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Abstract

We extended the classical tumor regression models such as
Skipper's laws and the Norton–Simon hypothesis from instan-
taneous regression rates to the cumulative effect over repeated
cycles of chemotherapy. To achieve this end, we used a sto-
chastic Moran process model of tumor cell kinetics coupled
with a prisoner's dilemma game-theoretic cell–cell interaction
model to design chemotherapeutic strategies tailored to differ-
ent tumor growth characteristics. Using the Shannon entropy as
a novel tool to quantify the success of dosing strategies, we
contrasted MTD strategies as compared with low-dose, high-
density metronomic strategies (LDM) for tumors with different
growth rates. Our results show that LDM strategies outper-

formed MTD strategies in total tumor cell reduction. This
advantage was magnified for fast-growing tumors that thrive
on long periods of unhindered growth without chemotherapy
drugs present and was not evident after a single cycle of
chemotherapy but grew after each subsequent cycle of repeated
chemotherapy. The evolutionary growth/regression model
introduced in this article agrees well with murine models.
Overall, this model supports the concept of designing different
chemotherapeutic schedules for tumors with different growth
rates and develops quantitative tools to optimize these sche-
dules for maintaining low-volume tumors. Cancer Res; 77(23);
6717–28. �2017 AACR.

Introduction
Low-dose metronomic chemotherapy (LDM) is the systematic

and frequent delivery of chemotherapeutic agents at doses lower
than the MTD paradigm (1, 2). It is typically given at a low dose
between 1/10th and 1/3rd of the MTD, without a long period of
time between subsequent doses; hence, it is also associated with
higher dose densities (1). Important features of low-dose, high-

density metronomic chemotherapy include regular administra-
tion of chemotherapy without any interruptions using an opti-
mizeddose; preference for oral drugs; low incidence of side effects;
low risk of developing resistance; and lower cost. In addition,
some elderly or frail patients may only be suited for lower dose
chemotherapy. Residual toxicity from previous treatment may
also reduce consideration for MTD chemotherapy (2). Metro-
nomic chemotherapy regimens have been associated with lower
cost of inexpensive oral drugs such as cyclophosphamide and
result in fewer side effect–associated expenditures. Several phase II
studies have shown promises of metronomic-like chemotherapy
and its excellent safety profiles (2). The lower doses of metro-
nomic chemotherapy regimens are now thought to not only
reduce the harmful side effects of toxicity delivered to the patient
but perhaps also improve antitumor effects (3), by killing endo-
thelial cells in addition to its cytotoxic effect on cancer cells (4, 5)
in an uninterrupted schedule for prolonged treatment periods.
Metronomic chemotherapy has been shown to be effective in
preclinical trials where cancer cells have developed resistance to
the same chemotherapeutics (3). These LDM regimens are also
suited to combination or additive strategies to new targeted and
relatively nontoxic anticancer drugs recently developed.

Although the advantages of LDM chemotherapy may be wide
ranging with respect to toxicity, resistance, and antiangiogenic
effects (outside of the scope of our model), the goal of this article
is to use an evolutionary mathematical model of cell/tumor
growth with the ability to simulate chemotherapeutic scheduling
to identify growth regimes where LDM would likely outperform
MTD, and to test various scheduling protocols altering dose
density and concentration. Although there is no simple answer
to the question ofwhat types of tumors and growth regimeswhere
LDM would be preferable to MTD, our results show that LDM
chemotherapies with an adequate dose can outperform MTD,

Major Findings
Model simulations show that metronomic (low-dose, high-

density) therapies can outperform MTD (high-dose, low-den-
sity) therapies. This is due to the fact that tumor cell reduction
is more sensitive to changes in dose density than changes in
dose concentration, especially for faster growing tumors. This
effect is negligible after a single cycle of chemotherapy, but
magnified after many cycles. The model also allows for novel
chemotherapeutic schedules and quantifies their performance
according to tumor growth rate.
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especially for fast-growing tumors that thrive on long periods of
drug-free rest with unhindered regrowth. This effect is not evident
after a single cycle of chemotherapy, but is magnified after each
subsequent cycle of repeated chemotherapy. In the interplay of
choosing between high-dose chemotherapy (MTD) or low-dose,
high-density chemotherapy (LDM), our results show that increas-
ing dose has diminishing returns, so the higher densities afforded

by LDM regimens are an ideal tradeoff. These results may have
remained hidden even in the advent of helpful theoretical regres-
sion laws like Skipper's laws and the Norton–Simon hypothesis
because these laws rely on instantaneous rates of regression, rather
than the net result of the full chemotherapy cycle operating in an
environment with variable growth rates. We explain how our
results add to the understanding of these classic growth models

Quick Guide to Equations and Assumptions

Assumptions of the Model:

1. The model is a computational one, driven by a stochastic Moran (birth–death) process with a finite cell population, in which
birth–death rates are functions of cell fitness.

2. Two classes of cells (healthy, cancer) compete against each other at each birth–death event, with fitness (fH, fC) calculated
according to the payoff matrix associated with the prisoner's dilemma evolutionary zero-sum game.

3. Chemotherapy preferentially kills proliferating cells in our model by altering the selection pressure (wH, wC) on each cell
population, with two parameters: dose concentration (c) and dose density (d), which link the parameters linearly.

Key Equations:
In a Moran finite-population birth–death process, there are i cancer cells in a population of N total cells (where the number of

healthy cells is denotedN – i). At each time step in the stochastic evolutionary population dynamicsmodel, a single cell is chosen for
birth, and a separate single cell is chosen for death. A tumor grows by increasing the number of cancer cells from i to iþ 1 in any given
time step. Theprobability that a healthy cell interactswith another healthy cell is givenby (N– i–1)–(N–1),whereas theprobability
that a healthy cell interacts with a cancer cell is i – (N – 1). The probability that a cancer cell interacts with a healthy cell is (N – i) –
(N – 1), whereas the probability that a cancer cell interacts with another cancer cell is (i – 1)–(N – 1). These probabilities, known
as the Moran process, can be extended to include a fitness landscape where natural selection can play out over many cell division
timescales.

The probabilities outlined above are weighted by the "payoff" in order to determine the fitness function for each sub-
population, healthy (fH) and cancer (fC), below. The payoff values (a, b, c, d) are associated with the prisoner's dilemma
evolutionary game (6, 7). The prisoner's dilemma is defined by the payoff inequalities such that c > a > d > b, but here we assume
the relatively standard (but not unique) values of a ¼ 3, b ¼ 0, c ¼ 5, and d ¼ 1.

fH ¼ 1� wH þ wH
a N � i� 1ð Þ þ bi

N � 1

� �
ðAÞ

fC ¼ 1� wC þ wC
c N � ið Þ þ d i� 1ð Þ

N � 1

� �
ðBÞ

Here, wH, wC are "selection strength" parameters, 0� wH� 1, 0� wC� 1, that measure the strength of selection pressure on each
of the population of cells. If wH ¼ 0, there is no natural selection acting on the healthy cell population, and the dynamics is
driven purely by the Moran process (i.e., random drift). When wH ¼ 1, the selection pressure on the healthy cell population is
strongest, and the prisoner's dilemma payoff matrix has maximum effect.

