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A tumor is made up of a heterogeneous collection of cell types,
all competing on a fitness landscape mediated by microenviron-
mental conditions that dictate their interactions. Despite the fact
that much is known about cell signaling, cellular cooperation,
and the functional constraints that affect cellular behavior, the
specifics of how these constraints (and the range over which they
act) affect the macroscopic tumor growth laws that govern total
volume, mass, and carrying capacity remain poorly understood.
We develop a statistical mechanics approach that focuses on the
total number of possible states each cell can occupy and show
how different assumptions on correlations of these states give
rise to the many different macroscopic tumor growth laws used
in the literature. Although it is widely understood that molecular
and cellular heterogeneity within a tumor is a driver of growth,
here we emphasize that focusing on the functional coupling of
states at the cellular level is what determines macroscopic growth
characteristics.

tumor growth laws | cell coupling | statistical mechanics |
tumor heterogeneity

A typical tumor comprises a remarkably heterogeneous
agglomeration of cell types, both at the molecular level (1)

and at the phenotypic/morphological level (2, 3). Why this is
often the case is still somewhat open to debate (1, 4), but clearly
mutational instability (5, 6), ecological niches (7, 8), and tissue
microenvironmental factors (9–11) all contribute to this diver-
sity of cell types, which, in turn, enables natural selection to
act to shape the fitness landscape of the tumor (3, 12), drive
tumor growth (13, 14), and select for resistant subpopulations
during treatment (15, 16). A question we address in this paper
is: What are the consequences of tumor heterogeneity at the cel-
lular scale with respect to key aspects of tumor growth at the
macroscale? It has long been known that cellular communica-
tion is essential for embryonic development, for example, but it
has been less widely appreciated in cancer. In particular, how
do cellular diversity, on the one hand, and cell–cell interactions
and intercellular communication (via hormones, growth factors,
neurotransmitters, and cytokines mediated by gap junction chan-
nels), on the other hand, both work in concert to determine
the macroscopic growth laws of a tumor? It has been observed
that the cancer problem is not merely a cell problem, it is a
problem of cell interaction, not only within tissues, but with dis-
tant cells in other tissues (17). We know that communication
processes among cells ultimately control many aspects of cell
growth, including proliferation, differentiation, apoptosis, and a
cell’s ability to adapt and respond to microenvironmental cues.
We also know that disruption of cell–cell communication can
lead to increased or decreased proliferation, abnormal differen-
tiation, apoptotic alteration, and abnormal adaptive responses
(18–20). In fact, it has been hypothesized that cancer essentially
is a consequence of dysfunctional gap-junctional intercellular
communication (21, 22).

In this paper, we present a mathematical framework that links
heterogeneity/diversity at the cellular level to the many differ-
ent deterministic growth laws at the volumetric level. At the
cellular level, heterogeneity is modeled by allowing each of the

cells to freely “occupy” one of m possible independent states
in a statistical mechanics formulation. A cell state could be
defined either genotypically or phenotypically, keeping in mind
that a cell’s phenotype can be heavily influenced by neighboring
cells, microenviromental factors, or even longer-range coupling
among cells. The combination of all of these various local cellu-
lar influences leads to an emergent volumetric growth law. In
the early stages of progression (from a single mutated cell to
a small collection of rapidly proliferating cells), the cell pop-
ulation is relatively unconstrained, gradually becoming more
and more constrained over time due to extrinsic factors (e.g.,
fibroblasts, immune cells, blood vessels, and nutritional land-
scapes) as well as intrinsic factors (e.g., necrosis, DNA mismatch
repair, chromosomal instability). The collection of all of these
extrinsic and intrinsic factors is represented by a constraining
function f (n), where n is the tumor cell population. This func-
tion dictates how the constraints change over time as the tumor
grows [generally, f (n) is an increasing function of n]. While
locally, some cells will surely have increased capacity for diver-
sity (i.e., if they acquire chromosomal instability), or a decreased
capacity for diversity (i.e., necrosis), our theory focuses on the
overall macroscopic trend. This potential reduction in the num-
ber of independent states is then expressed as the ratio qj =
m/f (n), which we call the “effective” number of states. The
statistical mechanics formulation here uses this ratio as the fun-
damental microscopic (cell state) variable. We then lay out very
precisely how our choice of the functional coupling denomi-
nator f (n) affects the macroscopic growth law of the tumor.
Particularly relevant is the fact that while the exact cell cou-
pling of a population may not be easily measurable, knowing
the approximate macroscopic growth characteristic of a tumor
(e.g., by time imaging) gives indirect insight into the functional
coupling of the cell population throughout the tumor’s growth
history.
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1. Heterogeneity, Diversity, and Growth
Genetic instability, a hallmark of cancer, is generally believed to
be acquired early in tumorigenesis and thought to lead in a mul-
tistep fashion to other cancer hallmarks (24–26). This instability
can be thought of as increasing the potential of diversity within
a tumor, leading to a large number of potential genetic or mor-
phological “states” each cell can occupy, which in turn gives rise
to a combinatorial mushrooming of overall molecular/cellular
configuration of the tumor. This makes a statistical mechanics
approach to cancer modeling an attractive option. Kendal (27)
introduced such a model based on these types of considerations,
which we take as a point of departure for our work, so it is useful
to first review the main features of his simple argument. Con-
sider a population of n cells where the j th cell has the potential
to assume one of qj possible states, j =1, 2, 3, . . . ,n . The num-
ber of combinations of states possible within the population is
given as P , a measure of diversity potential of the tumor:

