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Abstract

Three vortices move in a plane
You can solve that with limited pain
But add in a speck
And all goes to heck
Its motion is really insane!
(H Aref)

Hassan Arefʼs many contributions to the field of vorticity dynamics were
highlighted in a dedicated lecture at the IUTAM Symposium on Vortex
Dynamics: Formation, Structure and Function, Fukuoka Japan, 10−14 March
2013. Here we present a background discussion of the pleasures and chal-
lenges associated with working with discrete vorticity representations of fluid
flows, one of the areas to which Professor Aref devoted his scientific career.
This will lead to a discussion of several interesting problems that remain to be
analyzed for the N-point vortex equations, including (i) dynamics and equi-
libria on curved surfaces; (ii) energy minimizing configurations (large N,
general Γα); (iii) equilibria with defects; and (iv) formation of equilibria (in the
presence of noise and other background flow). We finish with some final
thoughts on the impact of Professor Arefʼs style and contributions to the field
of low-dimensional discrete vortex modeling of fluid flows.

1. Introduction

The Navier–Stokes equations of incompressible fluid mechanics (Majda and Bertozzi 2002,
Saffman 1992), an area of continuous fascination and focus of Hassan Aref throughout his
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scientific career from 1979−2011, are given by

  νΔ⃗ + ⃗ · ⃗ = − + ⃗u u u p u , (1)t

 · ⃗ =u 0, (2)

⃗ ⃗ = ⃗ ⃗( ) ( )u x f x, 0 , (3)

where ⃗u is the fluid velocity field, − p is the pressure gradient, and ν is the kinematic
viscosity (i.e. ν μ ρ= , where μ is the dynamic viscosity and ρ is the fluid density). The two
main terms of (1) which make the subject of incompressible fluid mechanics interesting are
(i) the nonlinear inertial term ⃗ · ⃗u u , and (ii) the pressure gradient term − p, acting
simultaneously in a dynamical setting, with initial conditions for the velocity field (3), and
additional boundary conditions if one is modeling fluid–solid interactions.

To partially appreciate why these equations are challenging, decouple the pressure gra-
dient term in (1) from the velocity field by taking the divergence of (1):

   Δ νΔ· ⃗ + · ⃗ · ⃗ = − + · ⃗( ) ( ) ( )u u u p u , (4)
t

then use incompressibility (2) to eliminate the first and last term, which gives rise to a Poisson
equation for pressure:

 Δ = − · ⃗ · ⃗( )p u u . (5)

From this, we can invert the Laplacian using the appropriate Greenʼs function G, and write the
pressure explicitly in terms of the velocity field:

 ∫= − · ⃗ · ⃗( )p G u u Vd . (6)

Plugging (6) back into (1) gives the decoupled velocity field equation as an alternative to (1):

   ∫ νΔ⃗ + ⃗ · ⃗ = · ⃗ · ⃗ + ⃗( )( )u u u G u u V ud , (7)t

showing clearly the nonlocal nature of the pressure gradient term. Once this equation is
solved for a given initial velocity field ⃗ ⃗( )u x , 0 , the result can be used in (6) to obtain the

pressure. Thus, the pressure is fully determined once the velocity field is known, but because
of (6), one must know the global velocity field in order to determine it. The global nature of
the equations and the nonlinear coupling between the pressure gradient and the velocity field,
not so immediately evident in the formulation (1)–(3), represents a significant challenge to
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Figure 1. Hassan Aref (1950−2011).



any attempts at modelling and simulating all but the most well-conceived flow geometries and
initial conditions. This is one of the motivating reasons why low-dimensional models of more
complex flows of interest present continued added value to our understanding of
incompressible fluid mechanics, approximate as they often are.