From these formulas, we candefine the transition probability of going from i to iþ1 cancer cells on a given step (Pi,iþ1) or from i to
i � 1 on a given step (Pi,i�1).

Pi;iþ1 ¼ ifC
ifC þ N � ið ÞfH

N � i
N

ðCÞ

Pi;i�1 ¼ N � ið ÞfH
ifC þ N � ið ÞfH

i
N

ðDÞ

The first term in each equation represents the probability that a cell is selected for reproduction (weighted by fitness). The second
term represents the probability that a cell is selected for death. The probability of the number of cancer cells remaining the same (Pi,i)
is given by the following. There are two absorbing states (P0,0, PN,N).

Pi;i ¼ 1� Pi;iþ1 � Pi;i�1; P0;0 ¼ 1;PN;N ¼ 1 ðEÞ
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and advocate the consideration of tumor growth rates when
choosing chemotherapy scheduling.

Administration of metronomic chemotherapy
A systematic literature review of the MEDLINE, EMBASE, CEN-

TRAL, and PubMed databases for LDM chemotherapy trials from
2000 to April 2012 performed by Lien and colleagues in 2013 (2)
revealed awide variety indose delivered anddose schedules under
the terminology of metronomic chemotherapies. From the 80
studies analyzed, 107 unique treatment regimens were found
(including regimens wheremultiple drugs were usedmetronomi-
cally). Thirty-eight regimens used LDM only (monotherapy, n ¼
24; doublet LDM therapy, n ¼ 14). Of the monotherapy, the
relative dose intensity (RDI: measured with respect to the MTD)
ranged from 0.27 to 1.58 (median, 1.02), and dose density
(percentage of days drug is delivered) ranged from 32% to
100% (2). RDI is calculated by dividing the dose intensity (DI;
the sumof thedoses given eachdayof the chemotherapy cycle) for
a chemotherapy regimen by the baseline DI value of the conven-
tional MTD schedule. A chemotherapy may deliver a greater
overall DI than theMTD (i.e., RDI > 1) if a lower dose is delivered
more often, achieving a greater total dose over the course of the
full chemotherapy cycle. The lower dose reduces toxicity, allowing
for more frequent dosing, a key idea behind the metronomic
schedules.

For a low-dose metronomic chemotherapy, any schedule that
administers a lower dose at more frequent intervals (higher dose
density) could be classified as "low dose metronomic." But, as
seen above, in clinical practice theRDIdelivered and thedensity of
the schedules are varied without clear consensus. In fact, only one
monotherapy treatment regimenkept theRDI constant, balancing
the lower dose with an equivalent increase in dose density. Of the
remaining 23 regimens, about half increased RDI (n ¼ 12),
whereas half decreased RDI (n ¼ 11). It is evident that many of
the quantitative details of LDM chemotherapy are unresolved
including patient selection, choice of drug (or combinations of
drugs and treatments), and optimal dose and treatment intervals
(2). With this in mind, the goal of this article is very targeted. We
wish to quantify the relationship between dose and dose density
delivered using the Shannon entropy index (8) as a quantitative
scheduling and dosage tool. We will first briefly review the
prisoner's dilemma evolutionary game theory (EGT) model of
primary tumor growth that we use to carry out our computational
trials (9, 10) as well as the notion of Shannon Entropy as an index
to compare chemotherapeutic regimens in order to show that
high-entropy schedules (with an adequate DI) outperform low-
entropy schedules.

The classic tumor regression laws
Benzekry and colleagues (11) chronicle that, despite a rise in

personalized and precision medicine, currently chemothera-
peutic agents are often still administered in the MTD paradigm.
The author predicts that the forthcoming development of
metronomic chemotherapy may pave the way for implement-
ing "computational oncology at bedside, because optimizing
metronomic regimen should only be achieved thanks for
modeling support." This prediction characterizes a growing
field sometimes referred to as computational or mathematical
oncology (12, 13). First, however, in order to properly under-
stand how alternative dosing schedules like the metronomic
regimens fit into the future of chemotherapy scheduling, it is

important to remember the reasons that led to the advent and
continued use of MTD paradigms.

Skipper's laws. The relationship between dose and tumor regres-
sion is linear-log (i.e., exponential decay; ref. 14). Skipper and
colleagues (15) were the first to develop a set of theoretical laws
governing the behavior (and imply the design) of chemotherapy
schedules in cancer in the late 1970s. Our understanding of the
Gompertzian growth of tumors hasmade the application of these
lawsmore complex, but the fundamentals of these laws still apply
today (16).

In a tumor that grows exponentially (Eqs. F and G) with a
constant exponential rate, the first law states that the tumor
volume doubling time is constant over the life of the tumor
(dt ¼ log(2)–a),

_n ¼ an ðFÞ
n tð Þ ¼ n0 exp atð Þ ðGÞ

The second of Skipper's laws is that the percentage of cells killed
by a given drug dose,D, is constant; therefore, a linear increase in
dose causes a log increase in cell kill (13). As an example, a drug
dose, x, that shrinks tumor size from 106 to 105 cells results in a
90% decrease of tumor population. An identical subsequent drug
dose (a total dose of 2x) will further reduce tumor population size
according to that same kill constant, to 104. A third dose results in
103 cells, a fourth, 102, and so on. The kill law is known as the
"log" kill because the constant fraction is a constant logarithmic
amount. Skipper's log-kill law indicates that subsequent dosing
has a diminishing return; the last few remaining cells are themost
difficult to eliminate. This log-linear relationship can be formu-
lated as follows:

log PS ¼ �bD; ðHÞ

where Ps denotes the probability of cell survival.