P = q1 · q2 · q3 · · · qn , [1]

which can be related to the growth rate of the tumor. By intro-
ducing a function, G(P), that is a function of the number of pro-
liferating cells, and using the requirement that G =G(P1 ·P2)=
G(P1)+G(P2) for any two subpopulations P1 and P2 (additiv-
ity of G), we arrive at the requirement that G is logarithmic (see
ref. 23 for a proof of this fact):

G =α lnP , [2]

where ln is the natural logarithm. Our basic assumption is that
growth is proportional to G :

dn

dt
= aG(P)= aα ln(P). [3]

The linkage between growth rate and measures of tumor hetero-
geneity is consistent with the fact that morphologic heterogeneity
forms the basis of many tumor-grading classification systems (15)
and is implicitly discussed in the classic paper of Nowell (3), who
considered the commonly observed increased tumor aggressive-
ness during the natural history of solid tumor growth. It is most
recently thoroughly discussed in refs. 4 and 28, and a general
discussion of some of the consequences of heterogeneity can be
found in ref. 13. The basic assumptions of the model are high-
lighted in Fig. 1. Our point of departure from Kendal’s approach
(27) is to represent the number of possible states, more generally,
as the ratio:

qj =m/f (n), [4]

to allow for functional coupling as the cell population changes.
Here, m represents the number of uncoupled (free) states avail-
able to each cell, whereas [4] allows for the possibility that
functional coupling reduces the number of effective states (qj )
the cell can occupy.

To compare with Kendal’s original formulation (27), if we
begin with the simplest completely uncoupled case, where we
let f (n)= 1, and qj =m (typically m <<n) for each j , the
combination of states is calculated from [1] as:

P =m ·m ·m ·m . . .=mn . [5]

With this, we have the growth equation:

dn

dt
= aα ln(P)= aα ln(mn)= aα ln(m)n, [6]

A B

C D

Fig. 1. A schematic showing the key assumptions and conclusions of the
model. (A) A population of n cells: colors represent current genetic or
phenotypic state assumed. Each jth cell can assume qj states. Total tumor
diversity, P, is the product of each cell’s diversity potential. (B) Consider
two such populations of n1 and n2 cells growing independently. Diversity
potential is given by P1 and P2, respectively. (C) Considering the same two
populations in combination, the growth rates must be additive, while the
diversity potential is multiplicative, as shown. (D) The log function satisfies
this functional requirement given in C (see ref. 23 for proofs).

which yields exponential growth:

n(t)=n0 exp[(aα ln(m))t ], [7]

with growth rate proportional to the logarithm of the number
of states available to each cell. We assume that n(t =0)=n0,
and that tumor volume V (t), in general, is proportional to n(t).
Therefore, with no coupling among the cells to reduce the effec-
tive number of achievable states (degrees of freedom), tumor
growth is effectively exponential. This is often the case in the very
earliest stages of tumor growth before the cells have coordinated,
or “synced,” via any long-range communication mechanisms
(discussed in section 6). To make further contact with existing
literature, note that the standard exponential growth equation is
simply written:

dn

dt
= k ·n, [8]

with k ≡ ln(2)/T , where T is the doubling time of the cell
population. Comparing [6] and [8], we see that:

ln(2)

T
∼ ln(m), [9]

or that ln(m)∼ 1/T . As the number of available states increases,
the doubling time decreases (i.e., faster growth), and the two are
log-related.