A useful re-formulation, often invoked, is to introduce the vorticity field induced by the
velocity field, ω⃗ = × ⃗u , whose equation is obtained by ‘curling’ (1):

 ω ω ω νΔω⃗ + ⃗ · ⃗ = ⃗ · ⃗ + ⃗u u , (8)t

which formally eliminates the pressure term from (1), but there is no free lunch. The price one
pays for this is that (8) is now coupled to the Biot–Savart formula, analogous to the
relationship between the magnetic field and the electric current which generates it
(Jackson 1962):

∫π
ω

⃗ = −
⃗ − ⃗ × ⃗ ⃗ ⃗

∥ ⃗ − ⃗ ∥
( ) ( )

u
x z z z

x z

1

4

d
, (9)

3

which relates the vorticity distribution to the induced velocity field. The solution to these
equations are then used in the right side of (6) to obtain p.

The ‘vortex-stretching’ term (Majda and Bertozzi 2002, Saffman 1992) on the right-hand
side of (8), ω⃗ · ⃗u , only acts in three dimensions, since in two-dimensional problems, the curl
of the velocity field is orthogonal to the gradient of the velocity field. In the inviscid ‘Euler’

limit ν → 0, one is left with the pure vorticity dynamics equations, which in R2 become

ω ω ω+ ⃗ · = ⃗ ∈( )( )u x t R0, , , (10)t
1

and in R3 become

 ω ω ω ω⃗ + ⃗ · ⃗ = ⃗ · ⃗ ⃗ ⃗ ∈( )( )u u x t R, , . (11)t
3

Based on the structure of equation (10), one often says that in two dimensions, vorticity
‘goes with the flow’, i.e. is transported in a Lagrangian way like a material element (New-
ton 2001, Saffman 1992). In fact, there is more. It can also be proven quite easily that in two
dimensions, any smooth function of the vorticity, ωf ( ), is conserved under the flow (New-
ton 2001, Saffman 1992). Thus, vorticity not only goes with the flow, but is a conserved
quantity carried by the flow.

A particularly simple and useful way to ‘carry’ the conserved vorticity field is obtained
by concentrating the scalar vorticity field ω ⃗( )x t, in planar regions that are highly localized:

∑ω
Γ
π

ϕ⃗ = ⃗ − ⃗ϵ
=

( ) ( )x x x
2

, (12)
i

N
i

i
1

ϕ
ϵ

ϕ
ϵ

ϵ⃗ = ⃗ ≪ϵ

⎛
⎝⎜

⎞
⎠⎟( )x

x1
, 1, (13)

2

where ϕ is any suitably normalized radially symmetric function with the property ∫ ϕ ⃗ =xd 1.

One popular and useful representation is the point vortex approximation ϕ δ⃗ = ⃗ϵ ( ) ( )x x ,

where δ is the Dirac delta function. This turns the field equation (10) into a Hamiltonian
particle interaction problem (Newton 2001) which is analytically attractive, although is not
typically the most optimal way to proceed numerically (Cottet and Koumoutsakos 2000)
because of the divergent velocity field approaching each point vortex. It is not difficult to
show that such a singularity located at the origin ⃗ =x 0, gives rise to a planar velocity field:
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=u 0, (14)r

Γ
π

=θu
r2

, (15)

where Γ
π2
represents the ‘circulation’ that the velocity field carries. Written in complex variable

form, the velocity field for such a point vortex located at =z 0 is given by

Γ
π

˙ = = +*z
i z

z t x t iy t
2

1
, ( ) ( ) ( ). (16)

Here, *z denotes the complex conjugate of z. A collection of N of these point vortices, each
located at = βz z t( ), with strengths Γβ, β = N1, ..., , by linear superposition, produces the

field

∑
π

Γ
˙ =

−
*

β

β

β=

z
i z z

1

2
. (17)

N

1

Then, if we advect each of the point vortices by the velocity field generated by all of the
others, as (10) tells us to do, we arrive at the N-vortex dynamical system:

∑
π

Γ
˙ =

−
* ′
α

β

β

α β=

z
i z z

1

2
, (18)