Norton–Simon hypothesis. One important reason the Skipper–
Schabel–Wilcox model is so useful is that it conceptualizes the
tumor growth model (e.g., exponential) and tumor regression
(log-kill). Norton and Simon realized the importance of extend-
ing these observations to a Gompertzian growth model (Eq. K).
The log-kill law, a fundamentally static law, does not say
anything about the relationship between the fraction of cells
killed and the growth rate of the tumor, but only about the
relationship between the rate of tumor regression and the dose.
In effect, Skipper's second law assumes a constant growth rate,
and therefore, a constant regression rate. In Gompertzian
growth, the nonconstant growth rate results in a range of
log-kill rates (b) corresponding to the instantaneous growth
rate (g(t)). Gompertzian growth is given by the following
coupled ordinary differential equations:

_n ¼ gn ðIÞ
_g ¼ ag ðJÞ

The Gompertz function reduces to the exponential function
whena¼ 0. These coupled ordinary differential equationsmay be
directly solved, as follows:

n tð Þ ¼ n0 exp
g0
a

1� exp �atð Þð
h i

ðKÞ

The Norton–Simon hypothesis states that tumor regression is
positively (linearly) correlatedwith the instantaneous growth rate
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just before the treatment of the unperturbed tumor (17, 18).
Generally, smaller tumors are associated with higher growth rates
(and therefore, higher regression rates). Mathematically, the
Norton–Simon hypothesis can be formulated as follows:

_n ¼ f n tð Þð Þ 1� L tð Þð Þ ðLÞ

where n(t) is the growth ratemodel of the tumor at time t, f(n(t)) is
the growth dynamics associated with the unperturbed tumor (i.e.,
exponential growth or Gompertzian growth), and L(t) is the loss
function of cells resulting from treatment. The growth function
f(n(t)) may be assumed to be exponential, (Eq. F), or Gompert-
zian, (Eqs. I and J). Remembering that Skipper's second law states
that cell kill follows first-order kinetics, we may assume for the
time being that L(t)� const., or that the rate of cell removal due to
treatment is constant. In other words, each dose of chemotherapy
is associated with some value of L. The goal is to find the optimal
dose concentration anddosedensity thatmaximize the loss rate of
cell kill, L.

The implications of the Norton–Simon hypothesis
Norton and Simon hypothesized that chemotherapy will only

be effective in targeting cells that are in active proliferation (and as
such are directly contributing the growth of the tumor in Eq. L).
Their model demonstrated ability to fit data from preclinical
experiments (19) and predict future tumor growth and regression
after a few initial measurements and data from clinical trials in
breast cancer (18).

The model has several key implications. First, the model pre-
dicts a higher regression for higher dose delivered. The highest
dose tolerable to the patient should be chosen. Second, tumor
regrowth during rest periods of chemotherapy necessitates a
shorter rest period and, subsequently, a shorter time of tumor
regrowth. The next round of a dose-dense chemotherapy will
attack a smaller tumor (with higher growth rate) and lead to
higher regression. Both implications give rise to the invention of
the MTD paradigm to attack the tumor with the highest dose,
coupled with shortest rest. These predictions were confirmed by
clinical trials in which chemotherapy schedules were densified
from 21 to 14 days (20). The hypothesis also predicts that tumors
with an identical tumor burden may have varied responses. The
growth rate of the tumor determines the response to chemother-
apy. As such, early administration is important, implying a better
response when the tumor is in initial stages of high growth.
Similar models using the ratio of tumor volume to the host-
influenced tumor carrying capacity (which corresponds inversely
to the instantaneous growth rate of the tumor) has been shown to
inversely predict radiotherapy response (21).

Fundamentally however, the Norton–Simon hypothesis pro-
vides no predictions for the effect of dose and dose density on
regression. The Norton–Simon hypothesis (Eq. L) conceals the
fact that the rate of cell kill, L(t), will be dependent on two
factors: drug concentration and the number of days the drug is
administered. The goal of this article is to extend the classical
and well-accepted predictions of the Norton–Simon hypothesis

Figure 1.

Chemotherapy is a selective agent that alters the fitness landscape of cells. A, The dose strength parameter, c (0 � c � 1), alters the selection pressure
parameter, w (0 � w � 1), in favor of the healthy cell population (wH > w) and to the disadvantage of the cancer cell population (wC < w). B, Total dose density
delivered in the one chemotherapeutic cycle, D, is the product of the dose strength (c, 0 � c � 1) and dose interval (d, 0 � d � 1) such that D ¼ ct [Eq. M
(0 � D � 1)]. C–E, Plots showing the fitness of the healthy cell subpopulation (fH, dashed line) and the cancer cell subpopulation (fC, dotted line) for no
therapy, low-dose therapy, and high-dose therapy.
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from instantaneous regression rates to the cumulative effect
over repeated cycles of chemotherapy. Chemotherapy "strate-
gies" or schedules are quantified using the Shannon entropy (8)
by their tumor cell reduction (TCR) over the course of the full
schedule, rather than the initial regression rate (b), which is tied
to the instantaneous growth rate at the time chemotherapy is
initiated. We compare the outcomes of our model with regres-
sion data from murine models, and they are shown to be in
good agreement.

Materials and Methods
The link between chemotherapeutic agents and the fitness
landscape

It is now well established that cancer is an evolutionary and
ecological process (22, 23). Studying cancer as a disease of clonal
evolution has major implications on tumor progression, preven-
tion, and therapy (24, 25). The evolutionary forces at play inside
the tumor such as genetic drift with heritable mutations and
natural selection operating on a fitness landscape are influenced
by tumor microenvironment and the interactions between com-
peting cell types. Increased selection will influence the rates of
proliferation and survival, which cause the population of cells
within a tumor to progress toward more invasive, metastatic,
therapeutic-resistant cell types. The role of chemotherapeutic
agents is to kill proliferating cancer cells. This effectively changes
the fitness landscape associated with the different subclonal
populations (altering the evolutionary trajectory of the tumor),
which we model as a change in the selection pressure on the
different cell types, explained in more detail below.

In order to model these complex evolutionary forces in cancer,
many theoretical biologists have used an EGT framework, pio-
neered by Nowak, to study cancer progression (see, refs. 6,
26–29). EGT provides a quantitative framework for analyzing
contests (competition) between various species in a population
(via the association of "strategies" with birth/death rates and
relative subclonal populations) and provides mathematical tools
to predict the prevalence of each species over time based on the

strategies (28, 30–32). More specifically, the framework of EGT
allows the modeler to track the relative frequencies of competing
subpopulationswith different traitswithin a bigger population by
definingmutual payoffs among pairs within the group. From this,
one can then define a fitness landscape over which the subpopu-
lations evolve.