By contrast, suppose that the number of states each cell can
achieve is reduced as the total cell population increases, due to
functional coupling of the cell population. Instead of each cell
acting independently as previously assumed, we now let f (n)=n:

qj =m/f (n)=m/n. [10]

As n increases (i.e., as the tumor grows), the number of states
each cell can achieve decreases linearly with n . With this
assumption, we have diversity as:
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P =
m

n
· m
n
· m
n
· m
n
. . .=

(m
n

)n
. [11]

This gives rise to the growth equation:

dn

dt
= aα ln(P)= aα ln

(m
n

)n
= aαn[ln(m)− ln(n)], [12]

whose solution is the Gompertzian function:

n(t)=n0 exp
[ γ
α
(1− exp(−αt))

]
, [13]

one of the most widely applied macroscopic tumor growth
laws (29–33). The functional coupling of the cell population
effectively reduces the number of achievable states, which will
increase the doubling time (i.e., slower growth) of the tumor.
These two known examples show very clearly how our choice of
the functional coupling, f (n), dictates the emergent volumetric
growth equation. This can be made much more general by link-
ing essentially all widely used tumor growth laws with specific
choices of the function coupling as shown next.

2. Functional Cellular Constraints and Volumetric Growth
As the tumor grows, cell signaling and microenvironmental fac-
tors act to couple many functional aspects of the individual cells
(much the way the uncoupled degrees of freedom in a mechan-
ical system can sync, thereby reducing the effective degrees of
freedom of the system as a whole). The two previous examples,
f (n)= 1 (leading to exponential growth) and f (n)=n (leading
to Gompertzian growth), are special cases. Generally speaking,
as the tumor grows, the functional coupling should increase (as
in the Gompertzian case); hence, f (n) should be an increasing
function of n . With no loss of generality, we can write f (n) as
the exponential of another function g(n) (to clean up the final
equation):

f (n)≡ exp(g(n)), [14]

giving rise to the following relation:

qj =m/ exp(g(n)). [15]

At this point, the functional form of g(n) is unspecified, but the
denominator serves to restrict the total number of “free states”
m a single cell can occupy. Using [1], the growth Eq. 2 then
becomes:

ṅ = c1n − c2ng(n), [16]

where c1 = aα ln(m), c2 = aα. The functional form g(n) deter-
mines which of the many common macroscopic growth models
are in force (exponential, exponential-linear, logistic, general-
ized logistic, Gompertz, Von Bertanffly, and power law). An
overview of results are shown in Table 1. An example com-
mentary on the use and history of common growth models
in describing tumor dynamics can be found in the report by
Benzekry et al. (29).

Broadly, the macroscopic growth models described below can
be binned into three categories: (i) exponential, (ii) sigmoidal,
and (iii) power law models. Exponential models are characterized
by a long period of constant proliferation cell cycle time, while
sigmoidal models have eventual slowed growth until an even-
tual plateau. A power law model also gives rise to a similarly
slowed growth, but without a specified plateau. Each of these cat-
egories is associated with a certain functional coupling: approxi-
mately constant (exponential), increasing (sigmoidal), or decreas-
ing (power). Explicit solutions for each of the growth models are
detailed below, along with a discussion on the implications of the
functional form of coupling (i.e., the denominator of Eq. 15).

Table 1. Overview of growth model parameters

Category Model c1 c2 g(n)

Exponential Exp. α 0 0

Exp.-linear

{
α0 t≤ τ
0 t>τ

{
0 t≤ τ
−α1 t>τ

{
0 t≤ τ
1/n t>τ

Sigmoidal Logistic α α
K n

Gen. logistic α α
Kν nν

Gomp. α log K α log n
Power Von Bert. −b −a nγ−1

Power law 0 −a nγ−1

Exp., exponential; Gen., generalized; Gomp., Gompertz; Von Bert., Von
Bertalanffy.

3. Exponential Models
A simple model of tumor growth assumes a constant cell
cycle time for all proliferating tumor cells, Tc , which leads to
exponential growth (Eqs. 17 and 18).