N

1

where ′ indicates that β α≠ . These are the famous N-point vortex equations of motion
(Newton 2001). Each of the vortex strengths, Γβ, are constants, as dictated by the conservation

of vorticity, and they each are advected by the velocity field generated by all of the others, as
dictated by (10). These seemingly simple equations were a continual and renewed source of
inspiration for Hassan Aref from the time of his PhD dissertation ‘Turbulence and vortex
dynamics in two dimensions’ (Cornell University 1980, PhD Supervisor E Siggia), returning
to them throughout his career. The limerick quoted at the front of this article (which I found in
my collection of notes, the ‘Zakopane Limericks’, while preparing this review) was written by
Hassan in reference to his famous 1979 and 1982 papers (Aref 1979, Aref and
Pomphrey 1982) which remain classics in the field.

What makes this ‘Lagrangian’ idea of discrete vortices so attractive is that it allows a
particle viewpoint to be adopted for a flow field that is otherwise viewed in terms of pressure
gradients, accelerations, or as a collection of interacting waves. One can think of the flow field
as a ‘gas’ of interacting particles (as was implicit in the pioneering statistical approach of
Onsager (Eyink and Sreenivasan 2006), albeit particles that sometimes have considerable
intrinsic structure. This ‘has the virtue,’ as Charney so eloquently put it, ‘that mass, energy,
linear and angular momentum continue to be conserved, and that the motions represented are
those of conceivable, though idealized, physical systems’ (Charney 1963). One works with
spatially localized lumps of rotational fluid moving in a background flow that is, by com-
parison, essentially irrotational. The representation of a flow as a collection of discrete vor-
tices, particularly a finite collection of such vortices, will not always be reasonable but when it
is, it provides an economical, physically motivated, and analytically interesting description of
the flow. When it applies, it opens up connections to bodies of physical theory and mathe-
matics not easily brought into the analysis of fluid flows otherwise (Aref 2007b). The
somewhat elusive connection between solutions of the Euler equations (ν = 0) and the large

Reynolds number limit ( ∼ → ∞νRe 1 ) of the Navier–Stokes equations lies at the heart of the

turbulence problem (Eyink and Sreenivasan 2006, Saffman 1992). Since long-lived
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concentrated vortex structures appear in solutions of the Navier–Stokes equations, and since
persistent, concentrated vortices can be embedded in an inviscid flowfield, it is a natural
assumption that tracking such concentrated vortices in the Euler equations can reveal prop-
erties of solutions to the Navier–Stokes equations in the high Reynolds number limit and it is
primarily this simple observation for the sustained interest in vortex dynamics over the past
150 years, since the seminal paper by von Helmholtz in 1858. A comprehensive bibliography
of the field of vortex dynamics from 1858–1956 was compiled by Meleshko and Aref (2007).
Much of Hassan Arefʼs career was devoted to fleshing out and developing the details and
subtleties associated with these connections. A secondary goal of this article is to compile a
reasonably complete bibliography of Hassan Arefʼs lifetime publications. While we cannot
claim the reference section is exhaustively complete, it does contain his most influential
publications in the field of vortex dynamics, and should be an excellent starting point for any
student interested in learning the foundations of the field.

2. Some interesting problems

Hassan Arefʼs work in the field of vortex dynamics touched many areas, some of which need
further development with low-hanging fruit still to be picked. Here is a sampling of inter-
esting topics.