The model
The model presented in (9, 10) and used in this article to carry

out our computational trials is a framework of primary tumor
growth used to test the effect of various chemotherapeutic regi-
mens, including MTD and LDM. The model is a stochastic Moran
(finite-population birth–death) process (33) that drives tumor
growth, with heritable mutations (34) operating over a fitness
landscape so that natural selection can play out over many cell
division timescales (described in more detail in refs. 9, 10). The
birth–death replacement process is based on a fitness landscape
function defined in terms of stochastic interactions with payoffs
determined by the prisoner's dilemma game (6, 7). This game
incorporates two general classes of cells: healthy (the cooperators)
and cancerous (the defectors; refs. 35, 36). During tumor pro-
gression, each cell is binned into one of two fitness levels,
corresponding to their proliferative potential: healthy (low fit-
ness) and cancer (high fitness). In our model, we can think of a
cancer cell as a formerly cooperating healthy cell that has defected
and begins to compete against the surrounding population of
healthy cells for resources and reproductive prowess. The model
demonstrates several simulated emergent "cancer-like" features:
Gompertzian tumor growth driven by heterogeneity (37–39), the
log-kill law, which (linearly) relates therapeutic dose density to
the (log) probability of cancer cell survival, and the Norton–
Simon hypothesis, which (linearly) relates tumor regression rates
to tumor growth rates, and intratumormolecular heterogeneity as
a driver of tumor growth (10).

Others have presented mathematical models to study evolu-
tionary dynamics of tumor response to targeted therapy (40) in
either combination or sequential therapy (41, 42), and optimal
drug dosing schedules to prevent or delay the emergence of

Figure 2.

Classical tumor regression laws. A, The Norton–Simon hypothesis states that tumor regression is proportional to the growth rate of an unperturbed tumor
of that size. Unperturbed tumor growth, nU (t) (dashed line), in a representative population of N ¼ 103 cells and growth rate, g(t) (solid line), is
shown. Therapy is administered at various time points in the growth of the tumor, and then regression, nT (t), is plotted (dotted line). Rate of regression,
b, is the best-fit slope on the log-plot. B, The average regression rate was calculated for 25 stochastic simulations and plotted as a function of g at
the time of therapy, with error bars indicating the SD of values. A linear best fit (predicted to be linear by the Norton–Simon hypothesis; dotted
line) is calculated to be b(t) ¼ 3.0865g þ 5.2359e05.
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resistance or optimize tumor response (43–45). We are interested
in testing "strategies," or drug schedules that control the number of
cancer cells, i, in a population ofN cells comprising the simulated
tissue region. (Note: the sizeof the tumor is basedon the cancer cell
population, i, which is variable and changing according to the
fitness landscape, detailed in Eqs. A–E. The carrying capacity,N, is a
parameter in themodel, but all plots shownhere arenormalizedby
N, so the proportion of cancer cells, i/N, is used to track tumor
growth, without loss of generality.) Themodel presented here uses
a parameter,w, to control the effect of selection pressure. A value of
w¼0 corresponds toneutral drift (no selection), and a value ofw¼
1 corresponds to strong selection. We break w into two separate
parameters, wH, the selection pressure on the healthy population,
and wC, the selection pressure on the cancer population (see Fig.
1A). Each dose of chemotherapy is associated with a dose con-
centration, c, which alters the selection pressure as indicated in Fig.
1A. Here, we assume drug concentration will be measured as a
fractionof the conventionalMTDdosages, hence 0� c� 1 (see Fig.
1B). As c increases, the selection pressure is altered in favor of the
healthy cells (wH > w) and to the detriment of cancer cells (wC < w)
as shown in Fig. 1A. Before therapy, the fitness landscape of an

untreated tumor is thatof aprisoner's dilemma(Fig. 1C),where the
fitness of the cancer subpopulation is greater than the healthy
population for the entire range of cancer proportion, i/N. The
change in fitness landscape for a moderate value of c (c¼ 0.4) is
shown in Fig. 1D, which gives the healthy cell population a
fitness advantage over the cancer population. For a strong dose
of therapy (such as c ¼ 0.8, shown in Fig. 1E), the effect on the
fitness landscape is exaggerated. The advantage is lessened as
the tumor size (i/N) increases for each dose (which contributes
to the emergence of the Norton–Simon model in Fig. 2,
explained in detail below). Thus, a higher dose leads to a
higher kill rate of cancer cells.

In the literature, two approaches have been proposed to
model loss functions due to a drug: (i) noncycle-specific
(where the loss function is linear with tumor size; ref. 46)
and (ii) cycle-specific (where loss function is linear with tumor
growth rate; refs. 15, 18). Cycle-specific drugs are considered
here, and thus a model of regression that is linear with tumor
growth rate is chosen. The loss function of the Norton–Simon
hypothesis in Eq. L shows an example of cycle-specific drug
modeling.

Figure 3.

Responseofmurine tumors to 5-FU treatmentwithmodel best-fit data (reproduced from ref. 47) from two treatedmice, CM.41 (A,B, C) andCM.43 (D, E, F), receiving
total doses of 50 or 100 mg/kg, respectively, on a weekly basis. Biweekly measurements of tumor volume were recorded for untreated (black circles) until
3–4 mm in size, and treated volumes (black x's) were measured until tumor reached 1 cm size. A Gompertzian function is best fit (dashed line), and the
Prisoner's dilemma model is fit using w and c as parameters (solid line). The model fit performs well for the wide range of tumor growth rates found in six tumors
[w ¼ (0.18, 0.08, 0.21, 0.08, 0.35, 0.12) and c ¼ (0.30, 0.49, 0.34, 0.34, 0.36, 0.32), A–F, respectively]. Note: tumor in A shows a time delay from start of
treatment to response to therapy, which our model does not address.
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The instantaneous growth rate, g, of a stochastic Moran process
model (see Eqs. A–E) is proportional to the fitness of the cancer
populationminus the averagefitness, i.e., g / (fC – hfi), where hfi is
the weighted average fitness of the total population of healthy and
cancer cells. Fitness is linear function of the selection pressure
parameter, w (see Eq. B). This proportionality between growth (g)
and selection pressure (w) indicates that varying w linearly with
dose concentration c (shown inFig. 1A) isdirectly comparablewith
the previous cycle-specific drug models. The model output is
shown in Fig. 2A, where identical, continuous chemotherapy is
administered at different time points in the life of the tumor,
corresponding to different instantaneous growth rates. A linear
relationshipbetween the instantaneous growth rate (g) and instan-
taneous regression rate (b; Fig. 2B) emerges from the model,
consistent with the predictions of the Norton–Simon hypothesis.
Note: a linearmodel of drug concentration is chosen, but the linear
relationship between growth rate and regression in Fig. 2B is an
emergent phenomenon of the model, consistent with previous
chemotherapy hypotheses and models.