ṅ =α0n [17]
n(t)=n0 expα0t . [18]

An extension of the exponential model assumes an initial expo-
nential phase is followed by linear tumor growth (Eq. 19), first
introduced here (34): {

ṅ =α0n; t ≤ τ
ṅ =α1; t >τ

. [19]

The exponential-linear model is solved explicitly below.{
n(t)=n0 expα0t ; t ≤ τ
n(t)=α1t +n0 expα0τ −α1τ ; t >τ

. [20]

For the first phase of growth (t <τ ), the coefficient α0 is equiv-
alent to ln 2/Tc , where Tc is the constant or exponentially
distributed mean cell cycle time of the proliferative fraction
within the tumor. Under the assumption of a continuously dif-
ferentiable solution to Eq. 20, τ is uniquely determined as:
τ = 1

a0
log
(

a1
a0V0

)
, where V0 is the initial tumor volume (29, 34).

The exponential models are shown in Fig. 2A in blue (α0 =
1;α1 =104; τ =10). As explained above, a tumor grows from a
single cell, and the total number of free states, m, a single cell can
occupy is restricted by the exponential of a function form of g(n)
(see Eq. 15). The functional coupling, f (n), determines how the
coupling changes with an increasing tumor size, n . Exponential
models are characterized by weak, constant coupling [f (n)= 1
(exponential) or f (n)≈ 1 (exponential-linear, for large τ)].

4. Sigmoidal Growth Models
The logistic (Eq. 21), generalized logistic (Eq. 23), and Gom-
pertz (Eq. 26) equations are all in a general class of equations
that quantify tumor growth in a sigmoidal shape, where growth
is slowed with increasing tumor size (29–31, 35).

Logistic growth (Eq. 21) is characterized by a linear decrease
of relative growth rate and is often interpreted as a competition
between proliferating tumor cells for space or nutrients. Logis-
tic growth models have been used by many to describe tumor
dynamics (e.g., refs. 31 and 36).

ṅ =αn
(
1− n

K

)
[21]

n(t)=
n0K

n0 +(K −n0) exp (−αt)
, [22]
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Fig. 2. Representative simulations of classical macroscopic models of tumor
growth, shown here for n0 = 1. (A) Tumor size, n(t), over time. Exponen-
tial models are shown in blue (α0 = 1;α1 = 104; τ = 10). Sigmoidal models
are shown in red (α= 1; K = 100; ν= 0.3). Power law models are shown
in green (γ= 2/3; a = 4; b = 0.2). (B) The coupling function, f(n), between
cell states for identical parameters as A. There are three general classes
of macroscopic growth models: exponential models (blue) characterized by
(approximately) constant coupling; sigmoidal models (red) characterized by
coupling that increases with tumor size; and power law models (green)
characterized by coupling that decreases with tumor size. Exp, exponen-
tial; Exp-Lin, exponential-linear; Gen. Logistic, generalized logistic; Gomp.,
Gompertz; Power, power law; Von Bert., Von Bertalanffy.

where K is the carrying capacity of the tumor. The logistic model
can also be written as a generalized logistic equation, below:

ṅ =αn
(
1−

( n

K

)ν)
, [23]

which is more conveniently written:

ṅ =αn − αnν+1

K ν
. [24]

The explicit solution to the generalized logistic equation (Eq. 25)
gives rise to the logistic model (Eq. 21) when ν=1 (29).

n(t)=
n0K

(nν
0 +(K ν −nν

0 ) exp (−aνt))
1
ν

. [25]

The generalized logistic model also converges to Gompertz
model (see Eq. 26, below) when ν→ 0 (29). First introduced to
describe human population growth (32), the Gompertz equation
has also been used extensively in modeling tumor growth (30,
33, 37). Gompertzian growth is exponential growth with decaying
growth rate:

ṅ = γ0n exp−αt . [26]

This is alternatively written:

ṅ =αn log
K

n
=αn logK −αn log n, [27]

where γ0 =α log K
n0

. It is explicitly solved,

n(t)=n0exp
[γ0
α
(1− exp(−αt))

]
. [28]

The sigmoidal models are shown in Fig. 2A in red (K =100;α=
1; ν=0.3;). The sigmoidal models are characterized by increased
coupling (again, see denominator of Eq. 15) as the tumor size
increases. This is shown in red in Fig. 2B and given by g(n), which
is a decreasing function of n in Table 1. The functional coupling,
f (n), for all sigmoidal functions is always an increasing function
of n for values of ν≥ 0.