1. Dynamics and equilibria on curved surfaces. An interesting recent discussion on the
general problem of vortex configurations and dynamics on two-dimensional curved
surfaces can be found in Turner, Vitelli, and Nelsonʼs article (Turner et al 2010). Their
focus is on how the imposed geometric deformations, such as a curved surface, couples
to the in-plane order as evidenced by the changes in allowable crystal vortex lattice
patterns. They emphasize work done in the context of thin layers of superfluid liquid
helium, which of course adds the additional quantization constraint on the vortex
circulations not always imposed in other applications. By far the largest literature
available is on constant curvature surfaces, such as the sphere (Barreiro et al 2010,
Chamoun et al 2009, Crowdy 2004, Jamaloodeen and Newton 2006, Kidambi and
Newton 1998, Laurent-Polz 2002, Lim et al 2001, Newton 2001, Newton and Ross 2006,
Newton and Sakajo 2011, 2009, 2007, Newton and Shokraneh 2008, 2006, Newton and
Ostrovskyi 2012, OʼNeil 2008, 2012) where direct applications to large-scale
atmospheric and oceanographic flows are apparent (Newton 2010). There is also new
and interesting work relating equilibrium point vortex configurations on the sphere with
limiting solutions of related partial differential equations such as the Gross–Pitaevskii
equations (Gelantalis and Sternberg 2012). There is other earlier work that considers the
dynamics of point vortices on more general surfaces of symmetry, such as Hallyʼs paper
(Hally 1980) on surfaces of revolution, and Kimuraʼs work (Kimura 1999) on surfaces of
constant curvature, as well as others (Boatto and Koiller 2008, Hwang and Kim 2013,
Montaldi et al 2003, San Miguel 2013, Soulière and Tokieda 2002). In the plane, one of
the most fruitful approaches has been to connect the distribution of point vortices along a
straight line, in equilibrium, to the zeroes of classes of special functions (Aref et al 2003,
Aref 2007c), a topic that Hassan Aref developed extensively. On curved surfaces, the
analogous question is to look for equilibria that lie along geodesic curves, such as great
circles on the sphere (Aref et al 2003), and ask for the distribution of point vortex
positions. This topic is essentially unexplored, although see the papers of Kidambi and
Newton (1998) and OʼNeil (2008), particulary in the case where the vortex strengths are
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not all equal—even for collinear equilibria in the plane. A separate topic is to identify the
analogue of Abrikosov lattices (Abrikosov 2004) on curved surfaces, or in general,
special configurations of equilibria with discrete symmetries, like the Platonic solid
family on the sphere (Jamaloodeen and Newton 2006, Newton and Ostrovskyi 2012,
Chamoun et al 2009). Aside from the physics associated with these configurations with
discrete symmetries that reflect the geometry of the surface and the vortex circulations,
they have played a role in the identification of optimal grid generation on surfaces in the
computer graphics and numerical analysis communities where particle interaction
methods are used to distribute grid points optimally (minimal energy configurations)
across a curved surface (Zhong et al 2013).

2. Energy minimizers for large N. The general research program of identifying the lowest
energy configrations for each value of N was started ambitiously and explicitly by
Campbell and Ziff (1978, 1979), papers that were among Hassan Arefʼs favorites, from
which he drew continual and renewed inspiration. An interesting lesser known paper
along these lines is that of Gueron and Shafrir (1999). Simply stated, the problem here is

given a value of N, and given a collection of values of vortex circulations Γ Γ Γ( ), ,..., N1 2

(usually taken to be all equal), find the stationary or relative equilibrium positions of the
point vortices governed by (18) that minimizes the Hamiltonian energy of the
configuration,

∑∑
π

Γ Γ= − ′ −
β α

α β α β
= =

H z z
1

4
log , (19)

N N

1 1

subject to the constraints of the remaining conserved quantities (discussed in Aref
et al 2003). The works of Campbell and Ziff (1978, 1979) take a direct computational
approach to identifying the list of two-dimensional patterns that correspond to minima in
the free energy of a system of identical point vortices in the plane, for values of

=N 1, 2 ,..., 30, 37, 50. Identifying these configurations as energy minimizers kills two
birds with one stone. One obtains not only the configuration, but also its stability
properties, which otherwise would have to be obtained by separate methods
(Aref 1995, 2009). There is much more one can do along these lines, particularly for
larger N values (say >N 100), and general vortex circulations Γ . The larger the value of
N, the more attractive the linear algebra formulation of Newton and Chamoun (2009)
becomes. The key to this approach is to directly formulate the N-vortex equations in
terms of their inter-particle distances = ∥ ⃗ − ⃗ ∥αλ α λl x x2 2 without yet committing to the

values of the circulations Γ Γ Γ( ), ,..., N1 2 , leaving them, for the moment, as free parameters.