A separate justification of the linear model of the effect of drug
concentration on selection pressure is shown in Fig. 3. A best-fit
was performed tofind the optimal parameters ofw and c tofit data
reproduced from mouse models quantifying intermouse and
intramouse variability and response to 5-Fluorouracil (5-FU) in
two treatment groups: 50mg/kg (Fig. 3A–C) and 100mg/kg (Fig.
3D–F; ref. 47). Tumor size measurements were taken until the
tumor reached 3 to 4 mm in size, and drug treatment was
administered weekly until 1 cm in size. The prisoner's dilemma
model (black solid lines) appears to accurately capture both the
growth dynamics (solid black circles) and the treatment dynamics
(black x's). The dashed lines are Gompertzian best-fit functions of
the unperturbed pretreatment data (black circles), showing good

agreementwith ourmodel (black solid lines). Previously, we have
reported the model's success in capturing current unperturbed
growth models (i.e., Gompertzian growth) as an emergent phe-
nomenon of this evolutionary model (10). Outcomes of our
model simulations are quite robust to small parametric changes
in all cases.

Dose concentration versus dose density
Despite a growing trend toward personalized and precision

medicine, treatment goals have shifted from complete cure to an
optimization of long-term management of the disease; rather
than trying to find the silver bullet, we might utilize the advances
in mathematical models to optimize existing therapeutic options
(11, 48). For this reason, we have decided to test the merit of
various chemotherapeutic regimens by comparing the total TCR.
We assume that a therapy regimen with a higher value of TCRwill
provide a greater level of tumor control, a longer time to relapse,
and better prognosis.

A drug dose, D, (Eq. M) is generally measured in units of
mg/m2/week (here, average body surface area assumed to be
1.8 m2). Yet, dose D consists of two components: dose concen-
tration (parameter c in our model) and dose time factor (param-
eter t in our model). The time factor, called the dose density
when normalized by the intercycle time, represents the percent-
age of days a dose is administered. In order to compare the
importance of each term on TCR, we hold one term constant and
vary the other in Fig. 4.

D ¼ ct ðMÞ
Clearly seen in Fig. 4A, there is a diminishing return on

increasing the dose strength of a given chemotherapy regimen.

Figure 4.

Diminishing returns of dose escalation compared with linear relationship of dose density. A, Dose escalation. The percent regression of a tumor for a range of dose
strength (constant dose interval: t ¼ 10 days, T ¼ 14 days) is shown for a range of selection pressure: w ¼ 0.1 (circles), w ¼ 0.2 (x's), and w ¼ 0.3 (squares).
For each subsequent increase in dose strength, the dose-escalation approach to chemotherapy shows diminishing returns in percent tumor regression.
B, Dose density. The percent regression of a tumor for a range of dose interval (constant dose strength: c ¼ 1.0) is shown for a range of selection pressure: w¼ 0.1
(circles), w ¼ 0.2 (x's), and w ¼ 0.3 (squares). Dose density shows a linear relationship between densifying chemotherapy and percent tumor regression.
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Although there is a positive relationship (an increase in dose leads
to a higher regression) that relationship lessens as the dose is
increased further. However, in Fig. 4B, the relationship between
dose density and regression is linear, showing no signs of dimin-
ishing returns of increasing density.

This point has an important subtlety: the dose cannot be
continually lowered in favor of density. The dose must be suffi-
cient toovercome the growth rateof the tumor; somedoses are not
adequate for tumor regression regardless of the density. This is
seen for values below the dotted line in Fig. 4A and B.

Results
Quantifying chemotherapeutic strategies via entropy metric

In clinical practice today, there are three common chemother-
apy regimens in use considered here: MTD, Low-Dose Metro-
nomic weekly (LDMw), and Low-Dose Metronomic daily
(LDMd). These three chemotherapy strategies are shown in Fig.
5 (left). Each regimen consists of identical cycles that are repeated
until the tumor is eradicated. TheMTD (left, top) regimen delivers
the maximum dose on a single day, repeated once every 2 weeks.
The LDMw (left, middle) regimen lowers the dose, but doubles
the dose density from 1 to 2 days out of 14. The LDMd (left,
bottom) regimen has the highest density (there is a dose admin-
istered on 100% of the days), but the lowest dose.

There are thousands of such choices of chemotherapy regimens
when considering varying doses acrossmanydays orweeks (Fig. 5,
right), each varying the total dose delivered,D, and the density, d.
We propose using a Shannon Entropy index, E, of a given che-
motherapy schedule as ameasure that canquantify and synthesize
information of both the dose on a given day and the distribution
of unique, daily doses across the entire chemotherapy regimen
into a singlemetric. The entropy is calculated as follows,where ci is
the dose strength (often simply referred to as "dose") on day i.

E ¼ �
XN
i2ci>0

ci log ci ðNÞ

The assumption in Eq. M that an identical dose is delivered
every day can be relaxed, and the total dose delivered is found by
summing the dose on each ith day (ci) multiplied by the length of
the dose in days (ti). We assume that the smallest resolution of
discrete times between doses, ti is a single day, or ti¼ 1 for all i.N is
the number of days between cycles, also known as the intercycle
time.

D ¼
XN
i¼1

citi ¼
XN
i¼1

ci ðOÞ

The dose density of a regimen can be found by summing the
number of days where a nonzero dose is delivered, and dividing

Sample chemo schedules (n = 14 days) Sample chemo schedules (n = 4 days)
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Figure 5.

Shannon entropy as an index to compare treatment strategies. Left, three common chemotherapy schedules are shown for one cycle (N¼ 14 days). MTD (left, top)
is a high-dose (administered once at the beginning of every 2 week cycle) and low-dose density (d ¼ 0.071, see Eq. P) regimen. Low-dose metronomic weekly
(left, middle) is a lower dose, higher density (d ¼ 0.143) regimen, whereas low-dose metronomic daily is the lowest dose, highest density (d ¼ 1.00). Right,
similarly, chemotherapy regimens can be simulated for a range of dose, density, and entropy values. Pictured from top to bottom are a range of representative
regimens from low entropy (i.e., high dose, low density) to high entropy (i.e., low dose, high density) for a cycle of N ¼ 4 days. On each ith day, treatment
of dose ci is administered. The treatment strategy's Shannon Entropy, E, is calculated according to Eq. N, and the total dose delivered is calculated according to Eq. O.
All treatment strategies are front loaded (monotonically decreasing) regimens. It should be noted that LDM-like regimens correspond to a
high-entropy value (bottom, left and right).
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by the intercycle time in days, N. Thus, the density will be a
nondimensionalized parameter such that (0 � d � 1).

d ¼
XN
i2ci>0

ti
N

ðPÞ

The Shannonentropymetric,E, is an idealmetric for comparing
chemotherapy regimens because it separates the existing cases
already in clinical practice today: MTD (low entropy, character-
ized by high doses with long periods of rest), metronomic regi-
mens (high entropy, characterized by low doses with short or no
periods of rest), as well as any arbitrary strategy of varied doses
administered in a cycle of arbitrary length of days. All of the
simulated therapy regimens were assumed to be frontloaded
(nonincreasing, with the highest dose on day 1 and equal or
lower subsequent doses). Backloaded regimens give similar but
slightly disadvantageous results, because backloaded regimens
often start with a period of rest, giving the tumor time to grow to a
larger tumor, which is associated with a lower growth rate (and
therefore lower regression rates).

