showing the number of rounds won by each player in the ensemble of 1000
simulated tournaments. Table 4 shows the number of tournament wins for
each of the four players out of 1000 tournament simulations using fixed draws.
Table 5 shows the same, but using random draws. The full histograms showing
round-by-round statistics for the four players for Wimbledon and the US Open
are shown in figures 22 - 33. A number of points are worth making. Generally
speaking, the stronger players do better in the actual draw than in random
draws. This is evidenced by the fact that the bins from the histograms for
Federer and Nadal for the random draws decrease in height as the rounds
increase (except for the finals), while those from the actual draws do not.
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Figure 21: Histogram and Gaussian distribution of head-to-head match-ups based on 30,000
simulated matches using the Monte Carlo model. Bin size is 300 matches. The sample mean
associated with Nadal’s probability of winning vs. Blake is µRN |JB = 0.61307, with variance
σRN |JB = 0.029254.

These two (stronger) players have a better chance of surviving deep into the
tournament with the actual draw, as designed by the seeding committee. These
two players also win more of the tournaments (summarized in Tables 4 and
5) in the actual draw then in the random draws. This is not true of weaker
players who fair better in a random draw then in the actual draw where they
are forced to play top players in the early rounds. When comparing the number
of times each of the four players actually won each of the four Grand Slam
events in our simulation, Federer was the most successful, winning 115, 120,
122, and 94 of each of the events, which in probabilistic terms translates into
winning 11.5% of the Australian Open simulations, 12% of the French Open
simulations, 12.2% of the Wimbledon simulations, and 9.4% of the US Open
simulations. Although these numbers were higher than for any other player
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Blake Federer Nadal Roddick
Blake NA µ = 0.3635 µ = 0.3869 µ = 0.4794

σ = 0.0304 σ = 0.02925 σ = 0.02761
Federer µ = 0.6365 NA µ = 0.5074 µ = 0.6073

σ = 0.03043 σ = 0.0276 σ = 0.0278
Nadal µ = 0.61307 µ = 0.4926 NA µ = 0.5883

σ = 0.02925 σ = 0.0276 σ = 0.0279
Roddick µ = 0.5206 µ = 0.3927 µ = 0.4117 NA

σ = 0.02761 σ = 0.0278 σ = 0.0279

Table 3: Resulting means and standard deviations from the Monte Carlo simulations of
head-to-head match ups. Based on this input, the matrix based ranking system ordered the
four players: 1. Federer; 2. Nadal; 3. Roddick; 4. Blake.

Player Australian French Wimbledon US Open
J. Blake 27 22 28 20
R. Federer 115 120 122 94
R. Nadal 79 93 75 105
A. Roddick 27 24 39 38

Table 4: Number of tournament wins in 1000 tournament simulations for each of the Grand
Slam events using the actual tournament draw in the first round.

(except for Nadal’s outcomes in the US Open simulations which showed he
won 10.5% of those events), they are perhaps surprisingly low given the fact
that Federer won 3 out of 4 of these actual events in the 2007 calendar year
(Australian Open, Wimbledon, and US Open) and made it to the finals of the
French Open. It is worthwhile pointing out that the statistics from Tables 4
and 5 support the notion that Federer has a larger advantage over Nadal in
Wimbledon than in the French Open, based on their respective styles of play
and the two different surfaces these tournaments use.

Player Australian French Wimbledon US Open
J. Blake 25 23 23 20
R. Federer 108 95 98 96
R. Nadal 70 90 67 80
A. Roddick 30 28 26 36

Table 5: Number of tournament wins in 1000 tournament simulations for each of the Grand
Slam events using random draws in the first round.
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Figure 22: Histogram of 1000 full tournament simulations for the 2007 Wimbledon tourna-
ment using the actual draw. For each tournament realization, the number of rounds won is
recorded and binned for each of the players. Results are shown for Roger Federer.

3.3 Probabilistic ranking schemes

The simulated match-ups can be used in a simple matrix based ranking system
(Keener (1992)) which we now describe. Consider the 4×4 ‘preference’ matrix
constructed for the four players previously discussed:

A = [aij]. (35)

Each entry of this matrix contains the sample mean associated with the prob-
ability of the (row) player defeating the (column) player, as obtained from
a Monte Carlo simulation of 30, 000 head-to-head matches between the two
players, implemented according to our model. We assume there is a vector of
ranking values, ~r, with positive components j indicating the strength of the
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Figure 23: Histogram of 1000 full tournament simulations for the 2007 Wimbledon tourna-
ment using the actual draw. For each tournament realization, the number of rounds won is
recorded and binned for each of the players. Results are shown for Raphael Nadal.

jth player. The normalized ‘score’ for player i is given by:

Si =
1

N

N∑
j=1

aijrj, (36)

where aij is the sample mean associated with the simulated matches between
player i and j. Since Si incorporates information about the strengths of all
the players based on their simulated performance against each other, it is a
good measure of the comparative strength of the players. Then, as in Keener
(1992)2, we assume that the strength of each player is proportional to their