5. Power Law Models
Another class of growth models, the power law model, has been
used to derive general laws of tumor dynamics from a relation-
ship between growth and metabolism (38, 39). Metabolic rates
within the tumor often scale with a power of the total tumor size
(29, 38). The Von Bertalanffy equation is written in Eq. 29, where
the power law model is a special case, derived by neglecting the
loss term (b=0). Note: some often identify this model as the
specific case γ=2/3, termed “second type growth” (29). Both
the Von Bertalanffy model and the power law special case have
been used to fit tumor spheroid data for murine models (40, 41)
and breast cancer mammography screening data (42):

ṅ = anγ − bn. [29]

This model can be solved and written explicitly:

n(t)=
[a
b
+
(
n1−γ
0 − a

b

)
exp(−b(1− γ)t)

] 1
1−γ

. [30]

The power law models are shown in Fig. 2A in green (γ=
2/3; a =4; b=2). These models are characterized by decreased
coupling as the tumor size increases. This is shown in green in
Fig. 2B and given by g(n), which is a decreasing function of n in
Table 1. Generally, the Von Bertalanffy model is associated with
second type growth, with γ=2/3, and the functional coupling,
f (n), for all power functions is always decreasing for values of
γ < 1. We now discuss the implications of the functional coupling
for each category of model.
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6. Underlying Biological Mechanisms
It is useful to focus on the changes in cell–cell coupling through-
out the entire life history of the tumor and to discuss the
biological mechanisms that give rise to these changes. To do
so, we reexamine classic data reproduced from ref. 30 showing
tumor growth data from 19 samples of 12 different tumors of the
rat, mouse, and rabbit superimposed and normalized appropri-
ately so that the full range of growth can be tracked from a single
cell to the full carrying capacity of a tumor. We replot the data
in Fig. 3A with best fits from two of the most common classical
models: exponential and Gompertz. The cellular constraints (Eq.
14) implied by model fits of data from the full range of tumor ini-
tiation (a single cell) to tumor saturation (carrying capacity) give
insight into how the constraints shape the tumor growth through
its time history. To view how changes in the constraints affect
the growth law of the tumor over time, the derivative of the func-
tion (df /dt) is shown in Fig. 3. In the early stages of growth,
the data are fit reasonably well by an exponential model, until
time t∗ (measured by a divergence in the mean-squared error).
This breakdown occurs roughly at the first inflection point of
the df /dt curve plotted in Fig. 3B. As the tumor grows further,
the Gompertz function predicts an increase in the effect of the
constraints (df /dt > 0), reaching a maximum at the inflection
point in Fig. 3A, corresponding to the maximum point in Fig. 3B.
Nonetheless, the cell–cell coupling is continually increasing over
time until saturation.

There are two distinct biological mechanisms that are at play
during this history that are most likely responsible for these
changes in coupling behavior among the tumor cells. In the early

A

B

Fig. 3. Exponential and Gompertz fit of aggregate tumor data. (A) Data
reproduced from ref. 30 showing growth data for 19 samples of 12 differ-
ent tumors of the rat, mouse, and rabbit superimposed by scaling according
to the inflection point of the growth curve (more details are available
in ref. 30). The units are in days (x axis) and decimal fraction of the
asymptotic tumor size, K (y axis). Residual error is shown for each data
point in relation to Gompertz fit (light purple shading). An exponential
curve is shown (dashed blue line) fit from time 0 to t∗, where the mean-
squared error (MSE) of that fit diverges from the MSE of the Gompertzian fit:
|MSEexp. − MSEGomp.| > 0.001 (fit parameters: γ0 = 0.9750; α= 0.5532; α0 =

3.4302). The exponential model is a good fit only during short time intervals,
which corresponds to a constant cell–cell coupling. (B) The cell–cell coupling
(Eq. 14) implied by model fits of data from the full range of tumor initiation
(a single cell) to tumor saturation (carrying capacity) give insight into how
cell–cell coupling shapes the tumor growth. In early times, both Gompertz
and exponential models give good fits in A. As the tumor growth slows,
the Gompertz model predicts an increase in cell–cell coupling (df/dt>
0), reaching a maximum rate of change at the tumor’s inflection point
(inflection pt.) in A.