The inter-vortical distances remain constant for configurations that are locked in either

fixed or relative equilibrium patterns. The dynamical equations for the −( )N N 1 2

equations for αλl become

∑
π

Γ α λ= ″ − =αλ
β

β αλβ
αβ λβ=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ( )

t
l A

l l
N

d

d

2 1 1
, , 1, ..., . (20)

N
2

1
2 2

The notation ″ indicates that the sum is over all values of β, except for β α= and β λ= ,

and = ∥ ⃗ × ⃗ + ⃗ × ⃗ + ⃗ × ⃗ ∥αλβ α β λ α β λA x x x x x x1

2
is the area subtended by ⃗ ⃗ ⃗α λ β( )x x x, , . Since

all fixed and relative equilibria have =αλl const,2 equilibria are fixed points of equation
(20), which can be written as a rectangular matrix system:
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Γ ⃗ =A 0, (21)

where the configuration matrix ∈ ×A RM N has N columns and = −( )M N N 1 2 rows,

with Γ Γ Γ Γ⃗ = ( ), ,..., N1 2 . The configuration matrix encodes the geometry of the pattern,

and only those patterns that give rise to configuration matrices with nontrivial nullspaces
correspond to equilibria. Thus, existence of an equilibrium solution hinges on whether or

not =( )det A A 0T , while uniqueness of the choice of values for Γ ⃗ (up to multiplicative

constants) depends on Rank(A). Once the nullspace vector Γ ⃗ is obtained for a given
configuration, it can be used a posteriori to calculate the Hamiltonian energy (19). It is
the combined properties of the configuration matrix A and the Hamiltonian energy H that
determine all of the salient properties of the equilibrium in question, such as uniqueness,
energy levels and stability. The larger the value of N, the less tractable the explicit,
classical formulations become, and the more appealing this linear algebra approach
becomes, since there are a host of techniques available in this field, like the singular value
decomposition, that can be used. See Newton and Chamoun (2009) and Barreiro et al
(2010) for more details and examples.

Characterizing the energy levels, as was done in Campbell and Ziffʼs papers
(Campbell and Ziff 1978, 1979), and in Hassan Arefʼs recent work (Aref 2007a), for
minimum energy configurations (for each N) remains a challenge. When N is large (the
definition of what constitutes large is a moving target, but let us take as a working
definition values of N larger than those considered in Campbell and Ziff (1978, 1979),
there are many equilibria for each value of N, the spacing of their energies gets tighter
and tighter, the differences in their geometry become increasingly subtle to detect, hence
alternative characterizations, such as their entropy based on the spectrum of the con-
figuration matrix A, become a useful tool (Newton and Chamoun 2009).

3. Equilibria with defects. Point vortex equilibria with defect structures have been
identified beautifully in experiments involving Bose–Einstein condensates (see figure 1.6
from Newton and Chamoun (2009), but these equilibria, which generally arise because
they sit at lower energy levels than their symmetric counterparts nearby (see the relevant
paper, Campbell (1990)) have yet to be derived as explicit solutions to the N-vortex
equations (18). Arefʼs nice paper (Aref and Vainchtein 1998) identifies a whole host of
asymmetric equilibria, an observation that at the time was somewhat surprising to many
in the field. How exactly to systematically categorize the asymmetric equilibria or
identify those that can be interpreted as equilibria with defects is not yet clear, but again,
the linear algebra formulation may be very useful for these purposes. Imagine, for
example, a symmetric, defect-free configuration with configuration matrix A0, and

strength vector Γ0⃗. Look for a nearby configuration ϵA , with strength vector Γϵ⃗. Hence, let