LDM versus MTD chemotherapies
Computational simulations of 1,000 unique chemotherapy

schedules were run with identical initial conditions (N ¼ 1e6
cells; i/N¼ 1e3). Mean values of tumor cell regression percentage

for 50 simulations were calculated and plotted in a pictorial
histogram according to regression percentage (Fig. 6). Both
slow-growing tumors (w ¼ 0.1; Fig. 6A) and fast-growing tumors
(w ¼ 0.2; Fig. 6B) were simulated.

Each block represents a chemotherapy regimen that has an
associated Shannon entropy index (Eq. N). The background
shading of the blocks of the chemotherapy regimens is shaded
from white (low entropy) to black (high entropy). The smaller
white squares within each block indicate the strength of the
therapy dose for each day (ci). Pictured are 1,000 combinations
ofN¼ 4 day chemotherapy schedules, but similar trends are seen
for chemotherapy schedules of longer length of days. All regimens
are equivalent total dose (D ¼ 0.3), nonincreasing, and are
repeated for 8 cycles of chemotherapy, and the TCR is recorded.
The histograms clearly show a shift from white toward black for
low TCR toward high TCR. This indicates that high-entropy
(black) therapies outperform low-entropy therapies and consis-
tently lead to higher TCR. These high-entropy regimens are low
dose, more dose-dense chemotherapies, characteristic of LDM
chemotherapy.

In Fig. 7, the analysis is repeated for varied tumor growth rates
(i.e., varied selection pressure) for w¼ 0.1 (circles), w¼ 0.2 (x'2),
and w ¼ 0.3 (squares). The difference in reduction is shown for 1
cycle, 8 cycles, and 16 cycles. Fast-growing tumors have a high
slope on a least-squares linear fit approximation of the entropy-

Figure 6.

High-entropy, LDM-like
chemotherapies outperform low-
entropy MTD-like chemotherapies.
Two pictorial histograms are plotted,
where each block (color-coded from
white: low entropy to black: high
entropy) represents a chemotherapy
regimen. A, A slow-growing tumor
(w ¼ 0.1). B, A fast-growing tumor
(w ¼ 0.2). All regimens are equivalent
total dose (D ¼ 0.3), monotonically
decreasing, and are repeated for 8
cycles of chemotherapy, and the TCR
is recorded. The dose density, d, and
dose concentration, ci, are varied
between regimens. The histogram
clearly shows a color shift from white
toward black for low TCR, ineffective
therapies toward high TCR, effective
therapies. High-entropy (black)
therapies outperform low-entropy
therapies. The data were fit to a
Weibull distribution [shown in top left
plot, (a): k ¼ 14.251,l ¼ 65.882; (b):
k ¼ 6.647,l ¼ 46.758], overlaid in a
solid line.
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TCR plot, which means that high-entropy therapies (LDM) are
more effective for fast-growing tumors than for slow-growing
tumors. By contrast, slow-growing tumors have a lower slope on
the entropy-regression plot, which means that all regimens have
relatively similar performance outcomes. Fast-growing tumors,
therefore, have a higher likelihood of benefiting from a more
LDM-like chemotherapy, provided the dose is adequate to lead to
tumor regression.

The effect is almost negligible after a single cycle (Fig. 7A).
The appeal of the implication of Norton–Simon toward an
MTD approach to chemotherapy lies in the high initial
response of tumors to a high dose. The metronomic che-
motherapies take more cycles to overtake the initial quick
response of the MTD, but after the 8 cycles (Fig. 7B) and 16
cycles (Fig. 7C), the cumulative effect is evident and metro-
nomic chemotherapies outperform MTD therapies. For each
growth rate, there is a corresponding optimal chemotherapy
schedule. In each case, the optimal solution corresponds to the
highest entropy (which corresponds to the low-dose metro-
nomic chemotherapy schedule).

Discussion
We use a stochastic Moran process model coupled with a

prisoner's dilemma evolutionary game (cellular interactions)
to contrast LDM and MTD chemotherapies with respect to
their effect on tumor growth. The Shannon entropy was
identified as a useful metric to compare chemotherapy strat-
egies. The metric is useful in quantifying LDM strategies
(which correspond to high entropy values), MTD strategies
(low entropy), as well as novel strategies with intermediate
entropy values.

Our results show that high-dose chemotherapy strategies
outperform low dose, although there are some subtleties asso-
ciated with the growth rates of the tumors. Dosing consists of a
product of concentration and density, and our results show that

an increase in density is more effective than the same percent-
age increase in concentration. In other words, higher dose
concentrations show diminishing returns. The effectiveness of
density in leading to a higher TCR allows the LDM chemothera-
pies (which are more dose dense) to outperform MTD strate-
gies. This effect is magnified for fast-growing tumors that thrive
on long periods of unhindered growth without chemotherapy
drugs present. This effect is not evident after a single cycle of
chemotherapy, but is magnified after each subsequent cycle of
repeated chemotherapy. We could ask if there is any evidence
of this effect in the literature on clinical trials already per-
formed. We first point to an article comparing different che-
motherapeutic schedules for prostate tumors (relatively slow
growth rates; ref. 49). In this phase III study, docetaxel dosing
given every 3 weeks was compared with dosing every week. The
mean survival was only slightly higher for the first group (3
weeks) compared with the second (weekly), showing no obvi-
ous benefit to a low-dose high-density treatment. By contrast, a
phase II trial for small cell lung cancer (50) was performed, a
tumor with typically higher growth rates than prostate tumors.
For this group, the drug topotecan was administered on a
higher dose weekly basis with disappointing results, pointing
out the advantages of the LDM therapies for this fast-growing
tumor type.

Thus, our model points to the benefits of choosing dosing
strategies based on tumor growth rates, something not current-
ly done in medical practice. The concept of choosing dosing
schedules based on tumor growth rates could well be a fruitful
avenue to test further in clinical trials focused on this question.
Others have attempted to estimate prospective patient-specific
tumor growth rates to make clinical decisions about treatment
scheduling and fractionization, using measurements at diag-
nosis and first day of treatment (51, 21). Furthermore, the
promise of LDM chemotherapy on mitigating the risk of resis-
tance (3) and metastasis (11) could be a separate line of future
investigation.

Figure 7.