2This method of ranking was first developed by J.B. Keller (personal communication),
to rank teams in major league baseball. It is now the basis of Google’s pagerank algorithm
(see Bryan and Leise (2006)).
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Figure 24: Histogram of 1000 full tournament simulations for the 2007 Wimbledon tourna-
ment using the actual draw. For each tournament realization, the number of rounds won is
recorded and binned for each of the players. Results are shown for Andy Roddick.

score:

A~r = λ~r. (37)

Thus the ranking vector is a positive eigenvector of a positive definite matrix
A. Each player’s score is the result of their interaction with all the other play-
ers (i.e. the field), and the assigned score depends both on the outcome of the
interactions as well as the strength of the opponents. Of course, since each
of the entries aij are obtained from Monte Carlo simulations with Gaussian
distributed inputs obtained from the data, the ranking vector, ~r, inherits these
desirable features, giving it a natural probabilistic interpretation. Each com-
ponent of the ranking vector is a random variable with mean value rij. We
note that A has nonnegative entries and is irreducible, hence by the Perron-
Frobenius theorem, there exists an eigenvector with nonnegative entries, cor-

32

Journal of Quantitative Analysis in Sports, Vol. 5 [2009], Iss. 3, Art. 7

DOI: 10.2202/1559-0410.1169



Figure 25: Histogram of 1000 full tournament simulations for the 2007 Wimbledon tourna-
ment using the actual draw. For each tournament realization, the number of rounds won is
recorded and binned for each of the players. Results are shown for James Blake.

responding to λ which is unique and simple, with eigenvalue that is the largest
eigenvalue of A (in absolute value).

Based on the data shown in Table 3, we construct the preference matrix
with sample means as entries indicating the probability that the row player
defeats the column player. The rows and columns are as listed in Table 3. The
preference matrix A and associated eigenvector ~ξ is given by:

A =


0 0.3635 0.3869 0.4794

0.6365 0 0.5074 0.6073
0.6131 0.4926 0 0.5883
0.5206 0.3927 0.4117 0

 ; ~ξ =


0.4298
0.5572
0.5472
0.4550

 (38)

Our ranking produces: (4) Blake = 0.4298; (1) Federer = 0.5572; (2) Nadal =
0.5472; (3) Roddick = 0.4550. The final rank is in parentheses. Importantly,
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Figure 26: Histogram of 1000 full tournament simulations for the 2007 Wimbledon tourna-
ment using a randomized draw for each tournament realization. The number of rounds won
is recorded and binned for each of the players. Results are shown for Roger Federer.

despite the fact that Federer had neither the highest percentage of points won
on serve, or receive of serve (see data in Table 2), he earns the top ranking
using this system. The final ordering of the four players also agrees with their
ATP year-end rankings also shown in Table 2.

4 Discussion

Novel features of the methods described in this paper are the use of data based
Gaussian distributed input variables in the model measuring each player’s (i)
strength of serve; (ii) strength of return of serve; and (iii) consistency. The
data is gathered for each player over their entire portfolio of matches played
in the 2007 ATP season. Using this ‘field’ data allows us to gather enough
information on the performance of each of the individual players, despite the
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Figure 27: Histogram of 1000 full tournament simulations for the 2007 Wimbledon tourna-
ment using a randomized draw for each tournament realization. The number of rounds won
is recorded and binned for each of the players. Results are shown for Raphael Nadal.

fact that most pairs of players never actually have head-to-head matches (or
very few) on a given year. Thus, our predictions on the probability that one
player will defeat another are based on how each has performed against the
same control group, which in this case is the entire field of players. The
calculation of probability density functions as our main outputs of the model,
as opposed to single output variables, gives far more detailed and nuanced
information regarding a player’s ability and probability of winning a match.
It also gives us the ability to carry out realistic tournament simulations and
gather statistics for each player on a round-by-round basis. There are several
ways of using this information in the development of probabilistic ranking
schemes, one of which we show using a matrix based method. A fully developed
Monte Carlo based ranking system will be described in a separate publication.

35

Newton and Aslam: Monte Carlo Tennis



Figure 28: Histogram of 1000 full tournament simulations for the 2007 Wimbledon tourna-
ment using a randomized draw for each tournament realization. The number of rounds won
is recorded and binned for each of the players. Results are shown for Andy Roddick.
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Figure 29: Histogram of 1000 full tournament simulations for the 2007 Wimbledon tourna-
ment using a randomized draw for each tournament realization. The number of rounds won
is recorded and binned for each of the players. Results are shown for James Blake.
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Figure 30: Histogram of 1000 full tournament simulations for the 2007 US Open using the
actual draw. For each tournament realization, the number of rounds won is recorded and
binned for each of the players. Results are shown for Roger Federer.
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Figure 31: Histogram of 1000 full tournament simulations for the 2007 US Open using the
actual draw. For each tournament realization, the number of rounds won is recorded and
binned for each of the players. Results are shown for Raphael Nadal.

39

Newton and Aslam: Monte Carlo Tennis



Figure 32: Histogram of 1000 full tournament simulations for the 2007 US Open using the
actual draw. For each tournament realization, the number of rounds won is recorded and
binned for each of the players. Results are shown for Andy Roddick.
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Figure 33: Histogram of 1000 full tournament simulations for the 2007 US Open using the
actual draw. For each tournament realization, the number of rounds won is recorded and
binned for each of the players. Results are shown for James Blake.
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