stages, the short-range communication between cells is medi-
ated by cell gap junctions (43), which are known to be quite
permeable to a wide size range of molecules and can provide
a direct path for the flow of these molecules between cell inte-
riors. A review of how this exchange of molecular information
between nearby cells can control cell division is discussed in ref.
43. A failure in junctional communication is thus implicated as
a key biological mechanism responsible for a transition in vol-
umetric growth of the tumor near the time marked t∗ in our
Fig. 3. As the tumor matures (past time t∗), longer-range inter-
cellular communication begins to affect volumetric growth. It
is widely hypothesized, with mounting evidence, that this type
of longer-range intercellular communication is controlled not
only by soluble factors, such as cytokines, chemokines, growth
factors, and neurotransmitters, but also via microRNAs, which
are the direct mechanisms by which genetic information can be
exchanged. See ref. 44 for a comprehensive recent review. In fact,
because of their ubiquity and stability in the bloodstream of a
wide range of cancers, circulating microRNAs are being devel-
oped as a blood-based biomarker for cancer detection (45). More
generally, a broad range of circulating microparticles as the key
protagonists underlying a vast long-range communication net-
work for intercellular information exchange seems increasingly
implicated in a wide range of diseases from inflammatory and
autoimmune diseases, as well as atherosclerosis. See ref. 46 for
a comprehensive review. As the tumor progresses to carrying
capacity, the biological mechanisms of long-range coupling have
had sufficient chance to globally couple the tumor cells in the
regime we label the strongly coupled (Gompertz) regime.

7. Therapeutic Implications
Traditional therapeutic treatments target the cancer cells directly
by surgical removal or maximal eradication (chemotherapy and
radiation). The linkage between cellular coupling and tumor
growth leads naturally to the idea of therapeutic methods to
try to disrupt or enhance the functional coupling of the cel-
lular states to control tumor growth characteristics. This idea
has been touched upon with the suggestion of multitargeted
therapeutic approaches disrupting or coopting ecological inter-
actions of tumor–host or tumor–tumor cell interactions. These
approaches have been termed “ecological therapies” (20). The
model developed here provides a framework for determining
how those interactions guide volumetric growth, which may
lead to models that optimize timing of new therapies target-
ing cell–cell interactions, by targeting the mediators of those
interactions.

In general terms, the growth law that a tumor follows has
definitive therapeutic implications. Cancers that follow expo-
nential growth laws can be assumed to have constant cell–cell
interactions (or lack thereof, in the case of blood cancers),
and targeted therapies may have more promise in these scenar-
ios, while the therapies aimed at limiting cell–cell interactions
described previously will likely have little effect. Likewise, growth
models with decreased coupling over time (green curves in
Fig. 2B) will benefit from ecological therapies early in tumor
development but not as tumor sizes increase to clinical relevant
sizes. Otherwise, growth laws associated with increased coupling
(red curves in Fig. 2B) show promise with respect to therapies
targeting interactions.

Some have described the therapeutic implications of tumors
viewed as ecosystems (47), characterized by competing sub-
populations, their spatial and temporal assortment, and their
interactions with their physical and chemical microenvironments
(20). Much research has been done in the area of collateral
sensitivity, to determine if there is pharmacological interac-
tion (additivity or synergy) of multiple drugs in combination or
sequence (see refs. 48–50), showing that drugs may have complex
downstream effects on cell–cell interactions. Communication or
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feedback between tumor cells may provide negative (compe-
tition, predation, amensalism, parasitism) or positive (com-
mensalism, synergism, mutualism) (19, 20) growth. Organisms
compete for limited resources and cooperate for mutual advan-
tage with interactions fluctuating with resource consumption or
cell turnover. Additionally, tumor cell interactions may also be
dependent on benefits derived from noncancer cells (endothe-
lial cells, cancer-associated fibroblasts, and tumor-associated

macrophages) (19, 20). Targeting these noncancer cells, from
which the cancer cells are receiving benefit, should also provide
therapeutic benefits during the process by which a tumor tran-
sitions from a closed system (primary tumor) to an open system
of circulating cells to distant colonies (metastatic cancers). But a
clear understanding of the relationship between functional cou-
pling among cells and volumetric tumor growth is a necessary
step in the direction of exploiting these connections.
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