High-entropy strategies lead to an increase in tumor regression. The relationship between TCR and entropy (H) is shown for a single cycle of chemotherapy (A),
8 cycles (B), and 16 cycles (C). The simulations (averages of 25 stochastic simulations for total dose delivered D ¼ 0.3) are repeated for slow (w ¼ 0.1, circles),
medium (w¼ 0.2, x's), and fast-growing tumors (w¼ 0.3, squares). The low slope value in A indicates negligible advantage of high-entropy strategies after only a
single cycle. After many cycles, the advantage of high-entropy strategies is apparent (B and C). Also note that the slope associated with faster growing
tumors (squares; w¼ 0.3) is higher than those of slower growing tumors (circles; w¼ 0.1). This indicates that at high entropies, TCR for the fast-growing tumors is
closer to those for slow-growing tumors, as compared with low entropies.

West and Newton

Cancer Res; 77(23) December 1, 2017 Cancer Research6726

on April 25, 2020. © 2017 American Association for Cancer Research. cancerres.aacrjournals.org Downloaded from 

Published OnlineFirst October 6, 2017; DOI: 10.1158/0008-5472.CAN-17-1120 

http://cancerres.aacrjournals.org/


Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Authors' Contributions
Conception and design: J. West, P.K. Newton
Development of methodology: J. West, P.K. Newton
Analysis and interpretation of data (e.g., statistical analysis, biostatistics,
computational analysis): J. West
Writing, review, and/or revision of the manuscript: J. West, P.K. Newton
Administrative, technical, or material support (i.e., reporting or organizing
data, constructing databases): J. West

Grant Support
J. West is supported by Award Number DGE 1045595 from the National

Science Foundation (Principle Investigator: Krishna Nayak).

The costs of publication of this article were defrayed in part by the
payment of page charges. This article must therefore be hereby marked
advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate
this fact.

ReceivedMay 9, 2017; revised August 14, 2017; accepted September 27, 2017;
published OnlineFirst October 6, 2017.

References
1. Hanahan D, Bergers G, Bergsland E. Less is more, regularly: metronomic

dosing of cytotoxic drugs can target tumor angiogenesis in mice. J Clin
Invest 2000;105:1045–7.

2. Lien K, Georgsdottir S, Sivanathan L, Chan K, Emmenegger U. Low-dose
metronomic chemotherapy: a systematic literature analysis. Eur J Cancer
2013;49:3387–95.

3. Kerbel RS, Kamen BA. The anti-angiogenic basis of metronomic chemo-
therapy. Nat Rev Cancer 2004;4:423–36.

4. Browder T, Butterfield CE, Kr€aling BM, Shi B, Marshall B, O'Reilly MS, et al.
Antiangiogenic scheduling of chemotherapy improves efficacy against
experimental drug-resistant cancer. Cancer Res 2000;60:1878–86.

5. Klement G, Baruchel S, Rak J, Man S, Clark K, Hicklin DJ, et al. Continuous
low-dose therapy with vinblastine and vegf receptor-2 antibody induces
sustained tumor regression without overt toxicity. J Clin Invest 2000;105:
R15–24.

6. Axelrod R, Axelrod DE, Pienta KJ. Evolution of cooperation among tumor
cells. Proc Natl Acad Sci 2006;103:13474–9.

7. NowakM. Stochastic strategies in the prisoner's dilemma. Theor Popul Biol
1990;38:93–112.

8. Cover TM, Thomas JA. Elements of information theory. Hoboken, New
Jersey: John Wiley & Sons; 2012.

9. West J,HasnainZ,MacklinP,Mason J,NewtonP.Anevolutionarymodel of
tumor cell kinetics and the emergence of molecular heterogeneity and
gompertzian growth. SIAM Rev 2016;58:716–36.

10. West J, Hasnain Z, Mason J, Newton P. The prisoner's dilemma as a cancer
model. Converg Sci Phys Oncol 2016;2:035002.

11. Benzekry S, Pasquier E, Barbolosi D, Lacarelle B, Barl�esi F, Andr�e N,
et al. Metronomic reloaded: Theoretical models bringing chemother-
apy into the era of precision medicine. Semin Cancer Biol 2015;35:
53–61.

12. Wodarz D, Komarova NL. Dynamics of cancer: mathematical foundations
of oncology. Toh Tuck Link, Singapore: World Scientific; 2014.

13. Goldie JH, Coldman AJ. Drug resistance in cancer: mechanisms and
models. New York: Cambridge University Press; 2009.

14. Frei E, Canellos GP. Dose: a critical factor in cancer chemotherapy. Am J
Med 1980;69:585–94.

15. Skipper HE, Schabel FM Jr, Wilcox WS. Experimental evaluation of poten-
tial anticancer agents. xxi. on the criteria and kinetics associated with
curability of experimental leukemia. Cancer Chemother Rep 1964;35:1.

16. Perry MC. The chemotherapy source book. Philadelphia: Lippincott
Williams & Wilkins; 2008.

17. Norton L, SimonR.Growth curve of an experimental solid tumor following
radiotherapy. J Natl Cancer Inst 1977;58:1735–41.

18. Norton L, Simon R. Tumor size, sensitivity to therapy, and design of
treatment schedules. Cancer Treat Rep 1977;61:1307.

19. Traina TA,DuganU,Higgins B, Kolinsky K, TheodoulouM,Hudis CA, et al.
Optimizing chemotherapy dose and schedule by norton-simon mathe-
matical modeling. Breast Dis 2010;31:7–18.

20. Held G, Schubert J, Reiser M, Pfreundschuh M, German High-Grade
Non-Hodgkin-Lymphoma Study Group. Dose-intensified treatment of
advanced-stage diffuse large b-cell lymphomas. Semin Hematol 2006;
43:221–9.

21. Prokopiou S, Moros EG, Poleszczuk J, Caudell J, Torres-Roca JF, Latifi K,
et al. A proliferation saturation index to predict radiation response and
personalize radiotherapy fractionation. Radiat Oncol 2015;10:1.

22. Merlo LM, Pepper JW, Reid BJ, Maley CC. Cancer as an evolutionary and
ecological process. Nat Rev Cancer 2006;6:924–35.

23. Attolini C. S.-O, Michor F. Evolutionary theory of cancer. Ann N Y Acad Sci
2009;1168:23–51.

24. Nowell PC. The clonal evolution of tumor cell populations. Science
1976;194:23–8.

25. GreavesM,Maley CC. Clonal evolution in cancer. Nature 2012;481:306–13.
26. Nowak MA. Evolutionary dynamics. Cambridge, Massachusetts: Harvard

University Press; 2006.
27. Gerlee P, AndersonA. An evolutionary hybrid cellular automatonmodel of

solid tumor growth. J Theor Bio 2007;246:583–603.
28. Hummert S, Bohl K, Basanta D, Deutsch A, Werner S, Theissen G, et al.