≡ + ≡ −ϵ ϵ( )A A A A A A, where , (22)0 1 1 0

Γ Γ Γ Γ Γ Γ⃗ ≡ ⃗ + ⃗ ⃗ ≡ − ⃗
ϵ ϵ( ), where , (23)0 1 1 0

and assume that the defect structure is a ‘perturbation’ of a defect-free structure:

ϵ
Γ
Γ

ϵ
∥ ∥
∥ ∥

∼
∥ ⃗ ∥
∥ ⃗ ∥

∼
A

A
; . (24)1

0

1

0

The goal, then, is to find equilibria with defects corresponding to the equation
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Γ Γ Γ⃗ = + ⃗ + ⃗ =ϵ ϵ ( )( )A A A 0. (25)0 1 0 1

This sets up the hierarchy of equations

Γ ⃗ =A 0, (26)0 0

Γ Γ⃗ = − ⃗A A , (27)0 1 1 0

Γ ⃗ =A 0. (28)1 1

Equation (26) is automatically satisfied if the unperturbed ‘defect-free’ state is an
equilibrium. Equation (27), by the Fredholm alternative, requires that

Γ− ⃗ ⊥ ( )A Null A , (29)T
1 0 0

which puts a constraint on allowable A1 matrices, given A0 and Γ0⃗. Equation (28) then

pins down the vector Γ1⃗:

Γ ⃗ ∈ ( )Null A . (30)1 1

An additional requirement would be that the perturbed energy (19) is lower than the
unperturbed energy, i.e. <ϵH H0. Using these ideas to identify structures with defects of
the type found in nature (point defects, grain-boundary defects) would be new and quite
interesting.

4. Formation of equilibria (in the presence of noise). In reality, equilibria form from
initial conditions that do not correspond exactly to an equilibrium state, with
‘background’ dynamics that introduces stochasticity to an already chaotic deterministic
problem (Aref 1983). The formation dynamics of equilibria in the presence of noise is an
outstanding issue discussed nicely in Fine et al (1995), and Durkin et al (2000)—see
figure 1.14 from Newton and Chamoun (2009) for an example of one of these studies.
The basic equations were first described in Osadaʼs 1985 paper (Osada 1985), while a
more thorough approach for analyzing stochastic versions of the N-vortex equations were
developed more recently in Kotelenez (1995) and in the PhD thesis of Rath (2010).
General techniques associated with stochastic vorticity fields are discussed thoroughly in
Majda and Wangʼs book (Majda and Wang 2006) in the context of geophysical flows.
But to our knowledge, no one has begun looking at the process of formation of fixed and
relative equilbria in the presence of a stochastic field, a topic potentially rich with
possibilities and physical relevance.

There are, of course, many other interesting topics currently under development by many
people in the vortex dynamics community, some of whom participated in the wonderful
IUTAM Symposium in Fukuoka Japan, 10–14 March 2013. The topics discussed in this
review are the ones this author feels would be closest to the interests of Hassan Aref, hence of
special relevance to the workshop in his honor.

3. Final thoughts

The passion, single-minded devotion, high standards and taste that Hassan Aref brought to the
field of vortex dynamics, and mechanics in general, have led some to describe him as ‘a 19th
century physicist who happened to live into the 21st century’1. His papers combine physical
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insights, analytical elegance, didactic precision and clarity, and a sense of mastery of the subject
that are unique. The references cited below to his works offer the reader a glimpse, but are by no
means a complete bibliography of all of his many contributions to this field. Many of the
techniques developed over the course of his career have layed the groundwork for the use of
discrete low-dimensional vortex models whose nonlinear dynamics can be understood far more
completely than alternative techniques offer and we expect this now established sub-field of
fluid mechanics to continue to contribute new insights and to provide a practical starting point
for the development of more complex and targeted analytical models of complex fluid flows.
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