Evolutionary game theory: cells as players. Mol Biosyst 2014;10:3044–65.
29. Michor F, Iwasa Y, Nowak MA. Dynamics of cancer progression. Nat Rev

Cancer 2004;4:197–205.
30. Hauert C, Szab�o G. Game theory and physics. Am J Phys 2005;73:405–14.
31. Hofbauer J, Sigmund K. Evolutionary games and population dynamics.

Cambridge, United Kingdom: Cambridge University Press; 1998.
32. Basanta D, Deutsch A. A game theoretical perspective on the somatic

evolution of cancer. In: selected topics in cancermodeling. Boston: Springer,
2008. pp. 1–16.

33. Ross SM. Introduction to probability models: solutions manual for intro-
duction to probability models. Solu, 4. Cambridge,Massachusetts: Academic
Press; 1989.

34. Martincorena I, Campbell PJ. Somaticmutation in cancer and normal cells.
Science 2015;349:1483–9.

35. Doebeli M, Hauert C. Models of cooperation based on the prisoner's
dilemma and the snowdrift game. Ecol Lett 2005;8:748–66.

36. Doebeli M,Hauert C, Killingback T. The evolutionary origin of cooperators
and defectors. Science 2004;306:859–62.

37. Burrell RA, McGranahan N, Bartek J, Swanton C. The causes and con-
sequences of genetic heterogeneity in cancer evolution. Nature 2013;501:
338–45.

38. Kendal W. Gompertzian growth as a consequence of tumor heterogeneity.
Math Biosci 1985;73:103–7.

39. Swanton C. Intratumor heterogeneity: evolution through space and time.
Cancer Res 2012;72:4875–82.

40. Abbott L, Michor F. Mathematical models of targeted cancer therapy. Br J
Cancer 2006;95:1136–41.

41. Bozic I, Reiter JG, Allen B, Antal T, Chatterjee K, Shah P, et al. Evolutionary
dynamics of cancer in response to targeted combination therapy. Elife
2013;2:e00747.

42. Beckman RA, Schemmann GS, Yeang CH. Impact of genetic dynamics
and single-cell heterogeneity on development of nonstandard person-
alized medicine strategies for cancer. Proc Natl Acad Sci 2012;109:
14586–91.

43. Foo J, Michor F. Evolution of resistance to anti-cancer therapy during
general dosing schedules. J Theor Biol 2010;263:179–88.

44. Basanta D, Gatenby RA, Anderson AR. Exploiting evolution to treat drug
resistance: combination therapy and the double bind. Mol Pharm 2012;
9:914–21.

45. Liao D, Est�evez-Salmer�on L, Tlsty TD. Conceptualizing a tool to optimize
therapy based on dynamic heterogeneity. Phys Biol 2012;9:065005.

46. Martin R. Optimal control drug scheduling of cancer chemotherapy.
Automatica 1992;28:1113–23.

www.aacrjournals.org Cancer Res; 77(23) December 1, 2017 6727

Chemotherapeutic Dose Scheduling Based on Tumor Growth Rates

on April 25, 2020. © 2017 American Association for Cancer Research. cancerres.aacrjournals.org Downloaded from 

Published OnlineFirst October 6, 2017; DOI: 10.1158/0008-5472.CAN-17-1120 

German High-Grade Non-Hodgkin-Lymphoma Study Group
German High-Grade Non-Hodgkin-Lymphoma Study Group
http://cancerres.aacrjournals.org/


47. Loizides C, Iacovides D, Hadjiandreou MM, Rizki G, Achilleos A, Strati K,
et al. Model-based tumor growth dynamics and therapy response in a
mouse model of de novo carcinogenesis. PLoS One 2015;10:e0143840.

48. GatenbyRA.Achangeof strategy in thewaroncancer.Nature2009;459:508–9.
49. Tannock IF, de Wit R, Berry WR, Horti J, Pluzanska A, Chi KN, et al.

Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced
prostate cancer. N Engl J Med 2004;351:1502–12.

50. SpigelDR,Greco FA, Burris HA3rd, ShipleyDL, Clark BL,Whorf RC, et al. A
phase 2 study of higher dose weekly topotecan in relapsed small-cell lung
cancer. Clin Lung Cancer 2011;12:187–91.

51. Neal ML, Trister AD, Cloke T, Sodt R, Ahn S, Baldock AL, et al.
Discriminating survival outcomes in patients with glioblastoma using
a simulation-based, patient-specific response metric. PLoS One 2013;8:
e51951.

Cancer Res; 77(23) December 1, 2017 Cancer Research6728

West and Newton

on April 25, 2020. © 2017 American Association for Cancer Research. cancerres.aacrjournals.org Downloaded from 

Published OnlineFirst October 6, 2017; DOI: 10.1158/0008-5472.CAN-17-1120 

http://cancerres.aacrjournals.org/


2017;77:6717-6728. Published OnlineFirst October 6, 2017.Cancer Res 
  
Jeffrey West and Paul K. Newton
  
Provides a Case for Low-Dose Metronomic High-Entropy Therapies
Chemotherapeutic Dose Scheduling Based on Tumor Growth Rates

  
Updated version

  
 10.1158/0008-5472.CAN-17-1120doi:

Access the most recent version of this article at:

  
  

  
  

  
Cited articles

  
 http://cancerres.aacrjournals.org/content/77/23/6717.full#ref-list-1

This article cites 43 articles, 7 of which you can access for free at:

  
Citing articles

  
 http://cancerres.aacrjournals.org/content/77/23/6717.full#related-urls

This article has been cited by 4 HighWire-hosted articles. Access the articles at:

  
  

  
E-mail alerts  related to this article or journal.Sign up to receive free email-alerts

  
Subscriptions

Reprints and 

  
.pubs@aacr.org

To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at

  
Permissions

  
Rightslink site. 
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC)

.http://cancerres.aacrjournals.org/content/77/23/6717
To request permission to re-use all or part of this article, use this link

on April 25, 2020. © 2017 American Association for Cancer Research. cancerres.aacrjournals.org Downloaded from 

Published OnlineFirst October 6, 2017; DOI: 10.1158/0008-5472.CAN-17-1120 

http://cancerres.aacrjournals.org/lookup/doi/10.1158/0008-5472.CAN-17-1120
http://cancerres.aacrjournals.org/content/77/23/6717.full#ref-list-1
http://cancerres.aacrjournals.org/content/77/23/6717.full#related-urls
http://cancerres.aacrjournals.org/cgi/alerts
mailto:pubs@aacr.org
http://cancerres.aacrjournals.org/content/77/23/6717
http://cancerres.aacrjournals.org/


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings true
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 0
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ([Based on '[High Quality Print]'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames false
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides true
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        18
        18
        18
        18
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 18
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [792.000 1224.000]
>> setpagedevice




